https://ntrs.nasa.gov/search.jsp?R=19650008656 2020-03-24T04:42:33+00:00Z

BY R. A. DEVANEY R. C. BLANCHARD J. ANDARY

OCTOBER 1964

GODDARD SPACE FLIGHT CENTER GREENBELT, MD.

TIME VARYING SOLAR CYCLE PROTONS PROGRAM MANUAL

by

R. A. Devaney R. C. Blanchard J. Andary

Theoretical Division National Aeronautics and Space Administration GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

TABLE OF CONTENTS

÷.

	1	Page
	INTRODUCTION	1
Ι.	DIURNAL AVERAGED ATMOSPHERE	3
п.	B-L SEARCH	9
	A. Introduction	9
	B. Mnemonics	10
	C. Flow Charts	11
	1. Main Program	11
	2. Subroutine RING	13
	D. Fortran Listing	15
	E. Restrictions	36
	F. Input	36
	1. Card Description	36
	2. Sample	37
	G. Output	38
	1. Tape 3 Sample	39
	2. Tape 5	40
	a. Card Description	41
	b. Sample	42
	U Bunning Time	49
		43
ш.	LONGITUDINAL AVERAGING PROCESSOR	45
	A. Introduction	45
	B. Mnemonics	45
	C. Flow Chart	4 8
	D. Fortran Listing	49
	E. Restrictions	54
	r. mput	54
	1. Tape 2	54
	a. Card Description	54
	b. Sample	55

			Page
		2. Tape 5	56
		a. Card Description	56 57
	G.	Output	58
		1. Tape 3 Sample	59 64
		a. Card Descriptionb. Sample	$\begin{array}{c} 64 \\ 65 \end{array}$
	H.	Running Time	66
IV. L	AMBE	DA PUNCH	67
	A. B. C. D. E. F.	Introduction	67 67 69 71 75 75
		 Card Description	75 76
	G.	Output	77
		1. Tape 3 Sample	78 80
		a. Card Description	$\begin{array}{c} 80\\ 81 \end{array}$
	н.	Running Time	82
V. "]	BOUN	CE" AVERAGE CALCULATION	83
	А. В. С. D.	Introduction	83 83 87 89
		 Main Program	89 90
	Ε.	Fortran Listing	91

 \mathbf{iv}

		Page
F.	Input	99
	 Card Description	99 100
G.	Output	101
	1. Tape 3 Sample	102 104
	a. Card Description	104 105
н.	Running Time	106
VI. R , Σ C	ALCULATION AND FLUX ELIMINATION	107
A. B. C. D.	Introduction	107 107 108 110
	 Main Program	. 110 . 111
E. F.	Fortran Listing	. 112 . 119
	1. Card Description 2. Sample	. 119 . 120
G.	Output	. 121
	1. Tape 3 Sample	. 122 . 127
	a. Card Description	. 127 . 129
н.	Running Time	. 130
VII. CONSE	RVATION EQUATION CALCULATION	. 131
A. B. C. D.	Introduction	. 131 . 131 . 133 . 138
	1. Main Program	. 138

		$\mathbf{P}_{\mathbf{r}}$	age
		 Subroutine RUNGE	39 40 41
	Е. F. G.	Fortran Listing 1 Restrictions 1 Input 1	.42 .57 .57
		1. Card Description 1 2. Sample 1	.58 .60
	Н.	Output1	61
		 Transient Steady-State Sample	.62 .64 .66
	Ι.	Running Time1	.68
VIII.	STEAD	Y-STATE CALCULATION 1	.69
	A. B. C. D.	Introduction 1 Equations 1 Mnemonics 1 Flow Charts 1	.69 .69 .70 .74
		1. Main Program12. Subroutine TABLE1	.74 .75
	E. F.	Fortran Listing 1 Input 1	.76 .82
		1. Card Description 1 2. Sample 1	.82 .84
	G. Н.	Output	.85 .89
IX.	REFER	LENCES	.91
х.	ILLUST	rrations	.93

c •

LIST OF FIGURES

•1

Figure		Page
1.	A time history of the 10.7 cm solar flux according to the measurements of the National Research Council of Canada for the recent past. The heavy dotted line indicates the approximate yearly average.	193
2.	A mapping of the polar coordinates R and λ onto the B-L plane where R = (h + 6378.2).	194
3.	B-L contours for the northern hemisphere at an L of 1.25 earth radii	195
4.	B-L contours for the southern hemisphere at an L of 1.25 earth radii	196
5.	Schematic of a trapped particle's north-south motion	197
6.	The weighing factor, $A(\lambda)$, versus latitude for various mirror latitudes, λ_0 , where λ_0 are the asymptotes of each curve.	19 8
7.	A time history of the atmosphere scale factor, R , as a function of B at L = 1.25 e.r.	199
8.	A time history of the atmospheric loss parameter, Σ , as a function of B at L = 1.25 e.r.	200
9.	A time history of the constructed mean solar cycle variation of the 10.7 cm solar flux with reference time t_0 of Jan., 1954.	201
10.	A time history of the relative inner belt source strength	202
11.	The proton energy loss spectrum for an oxygen target	203
12.	The slope of proton energy loss versus energy for an oxygen target.	204
13.	A comparison of the steady-state and transient proton flux energy spectrums for $L = 1.25$, $B = .199$ at solar minimum and solar maximum.	205

Figure		Page
14.	The time required in terms of solar cycles to build steady- state conditions versus energy as a function of B	206
15.	A time history of proton flux as a function of energy at L = 1.25 , B = $.209$ for the first and tenth solar cycles	207

LIST OF TABLES

Table		Page
1.	Diurnal averaged number densities of Helium (He) as a function of altitude for five solar flux numbers	4
2.	Diurnal averaged number densities of Oxygen (O) as a function of altitude for five solar flux numbers.	5
3.	Diurnal averaged number densities of Molecular Oxygen (O_2) as a function of altitude for five solar flux numbers	6
4.	Diurnal averaged number densities of Nitrogen (N_2) as a function of altitude for five solar flux numbers. \ldots	7
5.	Diurnal averaged number densities of Hydrogen (H) as a function of altitude for five solar flux numbers	8

TIME VARYING SOLAR CYCLE PROTONS PROGRAM MANUAL

INTRODUCTION

The purpose of this manual is to provide a detailed description of the programs employed in calculating the variation of the proton population in the earth's radiation belt due to solar cycle atmospheric and source changes. This report makes no attempt to make detail explanations of the theory involved in the calculations. An adequate list of references is provided for those interested in the explanation of the methods and the results to be expected. The entire process involves several interdependent steps. For example, the diurnal averaged atmosphere and the rings output from the B-L search routine are input to the longitudinal averaging processor. The output from this program is then used as input to the "bounce" average program and so forth. Each program description includes the equations used, a flow chart and Fortran listing of the program, input and output specifications, card descriptions, sample input and output data and running time. The code is written in Fortran II language and assembled under GSFC-NASA Theoretical Division monitor system on the IBM-7094 computer.

I. DIURNAL AVERAGED ATMOSPHERE

Contained here are tables of number density vs. altitude and solar flux number. Separate tables of He, O, O_2 , N_2 and H are contained in Tables 1-5. The models are those generated by Harris and Priester.⁽²⁾ Each model refers to a given solar radiation flux in units of 10^{-22} watts/m²/cycle/sec. The link between solar flux, S, and time is given by Figure 1 (reproduced from reference 2 with the permission of Harris and Priester). This data is included for continuity and is used as input for the longitudinal averaging processor. The Harris and Priester atmosphere and solar flux vs. time curve is the data used and is subject to change as soon as better data becomes available. Such changes can be performed without effecting the logic of the following programs.

S h(km.)	250	200	150	100	70
120	2.500E07	2.500E07	2.500E07	2.500 ± 07	2.500 ± 07
200	4.413E06	4.872 ± 06	5.484E06	6.319E06	6.982E06
300	2.642E06	2.843E06	3.050E06	3.205E06	3.212E06
400	1.945E06	2.007 ± 06	2.012E06	1.885E06	1.689E06
500	1.499E06	1.477E06	1.390E06	1.154E06	9.272 ± 05
600	1.176E06	1.107E06	9.646E05	7.236E05	5.231 ± 05
700	9.327E05	8.387E05	6.842E05	4.607E05	3.021E05
800	7.461E05	6.422E05	4.916E05	3.004 ± 05	1.783E05
900	6.016E05	4.964E05	3.574E05	1.984 ± 05	1.074E05
1000	4.886E05	3.871 ± 05	2.628E05	1.331E05	6.593E04
1100	3.995E05	3.044 ± 05	1.953E05	9.050E04	4.119E04
1200	3.287E05	2.411E05	1.466E05	6.238E04	2.616E04
1300	2.721E05	1.925E05	1.110E05	4.353E04	1.687E04
1400	2.265E05	1.547E05	8.482E04	3.074 ± 04	1.104E04
1500	1.895E05	1.251E05	6.537E04	2.195E04	7.328E03
1600	1.595E05	1.019E05	5.078E04	1.584 ± 04	4.925E03
1700	1.348E05	8.346E04	3.974E04	1.155E04	3.351E03
1800	1.145E05	6.875E04	3.133E04	8.497E03	2.306E03
1900	9.774E04	5.696E04	2.487E04	6.308E03	1.605E03
2000	8.378E04	4.743E04	1.988E04	4.724E03	1.128E04

