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Intonation in Unaccompanied Singing:
Accuracy, Drift and a Model of Reference Pitch Memory

Matthias Mauch,a) Klaus Frieler,b) and Simon Dixon
Centre for Digital Music, Queen Mary University of London

(Dated: May 19, 2014)

This paper presents a study on intonation and intonation drift in unaccompanied singing and pro-
poses a simple model of reference pitch memory that accounts for many of the effects observed.
Singing experiments were conducted with 24 singers of varying ability under 3 conditions (Normal,
Masked, Imagined). Over the duration of a recording, approximately 50 seconds, a median absolute
intonation drift of 11 cents was observed. While smaller than the median note error (19 cents),
drift was significant in 22% of recordings. Drift magnitude did not correlate with other measures
of singing accuracy, singing experience or with the presence of conditions tested. Furthermore, it
is shown that neither a static intonation memory model nor a memoryless interval-based intona-
tion model can account for the accuracy and drift behaviour observed. The proposed causal model
provides a better explanation as it treats the reference pitch as a changing latent variable.

PACS numbers: 43.75.Rs, 43.75.Bc, 43.75.Xz, 43.70.Fq

PREPRINT DISCLAIMER: This article is a
preprint. It has been accepted by the Jour-
nal of the Acoustical Society of America, JASA.
After it is published, it will be found at http:
//scitation.aip.org/JASA.

I. INTRODUCTION

Unlike other musical instruments, the vocal apparatus
is common to all human beings, and in every known hu-
man culture people use it to make music (Brown, 1991,
as reproduced by Pinker (2002)). There is good evidence
that vocal music was practiced even in prehistoric hu-
man societies, and it might even have preceded language
(Mithen, 2007). Yet science is only beginning to under-
stand the control processes involved in human singing.
This paper aims to provide some insights into intona-
tion, a parameter that is crucial to many singing styles
but has so far received little academic attention.

Intonation is defined as “accuracy of pitch in playing
or singing” (Swannell, 1992), or “the act of singing or
playing in tune” (Kennedy, 1980). Both of these defi-
nitions imply the existence of a reference pitch, which
could be internal or external. We treat intonation as
the signed pitch difference relative to the reference pitch,
measured in semitones on an equal-tempered scale (see
detailed discussion in Section III).

In choirs, intonation is the main reported priority in
daily rehearsals (Ganschow, 2013) and the focus of guides
on choral practice (e.g. Crowther, 2003). Such ensembles
frequently observe a change in tuning over periods of tens
of seconds or even a whole piece, a phenomenon called

a)Electronic address: matthias.mauch@eecs.qmul.ac.uk
b)Also at Musikwissenschaftliches Institut, HfM Franz Liszt
Weimar.

intonation drift or pitch drift (Seaton et al., 2013). Ac-
cording to Alldahl (2006) “the problem is mainly a low-
ering of pitch”, i.e. downward intonation drift. Seaton
et al. (2013) offer a literature review on choral intona-
tion drift, and their pilot survey on drift in choral singing
corroborates Alldahl’s observation that drift mainly oc-
curs in the downward direction. Several scientific stud-
ies suggest that one cause for the propensity to drift is
the harmonic progression (Terasawa, 2004; Howard, 2007;
Devaney et al., 2012) (see also Section II).

Yet harmonic effects cannot be the only cause for in-
tonation drift, since it also occurs in solo singing: in a
study on folk song analysis, Müller et al. (2010), track-
ing the tuning on a stanza level, report that intonation
drift is common in unaccompanied solo folk singing. In-
triguingly, their example shows that strong rises in tuning
were observed, but no further investigations are reported.
Ryynänen (2004) built adaptive tuning into a note tran-
scription system based on the observation that “non-
professional singers tend to change their tuning (typi-
cally downwards) during long melodies”. Here, intona-
tion drift is treated as a nuisance factor. Dalla Bella et al.
(2007) investigate pitch stability as one of several vari-
ables describing pitch in singing. To our knowledge no
other studies on unaccompanied solo singing exist that
investigate intonation drift in its own right.

Hence, the main motivation for the present study is to
improve the scientific understanding of intonation drift
in unaccompanied solo singing, without additional influ-
ences of harmonic consonance or ensemble interaction.
Findings drawn from observations in this simpler setting
are likely to play a role in explaining drift in complex en-
semble situations as well. In order to understand which
mechanisms may cause drift, we study three different
conditions, Normal, Masked and Imagined (Section III).

The remainder of the paper is structured as follows.
Section II discusses existing work related to singing in-
tonation and musical memory. Section III describes our
intonation experiments, including the three experimen-
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tal conditions as well as a basic outline of the analysis
setup. Section IV defines and illustrates several metrics
of singing accuracy and drift. In the results section (V)
we show what intrinsic and external factors influence ac-
curacy and drift. The following section (VI) introduces a
simple model of pitch reference memory which is able to
account for the intonation stability and drift we observed.
Section VII provides a discussion of achievements and fu-
ture work, and a summary of our conclusions is found in
section VIII.

