We explore the dynamics of an integrate-and-fire neuron with an oscillatory
stimulus. The frustration due to the competition between the neuron's natural
firing period and that of the oscillatory rhythm, leads to a rich structure of
asymptotic phase locking patterns and ordering dynamics. The phase transitions
between these states can be classified as either tangent or discontinuous
bifurcations, each with its own characteristic scaling laws. The discontinuous
bifurcations exhibit a new kind of phase transition that may be viewed as
intermediate between continuous and first order, while tangent bifurcations
behave like continuous transitions with a diverging coherence scale.Comment: 4 pages, 5 figure