Table 1 Diurnal Averaged Number Densities of He as a Function of Altitude for Five Solar Flux Numbers.

s h(km.)	250	200	150	100	70
120	7.600E10	7.600E10	7.600E10	7.600E10	7.600E10
200	3.600E09	3.457E09	3.209E09	2.795E09	2.416E09
300	8.870E08	7.134E08	5.124E08	2.809E08	1.564E08
400	3.054E08	2.054E08	1.112E08	4.025E07	1.471E07
500	1.168E08	6.616E07	2.788E07	6.771E06	1.675E06
600	4.749E07	2.287E07	7.708E06	1.273E06	2.183E05
700	2.024E07	8.364E06	2.232E06	2.611E05	3.153E04
800	8.983E06	3.207E06	6.918E05	5.747E04	4.946E03
900	4.130E06	1.282E06	2.252E05	1.342E04	8.320E02
1000	1.960E06	5.312E05	7.645E04	3.301E03	1.488E02
1100	9.567E05	2.275E05	2.696E04	8.502E02	2.810E01
1200	4.791E05	1.003E05	9.834E03	2.284E02	5.381E00
1300	2.456E05	4.538E04	3.701E03	6.379E01	1.162E00
1400	1.287E05	2.106E04	1.434E03	1.848E01	2.527E-1
1500	6.878E04	9.997E03	5.706E02	5.541E00	5.729E-2
1600	3.746E04	4.849E03	2.330E02	1.717E00	1.352E-2
1800 1900	2.077E04 1.170E04 6.700E03	2.355E03 1.210E03 6.216E02	4.170E01 1.824E01	1.806E-1 6.079E-2	8.412E-4 2.212E-4
2000	3.893E03	3.247E02	8.149E00	2.128E-2	6.010E-5

Table 2Diurnal Averaged Number Densities of O as aFunction of Altitude for Five Solar Flux Numbers.

S h(km.)	250	200	150	100	70
h(km.) 120 200 300 400 500 600 700 800 900 1000 1100 1200	$\begin{array}{c} 1.200 \pm 11 \\ 9.900 \pm 08 \\ 7.683 \pm 07 \\ 1.020 \pm 07 \\ 1.217 \pm 06 \\ 3.142 \pm 05 \\ 6.428 \pm 04 \\ 1.364 \pm 04 \\ 3.242 \pm 03 \\ 7.981 \pm 02 \\ 2.056 \pm 02 \\ 5.526 \pm 01 \end{array}$	1.200E11 7.910E08 4.269E07 4.069E06 4.886E05 6.758E04 1.033E03 1.714E03 3.031E02 5.682E01 1.122E01 2.322E00	1.200E11 5.699E08 1.791E07 1.048E06 7.983E04 7.106E03 7.062E02 7.688E01 8.962E00 1.122E00 1.493E-1 2.106E-2	1.200E11 3.438E08 4.503E06 1.191E05 4.808E03 1.857E02 9.135E00 5.002E-1 3.010E-2 1.975E-3 1.403E-4 1.074E-5	$\begin{array}{c} 1.200 \pm 11\\ 2.151 \pm 08\\ 1.188 \pm 06\\ 1.427 \pm 04\\ 2.444 \pm 02\\ 5.155 \pm 00\\ 1.265 \pm -1\\ 3.528 \pm -3\\ 1.102 \pm -4\\ 3.821 \pm -6\\ 1.459 \pm -7\\ 5.274 \pm -9\end{array}$
$1300 \\ 1400 \\ 1500 \\ 1600 \\ 1700 \\ 1800 \\ 1900 \\ 2000$	1.544E01 4.474E00 1.342E00 4.157E-1 1.328E-1 4.370E-2 1.478E-2 5.142E-3	5.028E-1 1.136E-1 2.778E-2 6.520E-3 1.653E-3 4.342E-4 1.177E-4 2.906E-5	3.139E-3 4.927E-4 8.124E-5 1.405E-5 2.541E-6 4.800E-7 9.452E-8 1.937E-8	8.835E-7 7.772E-8 7.292E-9 7.277E-10 7.702E-11 8.627E-12 1.200E-12 1.270E-13	2.788E-10 1.382E-11 7.412E-13 4.288E-14 2.667E-15 1.777E-16 1.267E-17 9.626E-19

Table 3 Diurnal Averaged Number Densities of O_2 as a Function of Altitude for Five Solar Flux Numbers.

5 h(km.)	250	200	150	100	70	
120 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600	5.800E11 7.393E09 7.630E08 1.278E08 2.562E07 5.730E06 1.403E06 3.664E05 1.012E05 2.932E04 8.862E03 2.783E03 9.053E02 3.041E02 1.075E02 3.768E01	5.800E11 6.180E09 4.639E08 5.777E07 8.798E06 1.521E06 2.884E05 5.883E04 1.276E04 2.918E03 6.994E02 1.725E02 4.558E01 1.233E01 3.456E00 1.002E00	5.800E11 4.743E09 2.210E08 2.151E07 1.810E06 3.239E05 2.763E04 3.899E03 5.894E02 9.470E01 1.609E01 2.878E00 5.404E-1 1.063E-1 2.183E-2 4.677E-3	5.800E11 3.136E09 6.739E07 2.682E06 1.407E05 8.800E03 6.190E02 4.802E01 4.057E00 3.702E-1 3.627E-2 3.798E-3 4.237E-4 5.017E-5 6.287E-6 8.321E-7	5.800E11 2.124E09 2.113E07 4.225E05 1.156E04 3.844E02 1.471E01 6.320E-1 3.006E-2 1.570E-3 8.936E-5 1.016E-5 3.674E-7 2.633E-8 2.023E-9 1.661E-10	
1700 1800	1.380E01 5.211E00 2.005E00	3.001E-1 9.268E-2	1.042E-3 2.313E-4	1.160E-7 1.699E-8	1.454E-11 1.353E-12	
2000	2.005E00 7.927E-1	2.949E-2 9.654E-3	5.740E-5 1.431E-5	2.612E-9 4.619E-10	1.334E-13 1.393E-14	

Table 4 Diurnal Averaged Number Densities of N_2 as a Function of Altitude for Five Solar Flux Numbers.

S h(km.)	250	200	150	100	70
120	4.356E04	4.356E04	4.356E04	4.356E04	4.356E04
200	1.071E04	1.224 ± 04	1.447E04	1.790E04	2.104E04
300	8.035E03	9.323E03	1.114E04	1.380E04	1.611E04
400	7.205E03	8.328E03	9.837E03	1.189E04	1.352E04
500	6.690E03	7.660E03	8.898E03	1.046E04	1.157E04
600	6.272E03	7.102E03	8.107E03	9.263E03	9.974 ± 03
700	5.904E03	6.609E03	7.415E03	8.214E03	8.638E03
800	5.573E03	6.168E03	6.803E03	7.360E03	7.518E03
900	5.272E03	5.769E03	6.260E03	6.597E03	6.571 ± 03
1000	4.996E03	5.408E03	5.774E03	5.933E03	5.768E03
1100	4.742E03	5.079E03	5.339E03	5.352E03	5.083E03
1200	4.502E03	4.778E03	4.947E03	4.843E03	4.495E03
1300	4.291E03	4.503E03	4.594E03	4.395E03	3.989E03
1400	4.090E03	4.250E03	4.275E03	3.998E03	3.552 ± 03
1500	3.903E03	4.018E03	3.986E03	3.647E03	3.173E03
1600	3.730E03	3.804E03	3.723E03	3.335E03	2.843E03
1700	3.568E03	3.606E03	3.484E03	3.057 ± 03	2.555E03
1800	3.417E03	3.424 ± 03	3.266E03	2.809E03	2.303E03
1900	3.276E03	3.255E03	3.066E03	2.587E03	2,081E03
2000	3.144E03	3.098E03	2.884E03	2.387E03	1.886E03
1	1	1	1	1	1

Table 5	
Diurnal Averaged Number Densities of H as a	
Function of Altitude for Five Solar Flux Numbers	•

II. B-L SEARCH

A. Introduction

This program produces contours of constant B and L as a function of longitude, latitude and altitude in both the northern and southern hemispheres. The desired initial values of B and L are read into the program along with an approximate corresponding latitude, λ , which can easily be obtained by the use of Figure 2. The dipole equation $r_0 = L_0 \cos^2 \lambda$ relating the initial L and the geocentric distance r_0 is used with the radius of the earth, r_e , and the equation $h_1 = r_e (r_0 - 1)$ to provide an approximation of the altitude. This is fed, together with a longitude of 18° degrees and latitude λ , into subroutine INVAR which calculates B and L for a given longitude, latitude and altitude. This subroutine makes use of the transformation developed by McIlwain $^{(3)}$ using the 48 spherical harmonic coefficients of Jenson and Cain⁽⁴⁾. INVAR numerically integrates the longitudinal invariant I using a series expansion for the magnetic field. Then L is calculated as a function of both B and I by using a dipole representation of the earth. The B and L obtained in this manner are returned to the main program. Here the accuracy of the initial approximation is checked. If the computed L is found to be within an accuracy of 10^{-4} of the initial L the program will enter into a search routine with linear interpolation in latitude and altitude in order to arrive at a correct B. The search parameters Δh (increment in altitude) and $\Delta\lambda$ (increment in latitude) are prefixed and must remain small in order that interpolation may hold. Once B is found, it is checked, together with the value of L, to insure an accuracy of 10^{-3} in comparison with the initial values. If the accuracy is sufficient the subroutine RING will be called for the northern hemisphere. This subroutine takes a given latitude and altitude and computes the B and L contour map for longitudes of 10 degree increment for the full 360 degrees. The program then computes the contour map for the southern hemisphere at the same B and L, increments B by .01 gauss and returns to the northern hemisphere. It will continue in this manner until the altitude drops below 100 kilometers, at which point the next initial B, L and λ will be read until input data is exhausted. The entire process prepares input for the longitudinal averaging processor.