II. PREVIOUS WORK

Only since the advent of precise pitch analysis in the
form of the tonoscope (Seashore, 1914) has it been possi-
ble to study intonation quantitatively. Carl Seashore’s
Psychology of Music (Seashore, 1967, originally pub-
lished in 1938) already featured analyses of vibrato based
on this technique. Since then, less burdensome meth-
ods for pitch analysis have been devised (e.g. Schroeder,
1968; Markel, 1972; de Cheveigné and Kawahara, 2002).
These methods, along with computer programs like Praat
(Boersma, 2002) and the advent of fast, affordable com-
puters have made intonation analysis accessible to anyone
with a microphone and a computer.

Recently, progress has been made on quantifying dif-
ferences in intonation between singers. In the music in-
formatics domain, singing tuition applications (e.g. Cano
et al., 2012) have driven the development of singing
assessment methods that often focus on intonation as-
pects (for an overview, see Molina, 2012). In the mu-
sic psychology literature, the phenomenon of so-called
“poor singers” has gained some interest (e.g. Berkowska
and Dalla Bella, 2009; Dalla Bella and Berkowska, 2009;
Dalla Bella et al., 2007; Pfordresher et al., 2010). Welch
(1985) proposed a theory of singing production, with spe-
cial regards to how children acquire singing skills.

Vurma and Ross (2006) investigated professional
singers’ ability to sing intervals and reported average
standard deviations of 22 cents in interval size, and 34
cents in absolute pitch relative to a tuning fork refer-
ence. Immediately after singing, the singers were unable
to judge whether their intervals were out of tune, but af-
ter listening to a recording of their singing, their judge-
ments were not significantly different from other expert
listeners. Judgements of out of tune singing correlated
with pitch errors, but errors of even 40 cents were not
reliably judged out of tune by the majority of listeners.

Dalla Bella et al. (2007) compared occasional and pro-
fessional singers performing a well-known melody in a
free memory recall scenario. Two groups of occasional
singers made errors in singing intervals of around 0.6 and
0.9 semitones on average, while professional singers’ er-
rors were only 0.3 semitones. A correlation with tempo
was also observed, and a second experiment was per-
formed, which confirmed that errors decreased signifi-
cantly when the same singers sang more slowly. In a fur-
ther study, Dalla Bella and Berkowska (2009) used both
free recall and repetition paradigms to characterise poor
singing in terms of timing accuracy, relative pitch (in-

Musical Background Choir Experience
None 1 None 5
Amateur 14 As a child 3
Semi-professional 7 No longer active 5
Professional 2 Still active 11

Singing Skill Singing Experience
Poor 1 None 3
Low 3 Some 6
Medium 14 A lot 13
High 4 Professional 1
Very High 2 (no response) 1

TABLE I: Self-reported musical experience.

terval) accuracy and absolute pitch accuracy, and found
that poor singers could have deficits in any one or any
combination of these attributes.

Pfordresher et al. (2010) distinguished the accuracy
(mean deviation from a target pitch) and precision (con-
sistency in repeated attempts to produce a pitch) of
singers in order to classify “poor” singers. They found
that the majority (56%) of singers were imprecise (stan-
dard deviation of pitch error greater than one semitone),
but only 13% of singers were inaccurate (absolute value
of average error greater than 1 semitone). It was also
observed that errors were greater for the imitation task
than for a recall task.

Most existing research on intonation is concerned with
a fixed tuning system, but some authors have also stud-
ied intonation drift. Terasawa (2004), Howard (2007)
and Devaney et al. (2012) investigated pitch drift in un-
accompanied vocal ensembles. In such a context, physics
predicts that perfect consonance conflicts with pitch sta-
bility over time. The idea goes back at least to the 16th
century, when music theorist Giovanni Benedetti wrote
a piece of three-part singing designed to result in vari-
ous amounts of pitch drift. The evidence from the new
studies for a reliably predictable effect is not entirely
conclusive, partly due to small sample sizes: Devaney
et al. (2012) reported only negligible effects on the origi-
nal Benedetti composition, while Howard (2007) reported
drifts roughly in line with predictions on specially com-
posed new pieces. Dalla Bella et al. (2007) also measured
pitch stability and found absolute deviations between re-
peated sequences of notes of 0.3 semitones in professional
singers and 0.6 semitones in occasional singers.

III. METHOD

A. Participants

A total of 31 participants from the UK and Ger-
many took part in the experiment. They were recruited
from musicology students, office colleagues, lab members
and the choir of the Wolfson College in Cambridge UK.
Our aim is to study intonation of subjects who are not
“poor” singers (Pfordresher and Brown, 2007). Hence,
two participants were excluded because they produced a
melody that matched Happy Birthday rhythmically, but

2



�
✻

✁
✸

✁
✽

✁
✼
✂✁

✷
✂

✶
✁ ✁

✹
✁
✺

✁
✶✹

✁
✶✸
✂�

✶✷
✄ ☎ ✆✝

✶✵
✁
✶✶

✁
✾

✁

✁

✷✶
✁✁

✶✾

✁

✷✵

✂

✶✻

✁

✶✺
✁
✶✼

✁
✶✽

✁
✷✷

✞
✄ ☎ ✁

✷✸
✁
✷✹

�
✷✺

FIG. 1: “Happy Birthday” in F-Major

not tonally (they consistently sang a different melody).
A third singer had an unstable voice from which we were
unable to draw suitable pitch estimates. Also excluded
were four further participants, who were detected as out-
liers and hence classified as “poor” singers. The out-
lier classification was performed using multivariate out-
lier detection (Filzmoser et al., 2005) on two singer-based
metrics: mean absolute interval error (see Section IV.C)
and ratio of intervals within a semitone of the true in-
terval. After these exclusions, 24 subjects remained in
the study. The age of the participants ranged from 13 to
62 with a median of 32.5 years (mean: 34.5). The gen-
der ratio was imbalanced with 6 females and 18 males
in the sample. The musical experience of participants
was wide-spread. Fourteen singers considered themselves
amateur musicians, 9 professionals or semi-professionals,
and 1 reported no musical background. Thirteen partic-
ipants reported “a lot” of singing experience, 9 some or
no experience, one subject sings on a professional level,
and one did not respond. Eleven subjects are still active
in some choir, while 8 had previous choir experience, and
5 have never sung in a choir (see Table I). Since we had
a large share of male participants, baritone was the most
common voice type with a total of 13 subjects, followed
by soprano with 6 subjects.

B. Material

Since we chose to employ a free memory recall
paradigm with a variety of subjects from two different
countries, the choice fell on “Happy Birthday”, proba-
bly the single best-known and most wide-spread song in
the world. Happy Birthday cannot be considered a very
easy song, since it contains a variety of different inter-
vals, some of them being large jumps (see Fig. 1). The
ambitus is exactly one octave using a full major scale
from dominant to dominant an octave higher. The song
is written in 3

4 time, beginning with a two note upbeat
and comprising a total of 25 notes in 4 phrases of 6, 6, 7,
and 6 notes each.

C. Procedure

Each participant sang a total of 9 renditions of “Happy
Birthday”, in three recordings of three runs each. Details
are given below. For a particular recording each partici-
pant was asked to sing three consecutive runs of “Happy
Birthday”. The participants could choose the starting
pitch at their own comfort in order to limit effects of re-
gression to their comfort pitch. They were provided with
a click track of moderate tempo (96 bpm) and instructed

to wait four bars before beginning to sing. Subjects were
instructed to sing the syllable “na” throughout. Sub-
jects were recorded at a sample rate of 44100 Hz with
a bit depth of 32 bit (stored to 16-bit PCM) using Au-
dacity 2.0 running on a Windows Laptop or a MacBook
Pro. A conventional headset (Logitech USB Headset 390)
functioned both as microphone and headphones, through
which participants were provided with the click track and
the noise in the Masked condition (see below).

Three such recordings were made of each participant
to test three different conditions, which differed by the
way the second run of “Happy Birthday” was performed.

Normal. The participant sang three renditions of
“Happy Birthday” as described above.

Masked. Pink noise at a moderate sound pressure level
was applied over the headphones during the second
of three renditions of “Happy Birthday”.

Imagined. The participant was asked to remain silent
during the second rendition of “Happy Birthday”,
while imagining to sing, and to resume singing at
the start of the third rendition.

The reasoning behind these conditions was to study
whether the absence of vocal strain reduces the tendency
to drift (Imagined condition) and whether an impedi-
ment to auditory feedback would increase the tendency
to drift (Masked condition). Note that the Imagined con-
dition does not only remove vocal strain, but also audi-
tory and kinesthetic feedback, as the participants can
neither hear their singing nor feel singing-induced move-
ments or the state of the vocal tract in the vicinity of
the vocal folds. Anaesthetising the vocal folds has been
shown to lead to a decrease in singing accuracy (Kleber
et al., 2013).

The sequence of conditions was held constant (in in-
creasing order of difficulty). In each condition, subjects
sang 75 notes except in the Imagined condition with only
50 notes. Most of the German singers sang the German
version of the melody which divides note 17 into two syl-
lables at the same pitch; this extra note was disregarded
in the analysis. One singer consistently missed note 19.

D. Analysis

We use as our reference tuning system equal temper-
ament. We will see in Section IV that for the purposes
of our study the assumption of equal temperament does
not substantially affect our results. We also assume that
pitch, a perceptual quantity, is adequately represented
by its physical correlate, fundamental frequency, for har-
monic sounds such as singing (Vurma and Ross, 2006).

We relate fundamental frequency f0 to musical pitch p
as follows:

p = 69 + 12 log2

f0
440

. (1)

This scale is chosen such that a difference of 1 corre-
sponds to one semitone; for integer pitches the represen-
tation coincides with the MIDI pitch scale, with reference
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FIG. 2: Example pitch track (grey crosses) and
note-wise pitch estimates (horizontal bars), calculated

as medians between annotated note boundaries (vertical
dashed lines).

pitch A4 tuned to 440 Hz (p = 69). As pitch differences
are generally small, we often use the unit cent, equal to
a hundredth of a semitone in equal temperament.

For example, middle C (60 on the MIDI pitch scale)
has a frequency of 261.63 Hz. A note measured at 257
Hz has a pitch of 59.69, and thus an intonation difference
to middle C of −0.31 semitones (or −31 cents).

We use the word nominal to refer to the ideal intervals
or pitches with respect to a reference in equal tempera-
ment. For instance, if we consider an upward interval of
a perfect fifth, then its nominal size is 7 semitones. This
allows us to contrast this with the size of an observed
interval, which in general differs from its nominal size.