B. Mnemonics

Quantity	Description	Units
CONVR	conversion factor – degrees to radians	
RE	radius of the earth	km.
DELH	delta altitude	km.
ALONG	geocentric longitude	degrees
DLAT	delta latitude	11
ALAT	geocentric latitude	11
В	magnetic induction	gauss
EL	magnetic field line	earth radii
R	geocentric distance	11
Н	altitude	km.
SAVB	temporary storage of B	gauss
SAVH	temporary storage of H	km.
SAVLAT	temporary storage of ALAT	degrees
LCNT	an indicator used to indicate when	
	the altitude has dropped below 100 km.	

10

• •

C. Flow Charts

.

. •

1. Main Program

· · · · ·

•

13

• •

D. Fortran Listing

B-L SEARCH

ں

- CIMENSION SAVB(32),SAVLAT(32),SAVH(32)
 FORMAT(2F12-5,F8.5)
 FORMAT(2F12-5,F8.5)
 FORMAT(2F12-5,F8.5)
 FURMAT(2F12-5,F8.5)
 FURMAT(5+12.5)
 FURMAT(5+12.5)
 FURMAT(5+12.5)
 FURMAT(5+12.5)
 FURMAT(5+12.5)
 FURMAT(5+12.5)
 FURMAT(1+1,55,42,4H LOTE1F8.5,43,1HB.115LLATE1F8.5)
 FURMAT(1+1,55,42,4H LOTE1F8.5,43,4H LOTE1F8.5)
 FURMAT(1+1,55,42,4H LOTE1F8.5,43,1HB.115LLATE1F8.5)
 FURMAT(1+1,55,42,4H LOTE1F8.5,43,4H LOTE1F8.5)
 FURMAT(1+1,55,42,4H LOTE1F8.5,43,1HB.115)
 FURMAT(1+1,55,43,4H LOTE1F8.5,43,1HB.115)
 FURMAT(1+1,55,43,4H LOTE1F8.5,43,1HB.115)
 FURMAT(1+1,55,43,4H LOTE1F8.5,43,1HB.115)
 FURMAT(1+1,55,43,4H LOTE1F8.5,43,1HB.115)
 FURMAT(1+1,55,43,4H LOTE1F8.5,43,4H LOTE1F8.5,43,4H LOTE1F8.5,43,1HB.114L
 FURMAT(1+1,55,43,4H LOTE1F8.5,43,1HB.115)
 FURMAT(1+1,55,43,4H LOTE1F8.5,43,1HB.115)
 FURMAT(1+1,55,43,4H LOTE1F8.5,43,1HB.115)
 FURMAT(1+1,55,43,4H LOTE1F8.5,43,1HB.114)
 FURMAT(1+1,55,44,45)
 FURMAT(1+1,55,44,54)
 FURMAT
- - **IALLER)**
 - 10 FGRMAT (37HOVALUE OF L IS NOT WITHIN .CC1 UF ELO) 10 READ INPUT TAPE 2,1,80,ELO,ALAT MRITE CUTPUT TAPE 3,5,80,ELO,ALAT WRITE UUTPUT TAPE 3,3 MRITE UUTPUT TAPE 3,4 CONVE-01745333
 - 400
- RE=6376.2 DELH=100. ALONG=180.
- ALAT0=ALAT CLAT=2.
 - L C N T = C104
- DU 100 N=1,32 K0=EL0+CGSF(ALAT+CONVR)++2
- H1=RE*(KU-1.)

- CALL INVARIALAT, ALONG, H1, .01, 61, EL1) 20
 - FE(ABSF(CKEL)-1.6-4)14,14,12
 FF(CKEL) 11.14.13
 H2=H1-UELH CKEL=EL1-EL0

 - 512
- Call INVAR(ALAT,ALONG,H2,.01,B2,EL2) H1=H1-(EL1-EL0)*(F1-H2)/(EL1-EL2) DELH=DLLH/2.
 - GU TO 20
 - HZ=H1+LELH 1
- 4 1
- GU TO 21 WRITE GUTPUT TAPE 3.2.ALGNG.ALAT.HI.BI.tLI SAVB(N) = 61
 - SAVLAF (N) = ALAT
- SAVH(N)=HL
- ALAT=ALAT+ULAT [+(81-60) .100,100,105

 - CONTINUE 100
- IF (N-1) 28+28+101 WRITE CUTPUT TAPE 3,9
- - CALL EXIF
 - 101
- DO 200 I=1.32 IF(SAVb(I)-BU) 200,30,31
 - AL2=SAVLAT([) 31
- 02=SAVb(1)
 - H2=SAVH(1)
- AL1=SAVLAT(I-1)
- bl=SAVb(I-1)

GU FG 3CO ZUN GCUTING 300 GALL INVAR(ALAT,ALUNG,H..01,B.EL) 300 GALL INVAR(ALAT,ALUNG,H..01,B.EL) WRITE GUIPUT TAPE 3,2,ALCNG,ALAT,H.,ú,EL ALAT=AL2-(AL2-AL1)*(H2-B1)/(B2-B1) H=H1-(u0-01)*(H1-F2)/(B2-01) END(1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0) CKL=EL-EL0 TF (ABSF(CKL)-1.E-3) 106.106.107 L07 WRITE CUTPUT TAPE 3.10 CALL CATI IG6 CK8=8-50 ΓF (AUSF(CK8)-1.E-3) 102+102103 103 MAITE CUTPUL TAPE 3.8 IF (ALATU-11.) 500.501.501 Call (AI) 102 Call (AI) 102 Call (AN) 102 Call (AN) 403 (A03,403,403,402 403 (F(CLAI) 401,401,402 02 Calh=100 5CI ALATE-ALATC+II. 5C2 WAITE LUTPUT TAPE 3.6 WAITE LUTPUT TAPE 3.4 GL TO 104 BU=80+.01 WRITE CUFPUT TAPE 3.7 WRITE LUTPUT TAPE 3.4 GC FO 104 ALAT=3AVLAT(1) ALAF=ALAIU+1. HI = SAVF(1-1)ALATO=ALAT GL TU 3CV 6=SAV∂{1} H=SAVH(I) GC TO 202 001=H 100. 500 ALAT=-1. CLAT=-2. DLAT=2. 05 205 105

STCKAGE NCT USED BY PROGRAM

•

.

. . .

`.

•

100

DEC UCT CEC OCT 624 01160 32561 77461

JIGMAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

5C CCT		C CCT 123 01013 123 01013 118 01006 113 01001 113 01001 1308 00747 003 00767		N LUC 5 00731 10 00652		C C CCT 13 00635 15 CCU17 15 CCU17 15 CCU17 111 C0467		C DCT 4 CCC04				N LUC 34 00164 50 C0276 68 0C410 81 C0514 91 00551
30	STATEMENT	ALLON DECKNG DECKNG DECKNG ALLON DECKNG ALLON DECKNG		6)5 6)5 6)A		D)4C1 6		(FLL) DE		(15+)	JCATIONS	EFN 1F 13 1C5 2C5 102 502
DEC 0CT	R EQUIVALENCE	DEC DCT 574 CICI4 519 CICC7 519 CICC7 519 CICC7 504 C0775 504 C0775	I EMENTS	EFN LCC 4 00741 9 C0665	RUGRAM	DEC GCT 32767 7777 266 00412 145 00221 263 C04C7		DEC 0CT 8 CC010 1 C0C01	2.R.Y	(STH)	AS AND OCTAL LO	IFN LCC 33 00160 49 C0272 64 C0376 79 C0502 79 C0502
	UIMENSION, DI	ALAT B Delh Cel LCNT	FORMAT STA	8)4 8]9	IN SOURCE I	4) C)20L c)5 C)5	K VECTOR	R1NG (15H)	T FROM LIBRA	(RTN)	RMULA NUMBER	EFN 12 100 30 501 501
C 0CT	COMMON. L	C 0CT 25 01015 20 01010 15 01003 10 00776 05 00771	CE PRUGRAM	N LUC 3 00152 8 00674	APPEARINC	C 005 03 00623 04 00314 10 00156 11 00323 17 00021	N TRANSFEH	C 0CT 6 00006 3 00003	NOT CUTPL	(FPT)	NTERNAL FC	N LUC 29 00134 42 00227 59 00327 77 00471 86 00543
DE SAVLAT 5	APPEARING IN	ALATO CONHTO CONHTO CONNTO CONNTO CONNTO CONTO C	ONS FOR SOUR	8)3 8)8 8)8	SYMBOLS NOT	D) 10F 2 0) 10F 2 6) 4 6) 4 6) 4 7 101 2 6) 101 2	OF NAMES 1	DE Invar (SIH)	UPACLTINES	(ET)	L SPUNCING 1	ETR 20 14 16 50 50
259 01057	ARIABLES NUT	EC 0C1 52b 01016 521 01011 516 01004 511 0077 512 0077 501 0077 501 0075	FS AND LUCATI	FN LUC 2 00754 7 00706	ONS FOR CTHER	IEC 0CT 399 00e17 500 00764 14 00016 202 00312 345 00312	LUCATION	rEC 001 7 COUU7 2 COU02	ITRY POINTS TO	RING	IBERS WITH COR	FN LLC 26 C0111 40 C0222 53 C0215 75 C0457 45 C0533
SAVH	ATIONS FOR V	ר א דרר גרא דרר גרט א גרני גרו גרי גר	SYMBO	d)2 d)7 d)7	LOCATI	2) 2) 5) 5) 50 10) 50 10) 7 1) 8		EXIT (RIN)	Ev	INVAR	FCRMULA NUM	ÉFN LC4 101 101 402
DEC UCT 623 01157	STURAGE LOC	DEC UCT 527 01017 522 01012 512 01012 512 01012 512 01005 512 01005 512 01005 512 01005		EFN LEC 1 GU/20 6 GU/20		DEC UCT 496 CC760 459 CU763 189 CU763 189 CU275 188 CU275 33C CU512		00000 n 5 00000 0 00000		LXIF	EXTERNAL	1FN LUC 13 CUG23 35 CU167 51 CU302 64 CU362 84 CU362 94 CU366
SaVB		АL Скес скес н2 80 80 80 80		9(a) 1(a)		() () () () () () () () () () () () () ((1941)		crs		EF4 400 228 403 403