The recorded songs were analysed using a semi-
automatic pitch tracking process. The second author
(kf) annotated onsets and offsets of note events by vi-
sually identifying the stable part in the estimated pitch
track using Sonic Visualiser 2.0 (Cannam et al., 2010)
and subsequent auditory verification. Automatically cal-
culated onsets and offsets were adjusted manually, and
the resulting annotations were fed into customised pitch
tracking software (Mauch and Dixon, 2014), which is
based on the YIN algorithm (de Cheveigné and Kawa-
hara, 2002). The resulting note tracks were then anal-
ysed using R (2008). In order to obtain note-wise pitch
estimates we take the median pitch estimate over the an-
notated duration of the note, as illustrated in Figure 2.
A total of 4789 notes in 72 recordings were collected this
way.

To test the reliability of the note timing annotations,
12 randomly selected blocks (of 3 runs) were also anno-
tated manually by the other two authors and submitted
to the note tracking algorithm. A comparison of onset
and offset annotations reveals that these coders chose
voiced/unvoiced boundaries and included note transi-
tions, while kf consistently placed onsets later and off-
sets earlier in the sound event, capturing only the stable
pitch portion of the note. A comparison of the different
resulting pitch tracks showed that the median statistic is
robust to such varying interpretations of note onsets and

offsets, and no significant differences for the note pitch
estimates were found. The average difference of the two
other coders to the first coder was less than 0.2 cents,
and only 1.4% of F0-differences were larger than 5 cents.

IV. METRICS OF ACCURACY AND DRIFT

In this section we introduce how we measure intonation
(in terms of interval and pitch error), singer-wise perfor-
mance measures and drift. We start by defining interval
and pitch errors for individual notes and illustrate these
using some examples from our data. Then we introduce
measures of intonation accuracy and drift based on the
error definitions.

A. Interval Error

The distance between two pitches is referred to in musi-
cal terms as an interval, corresponding in physical terms
to the ratio of the constituent fundamental frequencies.
For the sake of this paper, we express the interval lead-
ing to the ith pitch pi (see Eq. (1)) as the signed distance
∆pi = pi−pi−1 in semitones between the ith and the pre-
ceding note. The interval error of the observed interval
∆pi can then be written as

einti = ∆pi −∆p0i , (2)

where ∆p0i is the nominal interval in semitones using
equal temperament (ET). Figure 3a shows a box plot
of interval error by nominal interval. A first observa-
tion is that the two largest upward intervals of 8 semi-
tones (minor sixth) and 12 semitones (octave) are signif-
icantly flat, i.e. smaller than expected (one sample t test
(t(186) = −6.96, t(183) = −9.09, both p < 0.0001). This
phenomenon is called compression and is well known in
the literature (Pfordresher et al., 2010).

The prime interval, a repetition of the same pitch
(0 semitone nominal interval), is systematically sharp,
i.e. sung too high (one sample t test: t(753) = 17.96,
p < 0.0001) by approximately 0.29 semitones. The fact
that all prime intervals occur between the first and sec-
ond note of each phrase (see Figure 3b) suggests two
possible explanations. Either the first note is sung flat
as the vocal cords re-adjust from low tension in the rest
between phrases to the higher tension required to sing
the intended pitch, or the second note is sharp in prepa-
ration for an upward interval occurring after the note.
This second possibility cannot explain the sharpness of
note 21, which is followed by a downward interval, but
we will obtain further insights by considering pitch error.

B. Pitch error

Defining pitch error is not as straight-forward as defin-
ing interval error, because in our unaccompanied singing
data we have no external reference pitch against which in-
tonation could be measured. Instead, the tuning emerges
as singers sing and may change over the course of the

4



in
te

rv
al

 e
rr

or
 (

w
ith

 r
es

pe
ct

 to
 E

T
)

−
1

0
1

−5 −3 −1 0 2 5 7 8 12

n= 333 669 216 1100 665 860 658 223 219 210 211

(a) by nominal interval (in semitones)

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

111 215 217 222 223 224 222 215 217 218 219 223 222 217 211 216 223 223 213 210 213 218 224 224 224

(−5) 0 2 −2 5 −1 −4 0 2 −2 7 −2 −5 0 12 −3 −4 −1 −2 8 0 −1 −4 2 −2
intervals in semitones

phrase 1 phrase 2 phrase 3 phrase 4

(b) by note

FIG. 3: Box-and-whisker plot of interval errors in semitones for all recordings of all 24 singers. Values are relative to
the score using equal temperament. The numbers at the top of the figure indicate sample sizes.

0 5 10 15 20 25

44

46

48

50

52

54

note number

pi
tc

h

0

1

−1

2

−2

3

−3

4

−4

5

−5

6

−6

−7

−8

FIG. 4: Example of pitch error estimation, showing
pitch measurements pi (empty bullets) and local tonic

estimates ti (filled) using a linear fit. The stems
represent the pitch error ei.

song. As a result, no single best way of defining intona-
tion is possible.

In order to obtain a reference we will use a linear fit
to the local tonic estimate, as explained below. For the
measured pitch pi of the ith note we can find an estimate

ti = pi − si (3)

of the implied tonic pitch by subtracting from pi the
nominal pitch si relative to the estimated tonic. These
nominal pitches for “Happy Birthday” are given in Fig-
ure 5b. For example, if the first note in a run is sung
at p1 = 50.45 (see Eq. 1), then the implied tonic is
t1 = 50.45−(−5) = 55.45 because the first note is 5 semi-
tones below the tonic. This is shown in Figure 4, which
also illustrates the next steps: for every run (a third of
the performance) we use linear regression to fit a line

to the 25 values ti with note number i as independent
variable, obtaining fitted values t′i. (Linear regression
was chosen as the simplest approach allowing for tonic
changes.) We define the note error ei as the difference
between the implied tonic and the fitted tonic:

ei = ti − t′i. (4)

The individual errors are represented by the stems be-
tween the linear fit and the filled markers in Figure 4.

With the ability to measure the pitch error, we can
now investigate the relative effects of phrase begin-
nings and note jump preparation, as hypothesised in
Section IV.A. A linear model predicting pitch error
by the independent variables is-beginning-of-phrase and
interval-to-next-note shows that both correlate signifi-
cantly (F (4667) = 254.94, both p < 0.0001) with in-
terval error. Hence, neither hypothesis can be rejected
— it is likely that both influence intonation. Being at
the beginning of a phrase ‘makes’ notes about 21 cents
flat. Each signed semitone in the following interval leads
to a sharpening of 1.3 cents (upward octave example:
12 × 1.3 = 15.6 cents). Together, the two variables ac-
count for 9.8% of the variance (as measured by R2).

While using other reference temperaments would be
possible, they do not provide substantially differing er-
rors, which is in line with previous results by Devaney
et al. (2011). In fact, in terms of mean absolute pitch
error (see Section IV.C), equal temperament is a signifi-
cantly better hypothesis than just intonation (t(4774) =
−14.1927, p < 0.0001), but the actual difference is very
small (1.3 cents). Lastly, note that interval and pitch er-
rors indicate deviation from the mathematically defined
equal temperament grid, not an aesthetic judgement.
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C. Metrics of singing accuracy and precision

In order to assess singing accuracy we use two metrics:
mean absolute pitch error (MAPE), defined as

MAPE =
1

M

M∑
i=1

|ei|. (5)

and mean absolute interval error (MAIE), defined as

MAIE =
1

M − 1

M∑
i=2

|einti |. (6)

Both metrics are always non-negative. MAIE does not
reflect any tendency to sing larger or smaller intervals,
but it is in our view a natural way to indicate how closely
intervals match their target (and is equivalent to interval
deviation, Dalla Bella et al., 2007).

D. Metrics of pitch drift

Each of our recordings has a first and a third run of
“Happy Birthday”, each consisting of 25 notes. We esti-
mate drift based on pitch differences between correspond-
ing notes in these two runs of the song. Hence, for a
particular recording we define pitch drift D as the mean
difference

D =
1

25

25∑
i=1

pi+50 − pi. (7)

The drift metric D conveys information about the mag-
nitude and direction of drift. In order to consider only
the magnitude we use the metric absolute drift, i.e. |D|,
which is equivalent to pitch stability (Dalla Bella et al.,
2007), see also (Flowers and Dunne-Sousa, 1990, p. 105).

In the more general case without repeated sequences
drift can be estimated as the slope of a linear model pre-
dicting the local tonic estimates ti with the note numbers

1,. . . ,75 as the covariate. We have already used the same
technique to calculate pitch error (Section IV.B). As we
will see in the following section, this linear drift, denoted
DL, is very highly correlated with D, so for most of our
analyses we will use only D and |D|. From the model
used to determine DL for a particular recording we also
calculate the associated p-value, which is an indicator of
the significance of the drift effect.

V. RESULTS

The metrics summarising accuracy and drift defined
in Section IV allow us to analyse recordings and assess
the correlations with test condition (Normal, Masked,
Imagined) and participant factors such as choir experi-
ence. In order to prepare for the correlation analyses, we
first present the distributions of recording-wise summary
statistics themselves.

A. Distributions of accuracy and drift

We calculated the mean absolute pitch error (MAPE,
see Section IV.C) for each of the 72 recordings. Figure 6a
provides a histogram of the distribution of MAPE, show-
ing that the average error magnitude is less than 0.5
semitones for all recordings, with most recordings hav-
ing a MAPE of around 0.2 semitones (mean: 0.189; me-
dian: 0.187; std. dev.: 0.051). While this result shows
that the singing in most recordings was systematically
compatible with equal temperament, it is also clear that
0.2 semitones (20 cents) is slightly larger than the just
noticeable difference, which for typical singing frequen-
cies up to 800Hz is usually below 1%, i.e. below 17 cents
(Henning, 1955). The distribution of MAIE (6b) is sim-
ilar, with slightly larger magnitudes of around 26 cents
(mean: 0.263; median: 0.267; std. dev.: 0.069). Turn-
ing to Table II, we observe that MAPE and MAIE are
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sg.abl 0.40 0.31 0.54 -0.45 -0.46 0.11 -0.02 0.06
sg.exp -0.07 0.42 -0.16 -0.27 0.20 0.05 0.11

mus.bg 0.34 -0.16 -0.24 0.10 -0.02 0.05
ch.exp -0.37 -0.40 0.22 0.01 0.07

MAIE 0.93 -0.19 -0.01 -0.06
MAPE -0.19 -0.01 -0.04

DL 0.52 0.94
|D| 0.54

D

TABLE II: Spearman rank correlations of survey
metadata (singing ability, singing experience, musical

background, choir experience) and measures of accuracy
and drift. Significant correlations (p < 0.01) are shown

in bold.

indeed correlated almost deterministically across record-
ings (Spearman rank correlation of 0.93). What is re-
markable is that neither significantly correlates with drift
or absolute drift. This suggests that the capability of re-
maining in a key does not depend on the ability to sing
individual notes accurately. This conclusion is valid only
if we can show that the drifts we observed are unlikely
to stem from measurement error. The question is hence
whether the drifts we do observe are statistically signifi-
cant.