CALL INVARIPHI, IRC., ALT, C.UI, DDES, ELDES) ARITS CUTPUT TAPE 3,107,00ES; ELDES WRITS CUTPUT TAPE 3,101 WRITE CUTPUT TAPE 3,101 WALTE CUTPUT TAPE 3,103, PALNG, PHI, ALT, BDE, ELDES CALL INVAR(PHIN, XLONG, ALTN, 0.01, BN, ELN) CALL INVAR(PFI1,XLONG,ALT,0.C1,5P,ELP) (P=(4P-0)/UPHI CALL INVAR(PFI,XLENG,ALTI,U.CI,BA,ELA) CALL INVAR(PEI,XLENG,ALT,G.CI,G.EL) SUPRICIENCE SING (PFI, ALT, LCNT) EST FLANAT (25x, 144) FINAL SCSULTS) 102 FORMATI(1/F 210 NCT CUNVERGE) 103 FORMATI(3F12, 2; 2F12, 5) 104 FORMAT (3E DEFE 5, 4X, 3H L=1F8.5) GO TC 40 IF(AUSF(RLN/RL)-1.5) 11.20,20 IF(ARSF(RHN)-ERRE) 12.12.30 kLN=ELDES-ELN
IF(A65F(RBN/RB)-1.5) 10.20,20 UELP=(Ru*ELA-RL*BA)/DEN UELA=(UP*RL-ELP*RB)/UEN IF (PRLAU) 91,92,52 JI XLUNG = 360. + PRLNG CLA=(LLA-EL)/CALT CUMPUIE CLRRECTIONS UEN=8P*ELA-ELP*BA RB=BUCS-U RL=CLDES-EL COMPLTE PARTIALS ELP=(ULP-EL)/DPHI IF(K-2) 21,11,11 COMPLIE & AND L EA=(UA-B)/CALT ALT1=AL1+CALT PHIN=PHI+DELP AL TN=AL T+DELA I 4d3+[Hd=][Hd СРНІ = СРНІ / 2. UAL T = CAL 1 / 2. 92 XLONG = PALNÚ 93 CONTINUÉ CALTS=5.C [RRB=1.0F+4 [RRE=1.0c-3 PRLNG=-180.C R6N=CUES-BN DU 40 1=1,20 UPHI=UPHIS CALT = CALTSCPFIS=4.0 IHd = IHdX XALT = ALT GU TO 53 K=K+1 C = X --Q 7 11 20 ں U U

12 IF(AUSFIALN)-ERRL) 50,50,30
30 PHI=PHIN
L=BN
ALT=ALTN
ALT=ALTN
RB=REN
RD=REN
R

- :

STCRAGE NOT USED BY PROGRAM

DEC DCT 418 00642 413 00635 403 00636 403 00630 403 00616 393 00611 00372 LCC 00.1 DEC 389 -250 -EFN DEC C)2CC E)D BN Dela Eela Phin Rl STORAGE LCCATIONS FOR VARIABLES ACT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT EXTURNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS DEC OCT 419 CC643 419 CC643 419 CC643 409 CC631 409 CC624 399 CC624 394 CC612 DEC CCT 365 C0555 243 00363 EFN LCC 8)38 107 00567 00.1 SYMBULS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS LOCATIONS FOR DIHER SYMBULS NOT APPEARING IN SCURCE PROGRAM DEC ENTRY POINTS TO SUBROUTINES NOT CUTPUT FROM LIBRARY BDES DALTS CPHIS PHIL PHIL RLN 6) C)B LUCATIONS OF NAMES IN TRANSFER VECTOR DEC 0CT 420 00644 415 00637 415 00637 416 00632 405 00625 405 00825 395 00613 390 00613 390 00608 DEC CCT 352 CO540 231 CO347 EFN LEC 8)37 103 00572 DEC 0CT (STH) 1 00001 к Крн I нах HA UALT CPHI CLP 3) 6(3 CEC 6CT 421 00045 416 00046 411 00633 401 00623 401 00628 401 00628 356 00628 351 00667 UEC CCT 347 C0533 335 C0517 EFN LCC 8)36 102 C0576 DEC 0CT 2 00002 ALTN CEN CEN CEN KBN XLCNG (FIL) 2) (2 (STH) DEC UCT 387 00603 88 00130 326 00506 DEC CC1 423 00647 DEC LCT 422 CU646 412 CU644 412 CU634 402 CU634 402 CU627 397 OU612 392 CU61C C CC1 0 COUCO EFN LGC 101 00602 (F I L) DEC 1) 102(J 8135 ALTI BP UCLP ELUES FRUE PRENG XALT INVAR INVAR

LUC 00144 00350 00350
IFN 26 60 81
EFN 92 11 71
N LCC 24 C0140 59 C0340 72 C0425
Ē
EFN 91 50
EFN IFN LGC 9 21 00131 21 55 00326 40 68 00407
IFN LCC 16 COC75 54 OO322 62 CO373 85 CO524
EFN 6 20 30 70
IFN LOC 13 COC64 21 00146 61 CO355 83 C6520
EFN 93 122 3

: •

INVARCOI INVAROOZ INVAROO3 INVARUO 7 INVARUDE INVARAIS INVARAI5 INVARAI5 INVARCI5 INVAROI6 INVAROI6 INVAROI8 INVAR019 INVAR020 INVARO21 INVARO22 INVARO23 INVAR015 NVARUCC **NVARA01** I N V A R B O I NVAR004 INVAR005 INVARC06 INVAR009 **INVAROLU** IN VARO 11 NVAR012 INVAR013 [NVAR014 INVAR024 INVAR025 INVAR028 INVAR029 **NVARCOI** INVAR026 INVARU30 INVAR032 I N V ARO33 INVAR034 INVAR035 INVAR036 INVAR038 INVARU27 INVARUBI INVARO37 INVAR039 SUBRGLITA: INVAR(FLAT,FLCAG,ALT,FRR,FU,FL) NUCE IRROR IN L IS IYPICALLY LESS IMAN 0.1+ERR FLA1=LAIITUGL IN DEGREES . FLUNG=LUAULTUDE IN DEGREES ALT=ALTILUGE=UISIANGE FRUM SURFACE UF LAATH IN KILUMETERS DIMENSION v(3,3), u(200), AK(200), vK(3), vP(3), BEG(200), BENU(2CU), IBLOG2200), eCC(200), al(3), x2(3), x3(3) 00 21 J=2.4LP ASUM=AAC(J)+ARC(J+1) ASUM=AAC(J)+ARC(J) BV=ASUME4AC(J)=APC(J) BV=ASUME4AC(J)=ARC(J+1) BVC = ((*LCU(J-1)-BLLU(J+1))*AAC(J)**2-UA+ASUM**2)/DN BCC = ((*LCU(J-1)-BLLU(J)+1)*AAC(J))**2-UA+ASUM**2)/DN CC = (**A*C(J+1)-(*LCU(J)-BLUG(J+1))**2(J))**2-UA+ASUM**2)/DN ECO(JUP)=[2.67ARG(JUP)]*LGGF(HEND(JUP)/HEG(JUP)) CALL [.TL5 (AKC.fG(B.BENU.R.JEP.GC(.FLINT) 27 CALL GARPEL (R(2),FLINT,FL) 18 BE=H(2) SC=SA+.254A5UM DCO=ELLC(J-1)-CCC *SA+SC ECU(J)=bLC +CCG *(SA+SC) DEG(J)=bLC +CCG *(SA+SC) DEG(J)=EAPF(LCU+ECC(J)*,5*ARC(J)) BLNC(J)=EAPF(ECU+ECC(J)*,5*(ASUM+ARC(J))) V(1,2)=(90,-FLAT)/57,2957795 V(1,2)=FLGNG/97,2597795 AKC(1)=0. AKC(1)=0. AKC(2)=(1.0+V(1,2))+SCWFFIERR)*0.3 AKC(2)=(1.0+V(1,2))+SCWFFIERR)*0.3 AKC(2)=(1.0+V(1,2))+SCWFFIERR)*0.3 IF(V(2,2)=CKC7)10,10,10,11 II AKC(2)=-AKC(2) II AKC(2)=-AKC(2) II AKC(2)=-AKC(2) 12 VN(1)=V(1,3) CALL LINES (H1,X2,R3,6,ARC,ERR,J,VP,VN) [F(J-200)16+17,17 END(1,1,0,0,0,0,0,0,1,0,0,0,0,0,0) ARC(J)=ABSF(ARC(J)) BLOG(J)=LCGF(B(J)) BEG (JUP) = BENE (JEP) V(1,2)=ALT/6371.2 0C 40 J=1,JUP 5A=.7'> # AKC(J) VP(1)=V(1.2) Dic 12 1=1.5 JLP=JUP-I FL=-1.0 GU FC 18 RELURN JUP = J 17 16 0.5 12 ບບບ

STURASE NOT USED BY PROGRAM

DEĆ ĽČT ĽĽČ ÚĽT 1507 Č2743 32561 77461

STCRAGE LGCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

6CT 02742 02122		CCT CC426 00421		0C1 C0414		0C T CC003				L0C C0152
DEC 1506 1106		DEC 278 273		DEC 268		DEC 3				IFN 22
a K	STATEMENT	Г 000		C) (3		LINES			LOCATIONS	EFN 16
DEC CCT 7CU CL274 294 C0446	ECCIVALENCE	DEC CCT 279 CC427 274 CO422	RUGRAM	DEC OCT 258 0C402		DEC DCT 6 CCCO6	ARY	START	RS AND DCTAL	1FN LCC 20 C0147 46 C0354
BL06 R3	INENSION, CF	UCLT JEP	IN SCURCE F	6)	K VECTCR	INTEG	T FROM LIBR	SCRT	URA NUMBER	EFN 17 18
DEC 0CT 9CU 01604 297 00451	IN COMMON, E	DEC CCT 280 00430 275 00423 270 00416	LOT APPEARING	DEC CCT 245 00365	S IN TRANSFER	DEC CCT 5 00005 2 00002	VES NOT CUTPU	LCG	S INTERNAL FU	IFN LGC 16 00123 44 00350
6 = N D R 2	Ι ΔΡΡΕΑΚΙΝΟ	CCO FLINT SC	ER SYMBULS N	e.	CAS OF NAMES	ехр START	TC SUBRCUTIN	LINES	CRR_SPGNCING	EFN 12 27
LEC CCT 11C0 C2114 3C0 C0454 291 C0443	VARIAELLS NÜ	DEC CUT 281 C0431 275 C0431 275 C0424 271 C0417	LICAS FOR CTH	BEC CUT 242 CO362	LCCATI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ENTRY PUINTS	1 N T E G	UMBERS WITH C	IFN LLC 12 COIO7 38 CO3C3
860 241 2	ATIONS FOR	рсс ССС S A	LUCAI	٢٥		00S ร _{ิษ} ห.т	_	EΧΡ	L FCRMULA NI	EFN 10 21
DEC CCT 1306 C2432 500 C0764 1103 C2117	Slukage נטנ	DEC LC1 282 CU432 277 CU425 272 CC420		DEC GCT 264 CC410 265 CC415		DEC LCT 7 CCCC7 4 00004		60S	EXTERNA	IFN LCC 11 C0105 25 CU164
ARC CCO VP		ASUN DN DN		1) C)64		CARFEL		CARMEL		EFN 11 40

.

: • .

.

SUBROVIINE LINES (R1,R2,R3,B,ARC,ERR,J,VP,VN) DIMENSION B(2001,ARC(2001,R1(3),R2(3),R3(3),VN(3),VP(3),RA(3) CRE=0.25 If(ERR-0.15625)74,75,75 CRE= (ERR+40.33333333) A3=ARC(3) DC = 1 + 3 DC = 1 + 3 DC = 1 = 1 + 1 = 3 DC = 1 = 1 = 1 = 3 DC = 1 = 1 = 1 = 3 DC = 1 = 1 = 3 DC = 1 = 1 = 3 DC = 1 + 3 CALL MAGNET(AER, SIT, VN(3), BR, BT, BP, B(J), VN(2)) DER=(6356.912+SSO+(21.3677+.106*SSQ))/6371.2 81 IF(VN(3)-6.283185307)82,82,83 83 VN(3)=VN(3)-6.283185307 IF (VN(2)-3.141592653)78.78.78 RLAR=(R2[1]+R3(1))/2.-DD+AD6 VN(1)=VP(1]+A3*RBAR IF(VN(2))76,77,77 VN(2)=-VN(2) 78 [F(VN(3))80,81,81 80 VN(3)=VN(3)+6.283185307 VN(2)=0.283185307-VN(2) GU TO (9,10),IS SIT=ABSF(SINF(VN(2))) PREZ=PRE1*VN(2) PRE3=PRE1*VN(3) SSQ=SIT*SIT*VN(3) AKCJ=A1+A2+A3 AU={ASUM+A1}/AA AER=VN(1)-OER R3(1)=BR/B(J) DN=B(J)*VN(1) A06=A3+A3/6.0 AU6=A3+A3/6.C AAB=AHSF(A3) SNA=A3/AAB R1([)=K2([) R2([)=K3([) R3([)=KT VP([)=VN([) BD=ASUM/BB PRE1=VN(1) A1=ARC(1) A2=ARC(2) J=3 1LP=1 1S=1 60 TO 87 1S=1 CU=A1/CC GU TO /8 TC 77 GU TO 81 1+1=1 50 72 8 2 8 9 7 6 2 B 66 36 Ŷ

23

LINES008 LINES009 LINESU12 LINESU13 LINES016 LINES017 L INESO18 L INESO19 L I NE SO 23 L I NE SO 24 LINESO31 LINESO32 LINESO33 LINES038 LINES039 LINES042 LINES043 LINES044 LINESOCO LINESOCO LINESO51 LINESO52 . INESOID INESO14 1NE 5015 . INE S046 LINE S048 **INES002** INESODE INES004 INE 5005 INES006 - I NE SOC 7 INE SOLI LINESO20 INESO21 . INE S022 LINESO25 **INES026** INE 5027 INE 5028 INE 5029 INE S030 INES034 **INE S035 INE S036** .1NES037 LINESA39 .**INES040** . INE S041 L INE 5045 . INE S047 . INE 5049 LINESOSC LINESO53

		1 I NE S054
	R3(3)=#P/(UN*SII)	LINESO55
	ASUM = A1 + A2	LINES056
		LINES057
	HH=73*12	LINES058
	CC= 4SC5 * 4 3	LINES059
	I 5=2	LINESCOO
	GU 1C 36	LINESUGI
2	SIT=ABSF(SINF(VN(Z)))	LINE SO62
	8(J)=>(J)*({PKE1/VN(1))**3)	LINES063
69	QKT=~5*ABSF(33(1))/(~1+ABSF(R3(2)*VN(1)))	LINES064
	X={	3L INES065
	L)-PRE3))/(AAE*ERR*SORTF(L.+GRT*ORT))	LINE SO66
	GG T0 (90,93,90),[LP	LINE 5067
2	IF(X-3,3)90,89,09	L INE 5068
66	A3=A3*U.2*(8.C+X)/(0.3+X)	LINES069
	[-[-f]	LINES070
	[L \n = 3	LINES071
	A5UM=A2+41	LINES072
	AA=ASUR*A	LINES073
	18=72×41	L I NE SO 74
	CC=ASUM*A2	LINES075
	DC 91 1=1+3	LINES076
	VN([])=VP([)	L INES077
	R3(I)=R2(I)	LINE S078
	R2(1)=x1(1)	LINES079
5	K1(I)=K2(I)	L INE SOBC
	G0 TG /3	LINESORI
05	1 F (J - 200) 6 7 + 6 C + 6 C	LINES082
67	24=1A	LINE SOB 3
	IF(8(J)-b(2))49,45,60	LINE S084
49	1LP=2	LINESOR5
	Δ2=Δ3	LINE 5086
	A3=A3*~2*(8*+X)/(~6+X)	LINESO87
	AM={2R3{2}*VN{1}}*VN{1}}*VN{1}*V	L INE SOB 8
	IF(ABSr(A3)-AM)84,84,72	LINES089
12	A4 SNA ⊭ AM	LINE S090
48	IF(SNA*R3(I)+.5)85.85,73	LINE SC91
8 P	AM=5+SNA+VN[1]/R3(1)	LINES092
	IF (ABSF (a3)-AM) 73,73,86	LINES093
99	A3= SNA * AM	L I NE 5094
23	AKC (]+ I) = A 3	LINES095
	AAB=A55F(A3)	LINES096
	GÜ TO 66	LINES097
60	RETURN	LINE 5093
	END(1,1,0,0,0,0,0,1,0,0,0,0,0,0,0)	