First, we consider the distribution of drift over record-
ings. A histogram of drift D is shown in Figure 6c (in
semitones, mean: 0.074; median: 0.069; std. dev.: 0.169)
and of linear drift DL in Figure 6d (in cents, mean: 0.097;
median: 0.096; std. dev.: 0.371). The absolute intonation
drift |D| (in semitones, mean: 0.138; median: 0.111; std.
dev.: 0.122) has a mean of only 0.138, which is smaller
than the mean MAPE (0.187). That is, in our sample
the expected drift magnitude over 50 notes is smaller
than the expected absolute error per note.

In order to test whether the drifts are a real effect
rather than measurement noise, we fit a recording-wise
linear regression model to the implied tonic measure-
ments ti, as described in Section IV.C. For each record-
ing we obtain the p-value of the slope, with low values
indicating strong evidence for the existence of significant
drift. Figure 7 plots these p-values against linear drift
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linear drift per note in semitones
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lu
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FIG. 7: Significance of drift, showing p-values
(logarithmic scale) against DL for each recording.
p-values below 0.01 are considered significant.

DL. Of the 72 recordings, 16 (22%) have a p-value be-
low the line of confidence level 0.01, that is: they show
significant drift. (Relaxing the confidence level to 0.05,
significant drift occurs in 27 recordings, 38%.) We con-
clude that drift is indeed a real effect. Hence, the lack
of correlation between our measures of drift on the one
hand and MAIE and MAPE on the other is a non-trivial
finding.

In our dataset the vast majority of recordings with
significant drift actually drift upwards. This is surprising
especially because many choirs suffer from the opposite
phenomenon, as discussed in Section I, but in line with
some findings on solo folk singing (Müller et al., 2010).

In summary, despite significant drift, drift effects are
unrelated to the magnitude of pitch error and interval
error. This is all the more surprising given that the mag-
nitudes of MAPE and MAIE are so widely spread. For
example, recordings with MAPE values as disparate as
0.1 semitones and 0.3 semitones can show very similar
drift magnitudes near to zero. The relative independence
of drift and local error is further emphasised by the fact
that all have absolute values in the same order of magni-
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tude, which is incompatible with an intonation model in
which pitch errors propagate, as we will explore in Sec-
tion VI. First, however, we investigate correlations with
the singers’ self-assessment and experimental conditions.

B. Correlation with self-assessment

We investigated the relation between the quantitative
intonation metrics and the singers’ self-assessment, taken
from a survey they filled in. Three self-reported metrics
take values from 1 to 5: singing ability (poor to very
high), singing experience (none to professional) and choir
experience (none to still active), and musical background
(none to professional) takes values from 1 to 4. Table II
shows the Spearman (i.e. rank) correlation values be-
tween all metrics, with significant correlations (p < 0.01)
highlighted in bold print. We observe that most of the
self-reported measures are inter-correlated, with the only
exception of singing experience/musical background. In
fact, the self-reported general level of musical background
does not correlate with any of the quantitative measures
either. Further study may reveal whether singing skills
are indeed partially independent of general levels of musi-
cality, as has been suggested before (Hutchins and Peretz,
2012).

However, two kinds of self-assessment ratings, singing
ability and choir experience, do significantly correlate
with our quantitative measures MAPE and MAIE. All
of the four combinations have absolute correlations ≥
0.37. While the correlation of accurate singing and choir
membership is expected, the singers’ assessment of their
singing ability, too, is in line with our measurements of
intonation accuracy.

As we have mentioned in Section V.A, we observed lit-
tle correlation between the measures of accuracy, MAPE
and MAIE, and measures of drift, D and |D|. In fact,
the only two metrics that correlate with drift D are those
that are indeed directly related: linear drift, which is a
different measure of the same phenomenon, and abso-
lute drift |D|, which correlates because most of the D
values are actually positive, i.e. they coincide with |D|.
Again, other than these direct connections, no other met-
rics correlate with either D or |D|, in particular, none of
the self-reported measures, including singing experience
and choir experience.