STCRAGE NCT USED BY PRUGKAM

•

• • •

• 1

-

 DEC
 <thDEC</th>
 <thDEC</th>
 <thDEC</th>

STURAUE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

DEC 0C 1 DEC 00.1 DLC CC. T υEC DEC LCI 649 CI211 ŀł

00.1

STURAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMEN. LIMENSION, OR EQUIVALENCE STATEMENT

DCT 01202 01175 01176 01170 01156 01156 01156	00130 00425	0C T	LOC LOC 00346 00430 00436 00675 00675 01062
DEC 642 637 632 627 617 617	DEC 600 217	DEC	1 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
A A A C J A C J A A C J A A C J A A C J A A A C J A A A C J A A A A	9) E)A		LOCATIONS EFN 8 8 8 9 9 9 9 9 9 7 3
DEC CCT 643 01203 638 01176 638 01176 633 01171 628 01164 628 01164 618 01152 613 01145	PROGRAM DEC OCT 594 01122 155 C0233 498 CC762	DEC DC1 3 COCC3 ARY	RS AND UCTAL IFN LUC 24 00327 34 00327 43 00426 43 00451 68 00614 86 00614 97 01057
А А А А С С В С В С В В В В В В В В В В	E IN SCURCE	K VECTER Surt JT FROM LIBR.	IRMULA NUMBE EFN 36 36 36 36 59 67 86
DEC DCT 644 D1204 639 D1177 634 O1177 634 O1172 629 D1165 619 D1163 614 01163	NUT APPEARINU DEC OLT 576 01100 612 01144 493 00755	S IN TRANSFER DEC OLF 1 COOOL NES NCT LUTPL	G INTERNAL FL FFN LUC 11 00274 31 00274 41 00442 41 00442 66 00574 85 00574 95 01043
A A A A A A A A A A A A A A A A A A A	4€R SYM+.CLS 3) 5)G €)G	ICAS OF NAME. SIN TC SUHRGUTH	CCRRESPCNUTM EFN 66 83 83 80 80 89 85 85
C 6CT 45 CL205 40 CL205 35 OLL73 30 CL173 30 CL175 25 OLL74 25 CL154 15 OLL44	NS FUK CTH C OLF 72 01674 11 01143 44 00674	LCCAT C UCT 2 CCUO2 RY POINTS SGRT	ERS WITH N LLC / 0024C 34 00241 47 00464 47 00464 83 50750 94 61036
P	LOCAFIC UC 2) 5 5 (53 6 5)(53 6 5)K 4	MAGNET UE Ent Sin	FCAMULA NUMB FFN 15 75 78 78 99 84
DEC LCT 646 01206 041 01201 030 01104 631 01107 631 01107 621 01155 621 01155 615 01155	DEC UCT 604 01134 615 01142 615 01142 292 55444	υΕC UCT ι. CCCOO κλυνε F	EXTERNAL 1FM LCC 0 UC34 31 C0403 38 C0403 38 C0462 46 UC462 72 C0702 93 C1033 1C1 0107C
A A A A A A A A A A A A A A A A A A A	L) C)62 F.)E	EXP13	л т в в в в в в в в в в в в в в в в в в

SUBROUIINE START (R1.R2,R3,B.ARC,ERR.V) DIMENSION 0(200),4(2,3),K1(3),K2(3),R3(3) SIT=ABSF(SINF(V(2,2))) 12 CALL MAGNET(AEP,SIT,V(3,2),BR,BT,BP,B(2),V(2,2)) CALL MAGNET(AER,SIT,V(3,1),8K,6T,8P,8(1),V(2,1)) IF(8(1)-8(2))4,5,5 DER=(6:56.912+SSC*(21.3677+.L08*SSC))/6371.2 AER=V(1.1)-DER UER=(6350.912+SSC*(21.367/+.108*SSG))/6371.2 8 V([,3)=V([,2)+ARC(3)*((1.5)*R2([)-.5*R1([)) V([,1)=V([,2)-ARC(2)*(Rl([)+R2([))/2. SIT=AB5F(SINF(V(2,1))) END(1,1,0,0,C,0,C,1,0,C,C,0,C,0) EG_2 I=1,3 V(I,1)=V(I,2)-AKC(2)*R2(I) SIT=AESF(SINF(V(2,1))) V(1,2)=AE*+GER LO FFV(3,2))11,12,12 L1 V(3,2))11,12,12 L1 V(3,2)=V(3,2)+6.2E3185307 GC TC LC 60 TC 1
5 R1(1)=8R/8(1)
ARC(3)=ARC(2)
ARC(2)=ARC(2)
DN=B(1)+V(1,1)
DN=B(1)+V(1,1)
R1(2)=BF/6N
R1(3)=BP/(LN*SIT)
D0 6 f=1;3 R2(2)=b1/DN R2(3)=dP/(DN*SIT) IS=0 ARC (2) = - ARC (2) DN=B(2)*V(1,2) GO TO (3,7), IS R2(1)=BR/6(2) SSC=S1T*SIT SSQ=SIT+SIT 00 8 [=1,3 AER=V(1,2) I +S I =S I RETURN ŝ 4 ~ \sim ŝ ŝ

STARTOLO STARTOLO STARTOL2 STARTOL2 STARTOL3 STARTCO3 STARTCO4 STARTCO4 STARTCO5 STARTCO5 STARTCO5 STARTCO6 START021 START022 START023 START023 START024 START024 STARTCC6 STARTOC/ STARTU32 START033 START034 START035 STARTOOR STARTC09 START014 STARTO15 STARTU16 START018 **STARTO19** START020 STARI026 STARTC28 STARTCCO STAR 1002 STARTEC6 STARTO17 START027 STAR1029 START03C STARTOO1 STAR FU31

. •

۰**.** ,

,

STCRAUE NCT USED BY PROGRAM

Ë

•

. .

- • . 99. 199

		07 00400 00440		CCT 00421		001		
		DEC 288		DEC 273		DEC		
	STATEMENT	NO		(6				
	IVALENCE	CC1 2 C0441 4 C0434	A M	CCT C0413		00.1		
	R EQL	DEC 285 284	PROGR	DEC 267		DEC	ARY	
	IMENSION, C	81 550	IN SCURCE	6)	VECTCR		T FROM LIBR	
	IN COMMUN. U	DEC CCT 290 00442 283 00435	ICI APPEAKING	0EC 0CT 259 00403	IN TRANSFER	DEC OCT	IES NOT CUTPU	
	UT APPEARING	BR S I T	HER SYNDCLS N	ſĘ	ICNS OF NAMES		TC SUBROUTIN	
CCT 17461	ABLES N	0C1 C0443 C0436	FOR CT	UC T C0401 C0301	LUCAT	00000	POINTS	
UEC J2561	VARI	UEC 291 286	ICNS	DEC 257 153		uEC 0	NTRY	
	ATIONS FOR	8P UER	LOCAT	2) F.18		N I S	ų	
UCT CU445	URAGE LPCA	LCT • CC444 • CC437		uCT CO430 CU433		LC T CC 0 U L		v I v
05C 293	51	DEC 292 287		DEC 280 283		UEC 1		
		AER IS		1) C162		MAGNET		MAGNET

EAFERNAL FURMULA NUMBERS WITH CORRESPONDING INTERNAL FURMULA NUMBER'S AND OCTAL LOCATIONS

EFN IFN LOC 2 20 00231 7 40 00355
EFN IFN LCC 1 19 C0227 6 36 00330
EFN IFN LOC 12 12 00173 5 30 00305
EFN IFN LCC 11 10 00167 4 28 00302
EEN IFN LUC 10 9 00164 3 22 00245 8 41 00357

MAGN1054 MAGNTGCO SUGROUINE MAGNET (R.S.PHI.ER.dThET.BPHI.eB.THET) DIMENSION DP(49),P(49),6(49),H(49),CCNST(49),ACR(7),SP(7),CP(7) L2C MNSUM AND CAIN CCEFFICIENTS FLW 1960 (JUNE 1962) 6(1) = (N,W) AND MIC H(1) = H(N,M) WHEKE 1 = N+?*(M-1) 6(1) = 2.44039379LCC2 6(3) = 2.440393771C-C2 6(10)=-5.1253379L-C2 6(10)=-5.1253379L-C2 6(11) = 6.2150966L-C2 6(11) = 6.2150966L-C2 6(13)=-2.449413336-C2 6(13)=-2.449413336-C2 6(13)=-2.449413336-C2 6(13)=-2.44941336-C2 6(13)=-2.44941336-C2 6(13)=-2.1794747E-C2 6(12)=-4.77436596E-C2 6(12)=-7.00825496E-C2 7.00825496E-C2 7.0085 $\begin{array}{l} (13) = -2 & (-43) 556 22 - -03 \\ (13) = -3 & 440 650 65 - -02 \\ (213) = -3 & 440 650 65 - -02 \\ (213) = -3 & 440 650 65 - -02 \\ (213) = -3 & 440 650 65 - -02 \\ (213) = -5 & 098 211 37 82 - 03 \\ (213) = -3 & 211 27 82 85 - 03 \\ (213) = -3 & 211 27 82 85 - 03 \\ (213) = 3 & 211 27 82 85 - 03 \\ (213) = 3 & 211 27 82 85 - 03 \\ (213) = 3 & 211 27 82 85 - 03 \\ (213) = 3 & 211 27 82 85 - 03 \\ (213) = 3 & 211 27 82 85 - 03 \\ (213) = 3 & 211 27 82 85 - 03 \\ (213) = 3 & 211 27 82 85 - 03 \\ (213) = 3 & 212 46 7 14 1 - 02 \\ (213) = 3 & 212 46 7 14 1 - 02 \\ (213) = 1 & -3 & 789 38 25 1 - 02 \\ (213) = 1 & -3 & 789 38 25 1 - 02 \\ (213) = 1 & -4 & 656 94 38 - 02 \\ (213) = 1 & -4 & 656 94 38 - 02 \\ (213) = 1 & -4 & 656 94 38 - 02 \\ (213) = 1 & -4 & 679 65 01 1 - 02 \\ (213) = 1 & -4 & 679 65 01 1 - 02 \\ (213) = 1 & -2 & -2 & 066 94 3 1 - 02 \\ (213) = 1 & -2 & -2 & 066 94 3 1 - 02 \\ (213) = 1 & -2 & -2 & 066 94 3 1 - 02 \\ (213) = 2 & -2 & 066 94 3 1 - 02 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 94 7 1 - 03 \\ (213) = -2 & -2 & -2 & 066 - 04 \\ (213) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -2 & -04 + 01 \\ (21) = -2 & -2 & -2 & -2 & -2 & -2 \\ (21) = -2 & -2 & -2 & -2 & -2 & -2 & -2 \\ (21) =$ IF(k1P)151,15C,15C DL 152 N=1,49 6 (N) =0°0 H (N) =0°0 K I P = - 1 150 152 ں ں