C. Effect of experimental conditions: Normal, Masked,
Imagined

To see whether the three conditions (Normal, Masked,
Imagined, see Section III) have an influence on our mea-
sures of accuracy and drift, an analysis of variance was
conducted. Since all four accuracy and precision vari-
ables are not normally distributed (right-skewed), a set
of non-parametric Kruskal-Wallis tests was performed,
but no significant differences between conditions and runs
were found (MAPE: χ2(2) = 0.89, p = 0.64; MAIE:
χ2(2) = 2.43, p = 0.30; D: χ2(2) = 2.51, p = 0.28;
|D|: χ2(2) = 0.42, p = 0.81). Even the middle run

in the Masked condition did not significantly deteriorate
singing intonation, in contrast with some other findings
(e.g. Mürbe et al., 2002), but consistent with others who
used low-level noise similar to that in our experiments
(e.g. Pfordresher and Brown, 2007). One observation
during the experiments was that singers tend to sing
louder in the Masked condition, compensating for the de-
prived auditory feedback (the so-called Lombard effect,
Lombard, 1911), which is likely to have made the audi-
tory feedback inhibition ineffective. The fact that the
Imagined condition has little bearing on intonation is in
line with perceptual experiments which found little dif-
ference in pitch acuity between listening and imagining
conditions (Janata and Paroo, 2006). In summary, the
conditions had no significant effect on the parameters we
tested.

VI. A MODEL FOR INTONATION STABILITY

In this section we consider the question: how do singers
stay in tune at all? While significant pitch drift was
detected in many recordings, the tuning difference over
three runs of “Happy Birthday” stayed remarkably small,
despite large intonation errors on individual notes (see
Section V.A). It appears that even amateur singers pos-
sess a mechanism that prevents them from chaotically
drifting out of tune. This stabilising mechanism, we hy-
pothesise, is mainly based on the retention of a pitch
reference in short-term memory.

A. Production with Memory of a Changing Reference Pitch

A simple pitch production model can be built on the
assumption that the intonation of the ith note consists
mainly of two components: a reference pitch ri, and the
score information relative to that reference pitch. We
choose to encode the melody notes in semitones relative
to the tonic. (This is arbitrary; any other reference yields
an equivalent model.) Assuming an additive Gaussian
pitch error εi ∼ N(0, σi), the pitch production process
can then be written as

pi = ri + si + εi, (8)

where pi is the pitch of the ith note, ri is the reference
pitch and si is the fixed score information given relative
to the tonic. The error εi models all additional noise, e.g.
from physiological effects.

Our results on pitch drift (see Section V.A) indicate
that the singers’ reference pitch changes over time. We
assume that the memory of the pitch reference cannot
be perturbed by future events and hence model ri as the
causal process

ri = µri−1 + (1− µ) (pi−1 − si−1) , (9)

which depends on the previous reference pitch ri−1 and a
point-estimate of the reference pitch (pi−1 − si−1), where
µ ∈ [0, 1] is a parameter relating to the memory of the
previous reference pitch ri−1. Re-writing (9) as

ri = ri−1 + (1− µ)ei−1. (10)
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illustrates that the reference pitch is “pulled” in the di-
rection of observed error ei−1 = (pi−1 − si−1) − ri−1. A
similar model, based on updated tuning histograms, was
proposed by Ryynänen (2004) to deal with the transcrip-
tion of monophonic melodies in an engineering context.

Since no reference pitch is available before the first ob-
servation, Eq. (9) is not defined for i = 1, i.e. we have
a cold start problem. We choose the first phrase (six
notes) to initialise the smoothed reference pitch estimate
r∗ = 1

6

∑
ti = 1

6

∑
(pi − si). The first six notes in every

recording are then excluded from any further analysis of
this model, and the recursive update (9) is applied from
i = 7. Figure 8 shows the local and smoothed reference
pitches for an example recording under the Normal con-
dition.
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FIG. 8: Example of observed tonality estimates ti
(marked as +) and the estimated reference pitch ri

(filled bullets) with parameter µ = 0.85.

B. Boundary models: no memory and absolute memory

The extreme cases µ = 0 and µ = 1 generate models
with no memory of the reference pitch (in the Marko-
vian sense) and perfect memory of the reference pitch,
respectively. If µ = 0, only the previous note realisation
is used for reference, i.e. the reference pitch is simply
ri = (pi−1 − si−1), and hence

pi = pi−1 + (si − si−1)︸ ︷︷ ︸
interval

+εi.

That is, pitch production is based on the interval from
the previous note realisation. This also means that errors
from the previous note are fully passed on. Mathemati-
cal formalisation confirms that with an arbitrary starting

pitch p0 the pitch variance Var[pi−p0] =
∑i

j=1 Var[∆pj ]

is the sum of the interval error variances (assuming that
intervals are independent). At the average observed in-
terval variance of Var[∆pi] = 0.147 the expected variance
of two notes spaced 50 notes apart is 50×Var[∆pi] = 7.36.
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FIG. 9: Mean absolute error for models based on
Eq. (9) for different values of the memory weight µ. An
optimum is recognisable around µ = 0.85. Dashed line:

best linear prediction.

This corresponds to a standard deviation of 2.71 semi-
tones, which is very clearly different from the 0.28 semi-
tones standard deviation observed in our study (see Sec-
tion V.A).