MAGNT038 MAGNT039 MAGNT040 MAGNT052 MAGNT053 MAGNT020 MAGNT021 MAGNT022 MAGNT023 MAGNT023 MAGNT023 MAGNT025 MAGNT041 MAGNT042 MAGNTC02 MAGNTC03 MAGNTC03 MAGNTC03 MAGNTC03 MAGNTC03 MAGNTC03 MAGNTOC7 MAGNT008 MAGNT043 MAGNT045 MAGNT046 MAGNT048 MAGNT049 MAGNT05C MAGNT013 VAGNT014 MAGNT015 PAGNT016 MAGNTO18 PAGNT019 MAGNT026 MAGNT028 MAGN T029 MAGNT030 MAGNT032 MAGNTO33 MAGNT034 MAGNT035 MAGN T036 MAGN TO37 MAGNT044 MAGN1047 MAGNT051 MAGN TOC9 VAGNT010 MAGNTOIL MAGN TO 12 MAGN TO1 7 MAGNT027 MAGNT031 MAGN TOO I

• •

,

l=n+7*(M-l) CUNST(l)={(FN-2.0)**2-(FM-l.C)**2]/((FN+FN-3.0)*(FN+FN-5.0)) C=SQRTF(ABSF(l.0-5*S)) LF(THET-l.57C796327) 154,154 SUMT=SUMT+DP[1)+TS SUMP=SUMT+DP[1)+TS SUMP=SUMP+FM+P[1)+(-G[1)+SP[M]+H[1]+CP[M]) BR=BR+AGR(N)+FN+SUMR BFHET=BTHET-AGR(N)+SUMF BPHI=BPHI-AGR(N)+SUMP P(I)=C+P(J)-CGNST(I)+P(K) DP(I)=C+DP(J)-S+P(J)-CONST(I)+DP(K) 5P(M)=SP(2)+CP(N)+CP(2)+SP(N) CP(M)=CP(2)+CP(N)-SP(2)+SP(N) AGR(M)=AR+AGR(N) TS=G(I)+CP(M)+H(I)+SP(M) H(42)=-1.14623013E-03 H(49)=-3.24831891E-04 P([)=5*P(L) OP([)=5*DP(L)+C*P(L) GD TO 89 SUMR=SUMR+P(1)+TS AGR(2)=Ak#AGR(1) DG 90 M=3,7 N=M-1 BR=0.0 BTHET=0.0 BPH1=0.0 DG 32 N=2.7 FN=N N=2.7 FN=N SUMT=0.0 SUMT=0.0 SUMT=0.0 SUMT=0.0 SUMT=0.0 SUMT=0.0 SUMT=0.0 SUMT=0.0 SUMT=0.0 SP(2)=SINF(PHI) CP(2)=COSF(PHI) AGR(1)=AK*AR CCNST(16)=0.C DO 80 N=3,7 CONST(9)=0.0 AR=1./(1.+K) UC 80 M=**I**.N Fm=M [[-W]*L+N=] 871H98=1H98 P(1)=1.0 DP(1)=0.0 SP(1)=0.0 CP(1)=1.0 1-N+8=1 FM=M-1 J= I - 1 L=1-8 K= I - 2 FNHN C=-C 80 90 156 8 B 87 68 33 32

MAGNT081 MAGNT082 MAGNT082 MAGNT083 MAGNT084 MAGNT084

MAGNT086 MAGN TOBB

MAGNT087

MAGNT092 MAGNT092 MAGNT093 MAGNT093 MAGNT095 MAGNT095 MAGNT095 MAGNT095 MAGNT095 MAGNT099 MAGNT099 MAGNT099

MAGNT089 MAGNT090

MAGNT100 MAGNT101 MAGNT102 MAGNT103

MAGN7104 MAGN7105 MAGN7105

MAGNT108 Magnt109 Magnt110

MAGNT107

MAGNT056 MAGNT057 MAGNT057 MAGNT058 MAGNT058 MAGNT059

MAGNT055

MAGNT064 MAGNT065 MAGNT061 Magnt062 Magnt063

MAGN T066 MAGN TO 68 MAGN1069 MAGN1070

MAGNT067

VAGNT071

Bb=S&KTF(BR**2+HTHET**2+BPHI**2) kLTURN END(1+1+0+6+C+0+0+1+0+0+0+0+0+0)

MAGNTIII MAGNTII2 .

•

•••

; -.

-

STCRAGE NCT USED BY PROGRAM

.

--

> - * -

•

DEC 0CT DEC 0LT 830 01476 32561 77461 STORAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

0CT 01333		CCT 01057 01052 01045		001 01036 01043		00.1			
DEC 731		060 559 559 559		DEC 542 547		DEC			
U	E STATEMENT	- 7 S		0)60 C)60					LOCATIONS
DEC OCT 829 01475	EQUIVALENCE	DEC OCT 560 01060 555 01053 550 01046	ROGRAM	DEC DCT 531 01023 546 01042 230 00346		DEC CCT	RY		S AND OCTAL
đ	UIMENSION, OR	S S S S S	S IN SCURCE P	6) C)65 C)408	VECTCR		JT FROM LINRA		JRMULA NUMBER
DEC DET 570 01072 577 01101	IN COMMON, I	DEC DCT 561 01061 556 01054 551 01047	NOT APPEARING	DEC DCT 477 00735 545 01041 173 00255	S IN TRANSFEH	00000 N 0 00000	VES NOT CUTPL		INTERNAL FC
СР S P	APPEARING	A R NOS	R SYMBOLS	3) C)64 D)404	NS OF NAME:	SGRT	C SUBROUTI		RKE SPOND I NO
UEC DCT 633 01171 780 01414	VARIABLES NOT	DEC CCT 562 01062 557 01055 552 01050	IONS FOR CTHE	DEC OCT 472 COT30 544 Olu40 307 00463	LCCATIO	DEC 001 1 00001	NTRY POINTS T		MBERS WITH CO
CONST P	DCATIONS FOR	K I P S UM P	LOCAT	2) C)G3 D)20D		SIN	ш	SQRT	AL FORMULA NU
DEC 0CT 584 01110 682 01252	STORAGE L	DEC OCT 563 01063 558 01056 553 01056		DEC OCT 537 01031 543 01037 544 01044		DEC UCT 2 00002		5 I N	EXTERN
AOR H		ע די ע פ		1) C)62 C)201		COS		ccs	

31

EFN 156 87

EFN IFN LCC 151 69 C0347 88 92 C0512

IFN LCC 8 CCC71 73 CO375 1C6 CO635

EFN 152 155 33

1FN LCC 5 CCU64 72 CO367 102 CO607

EFN 150 154 89
	SUBROUTINE INTEG (ARC,BEG,BENC,B,JEP,ECG,FI) Dimension Aprilon, Hegizco, Bring 200, Bring), ECC(200)	INTEGCC1 INTEGOD2
4	Ulmenotum astrictoryantrocovantrocovantrovantrovantrovantrovantrovantrovantrovantrovantrovantrovantrovantrovantr	INTEGOC3
· .c	TF (KK-4) 14 - 11 - 20	INTEG004
2	KK=KK+1	INTEG005
4	A=B(KK-1)/B(2)	INTEG006
	X2=B(KK)/B(2)	INTEG007
	X3=B(KK+1)/B(2)	INTEG008
	ASUM=AKC(KK)+AKC(KK+1)	
	DN=ARC(KK)=ARC(KK+I)=ASUM	
	BB=[-4=ARC(KK+1)*(ARC(KK)+ASLM)+X2=ASUM==Z-X3=ARC(KK)==Z)/UN	INTEGUI2
	С=(д≠аКС(КК+1/-Х2*аЗОПТАЗ*АХС(КК/У/СК ст_1 чэлтокаУб≠/1 -АкнинаРН/(4.+С))/SCRTF(дВSF(С))	INTEG013
		INTEG014
20	T=SQRTF(1BFND(2)/B(2))	INTEG015
	F1=(2.+T-LOGF((1.+T)/(1T)))/ECG(2)	INTEGU16
	IF(B(2)-bEND(KK))21,21,25	INTEG017
25	K=KK+ 1	INTEGOIE
512	T=SQRTF(ABSF(1.0-BEG(KK)/B(2)))	INTEG019
1	F1=F1-(2.*f-L0GF((1.+f)/(11)))/EC0(KK)	INTEG020
		INTEG021
22	DD 5 1=3.KK	INTEG022
	ARG1=1BEND(1)/B(2)	INTEG023
	1F(ARG1)26.26.27	INTEG024
26	TE=1.±-5	INTEG025
) 1		INTÉG026
27	TE=SORTE(ARG1)	INTEG027
28	AKG1=1bec(1)/6(2)	INTEG028
	IF(ARG1)29,29,31	INTEG029
31	TB=SORTF(AKG1)	INTEG030
	60 TO 32	INTEG031
90	TB=) - E - E	INTEG032
; ;	TF(ARSF(FCC([]))-2.E-5) 23.23.24	INTEG033
1 6		INTEG034
1		INTE6035
24	FI=FI+(2.*(TE-TB)-LOGF((1.+TE)+(1TB)/((1TE)*(1.+TB))))/ECU(1)	INTEG036
5	CONTINUE	INTEG037
30	RETURN	

32

۰.