The other extreme is µ = 1, in which case the origi-
nal reference pitch is perfectly maintained, and no infor-
mation is passed on from one note to the next. In our
case the reference pitch remains r∗ throughout the piece.
Given a fixed reference pitch r∗, the constant reference
pitch model predicts that the variance of the error ti−r∗
remains constant across a recording, which is another way
of saying that no drift occurs. To test this prediction, we
proceed as follows: we calculate the errors ti−r∗ with re-
spect to the reference r∗ (based on the first phrase, as in
Section VI.A) and estimate per-note variances across all
recordings. We use a linear model with pitch error as co-
variate in order to subtract the linear effect of pitch error
variances in individual notes. The resulting pitch-error-
corrected residuals show a highly significant increase of
variance with notes: note number explains 31.3% of the
variance (F (67) = 30.51, p < 0.0001). Over 75 notes, the
standard deviation of residuals increases by 0.27 semi-
tones. On these grounds it is very unlikely that a con-
stant reference pitch is used, and we have to reject the
boundary model for µ = 1.

Hence, both boundary models are at odds with our
observations: one predicts extremely volatile drifts,
the other—in its assumption of perfect reference pitch
memory—predicts zero drift. The question is then
whether a model with an intermediate value of µ ∈ (0, 1)
will fit the data better.

C. An intermediate memory parameter µ

Having rejected the boundary models for µ = 0 and
µ = 1 we are interested in finding whether any interme-
diate µ provides a more adequate model. A good model
should predict the observed individual note pitches with
little error.
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Since ri is meant to represent ti = (pi − si) up to a
note-wise error, as illustrated in Figure 8, it seems plau-
sible that, for some parameter µ the prediction error can
become small. We measure the model’s mean absolute
pitch error (model MAPE ) with respect to this reference.
Figure 9 shows the error on a grid of µ values (equidis-
tant with hop size 0.01). The best model is achieved for
µ = 0.85, leading to a model MAPE of 22 cents, with er-
rors substantially higher towards the extremes of µ = 0
(27 cents) and µ = 1 (29 cents). While the figure shows
that the linear model prediction is better (MAPE : 19
cents), only the memory model is psychologically plausi-
ble because it is causal, i.e. it does not depend on future
events.

We also determined the µ values that minimise the er-
ror on individual recordings and averaged them by singer
to obtain singer-wise µ values. Figure 10 shows a his-
togram of these singer-wise estimates, which range from
µ = 0.62 to µ = 0.98 (mean: 0.832, median: 0.850, std.
dev.: 0.105).

The model behaviour in both pitch prediction and
spread of drift suggests that a memory model such as
the one defined by Equations (8) and (9) is reasonable
for values around µ = 0.85.

VII. DISCUSSION AND FUTURE WORK

New knowledge of intonation drift may have implica-
tions for practitioners of singing, especially in choirs. Our
findings in Section V.A suggest that unaccompanied solo
singing without a harmonic context or interaction with
other musicians rarely results in significant intonation
drift. The median of 11 cents drift observed is not only
smaller than the mean absolute error per note, but also in
the range of differences of concurrent pitches measured in
choirs (10 to 15 cents, according to Ternström and Sund-
berg (1988)). This adds further evidence to other causes
for drift, such as the interaction between temperament
and intonation in polyphonic singing (Devaney and Ellis,
2008; Howard, 2007).

In terms of individual singers, the intonation mem-
ory model presented in Section VI is particularly inter-

esting because the parameter µ can reflect the capac-
ity of a singer to stay in tune and that—unlike interval
error—is not immediately obvious when a person starts
to sing. With three recordings per participant our data
has allowed us to study some characteristics of individ-
ual singers, but more recordings of individual singers are
necessary to refine our models and our understanding of
intonation memory. For example, our model is station-
ary, i.e. it predicts zero long term drift. A non-zero drift
term might yield a more realistic model.

For this study we chose to use “Happy Birthday” as
our example tune, and while it is the most widely known
song among non-professional singers, using only a single
melody is an obvious limitation. More different melodies
are needed to study intonation behaviour in more detail
and with more claim to generality.

While we found that in our study equal temperament
was as good a reference grid as just intonation, we hope
that further experiments will enable us to infer more pre-
cisely the intonation intended by singers.

The analyses carried out in this paper all rely on in-
dividual notes as the fundamental musical unit. Future
studies will include the temporal development of pitch
within the duration of notes (e.g. glide, vibrato) and in-
vestigations on the effect of the duration itself.

VIII. CONCLUSIONS

This paper has presented a study on intonation and in-
tonation drift in unaccompanied solo singing. The main
focus of the paper was the relations between drift (go-
ing out of tune) on the one hand and measured pitch
accuracy, different feedback conditions and participants’
self-assessment on the other. Our main finding is that
drift is common in solo singing. However, its extent is of-
ten small (less than 0.2 semitones over 50 notes) and not
correlated to pitch accuracy, interval accuracy, or musi-
cal background. Most significant drifts in our particular
study are upward drifts.

No significant difference was found between the three
different singing conditions Normal, Masked and Imag-
ined, suggesting that in our study, vocal strain and audi-
tory feedback had little impact on the singers’ capability
of staying in tune.

Using our findings on solo intonation drift we motivate
a causal model of reference pitch memory with a single
parameter µ representing the memory strength. We show
that values around µ = 0.85 minimise the model mean
absolute pitch error.

The fact that significant drift occurs even in unaccom-
panied solo singing suggests that tuning changes in more
complex situations such as choir singing can partially be
accounted for by drift. The small magnitude of drift ob-
served in our study indicates that this is not inconsistent
with earlier studies that highlight other causes.
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