STCRAGE NCT USED BY PROGRAM

•

.

. . .

. .

DFC LC1 CC1 CCC DCT 371 CC263 37461

STURAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMUN. CIMENSION, OR EQUIVALENCE STATEMENT

DEC OCT 366 00556 361 00551	345 C0531	DEC CCT
- 0 -] [5	
DEC CCT BB 367 C0557 TC 362 C0552	UKCE PROGNAM DEC OCT 6) 339 00523	DEC DCT LIBRARY
ASLM DEC CC1 ASLM 368 C0560 TB 363 00553	YMBGLS NGT APPEAKING IN SCI DLC DGT 3) 323 00915 E)5 202 00312 OF NAMES IN TRANSFEM VECTOF	DEC OCT UBRCUTINES NCT CUTPUT FROM
UEC OLT A 269 OC561 KK 364 OC554 X3 359 OC547 X3 359 OC547	LUCATIONS FOR CTHER S UEC OUT 2) 329 CODII 2)2 92 CODI34 LUCATIONS	DEC CUT SURT O COUCC ENTRY POINTS TC S
DEC UCT MGI 370 CU562 DN 365 CU555 X2 366 CU550	1) DEC DCT 1) 350 CU536 160 358 00546	DEC UCT LDG 1 GGC01 SGNT

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORPULA NUMBERS AND GGIAL LOCATIONS

CFN IFN LUC EFN IFN ZCG13 Z1 Z2 Z2 Z4 Q4 Q4Q3 Z3 Z3 Z3 <thz3< th=""></thz3<>	LOC	7 00246	9 00374	6 00430		
EFN IFN LUC EFN IFN ZCG135 ZCG135 ZCG135 ZCG135 ZCG135 ZCG135 ZCG135 <thzcg135< th=""> ZCG135 ZC</thzcg135<>	I F N	-	2	m		
CFN IFN LUC EFN IFN IFN <th>EFN</th> <td>2C</td> <td>27</td> <td>62</td> <td></td> <td></td>	EFN	2C	27	62		
CFN IFN LUC EFN IFN LUC EFN IFN LUC EFN IFN I LUC EFN IFN I I C C I T <tht< th=""> T T T</tht<>	LOC	CC135	17600	00423		
CFN IFN LUC EFN IFN LUC LUC <th>I F N</th> <td>2</td> <td>27</td> <td>35</td> <td></td> <td></td>	I F N	2	27	35		
CFN IFN LUC EFN IFN LUC EFN IFN LUC 4 4 CU117 6 5 C0122 11 0 00127 25 20 C03155 21 21 C0313 22 24 C03155 28 30 CU4(1) 31 32 C0421 23 23 24 C0355 24 38 CU4(1) 31 32 24 00421 22 24 38 C0445 5 39 C0503 30 4U C0505	EFN	14	26	32		
CFN IFN LUC EFN IFN EU LUC EFN IFN EU EU <theu< th=""> <theu< th=""> <theu< th=""></theu<></theu<></theu<>	LUC	00127	34600	0421	20505	
CFN IFN LUC EFN IFN LUC EFN 4 4 CUL17 6 5 C0122 11 25 20 21 21 20122 11 26 30 C0413 21 21 22 22 28 30 C0413 31 32 24 39 C0403 30 24 38 C0445 5 39 C0503 30	IFN	ر د	24 (34 () 74 7	
CFN IFN LLC EFN IFN LLC 4 4 CUL17 6 5 C0122 25 20 C03405 21 21 C0313 28 3C CU4C1 31 22 C0313 24 38 CU445 5 39 C0503	EFA	11	22	29	30	
CFN IFN LUC EFN IFN 4 4 CUL17 6 5 5 5 5 5 5 21 21 21 21 21 21 21 21 21 21 22 28 30 5 5 39 32 24 38 5 CU445 5 39 32 39 32 39 32 39 32 39 32 39 32 39 36 14 5 39 39 32 39 32 39 36 16 44 5 39 39 32 33 33 32 33	LLC	C0122	60313	C0413	0503	
CFN IFN LUC EFN 4 4 CUL1? 6 25 20 C03455 5 28 3C C445 31 24 38 CC445 5	IFN	Ω	21	32	39	
CFN IFN LUC 4 4 4 0.0117 28 30 00305 28 30 00305 29 30 00445 24 30 00445	EFN	9	21	31	5 C	
CFN 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	LUU	0117	6.0503	11411	0445	
CFN 2354 28354 28354	N L	4	20 C	Э ЭС	3 8 C	
	EN I	4	25	28	24	

CARMLUIS CARMLUIS CARMLUIS CARMLUI8 CARMLUI8 CARMECOL CARMECOS CARMECOS CARMECOS CARMECOS CARMLCC / CARMLCOB CARMLC06 CARVLC09 CARNL010 CARMLU12 CARML013 CARMLU14 CARMLC19 5 GU=((((2.3217095E-0*XX-3.4049276L-6)*XX+2.170224E-4)*XX-E.1310339GARWL022 LE-3)*XA+12038224)*XX-18461796)*XX+2.6CG/187 CARVLCCO CARMLUII CARVL02C CARVLC24 CARML026 CARML028 CARML021 CARVL025 CARVLC21 2 GG=(((((((-a,1)37735F-14*xX+a,323531E-15)*xX+1,006656262E-9)*xX+ 13.1043063E-6)*xX+2.2916354E-6)*xX+8*2711C56E=0*xX+1.5714c67E-3)* 3 GG={f((((((2,6047C23E-10*XX+2,3025767E-5)*XX-2,1997943E-8)*XX-15,3077642[-1)*XX-3,3468822E-6)*XX+3.6379917E-)*XX+1.1784234E-3)* 2XX+1,449244[E-2)*XX+,43352788)*XX+.6228644 4 Gue ((((((() * 3271665F-10*XA-3*958566E-8)*XA+3*5766148L-07)*XX-11.4531336F-5)*XX+7*9451313E-5)*XX-3*2077032E-4)*XA+2*16803986-3)* 2XX+1*2617956E-2)*XX+43510529)*XX+6222355 ĞĞ=≭X→3.U460e91 VL=(((1.0+±XP F(Gč))*C.311£53)/R)**(1./3.) ⊵ND CCMPLTE L 2XX+ •0150172451*XX+ •43432642)*XX+ • c2337691 END(1.1.0.C.C.0.0.1.0.0.C.0.C.0.0) XX=LGG F((XI**3)*8)/0.311653) SUBROUTINE CARMEL (B.XI,VL) 8 [F(XX+3.)2,2,5 9 [F(XX-3.)5,3.10 10 [F(XX-12.)9,4,1] 11 [F(XX-23.)5,5,6 1 [GG=.335239*XX+3CC621C2 [[{ x x + 22.]],], 8 CUMPUTE L GU 10 / 60 10 / Gu 10 / 60 10 7 60 10 / RETURN s \cdot U)

SICKAGE NCT USED BY PROGRAM

•

•

. . .

~.

. **.**

		00.1		001		00.1				LUC CC071 C0252
		DEC		DEC		DEC				15N 19
	STATEMENT								LCCATIONS	G F F F F
	EQUIVALENCE	EC 0C1	JGRAM	EC DCT 238 00356		5C 0CT			AND DCTAL	N LCC 8 CCC64 17 C0226
	NSION, OR E	10	SCURCE PRO	6) (ð	CTCR	DE	ROM LIBRARY		LA NUMBERS	EFN 1F 11 - 5
	PEARING IN COMMON, CIME	DEC OUT	YMBCLS NOT APPEARING IN	DEC OCT 3) 192 00300	UF NAMES IN TRANSFER VE	DEC DCT LCG 0 00000	SUBROLTINES NOT OUTPUT FI		ESPONDING INTERNAL FORMU	EFN IFN LOC 10 7 00657 4 15 00171
DEC OCT 32561 77461	TIONS FOR VARIABLES NCT AP	UEC ULT XX 248 00370	LOCATIONS FOR DIHER 5	UEC 0CT 2) 191 00277	LECATIONS	DEC UCT Exp(3 2 CCU02	ENTRY POINTS TC 5	10C	EGRMULA NUMBERS WITH CCRRE	EFN IFN LUC 9 6 COU52 3 13 CO134
DEC UCT 250 Q0372	STURAGE LUCA	DEC UCT 249 00371		DEC UCT 244 CU364		UEC OCT 1 00001		ĽXP (3	EXTERNAL	1+N LCC 5 C0045 11 C0076 20 C0255
		99		1		ЕХР		ЕХР		EFN 8 72

E. Restrictions

ALAT must be remotely close to the correct latitude corresponding to the initial B in order to save machine time and to insure the accuracy of the answers. ALAT must always be positive and greater than the geomagnetic equator at geocentric longitude of 180° . This means that ALAT must be greater than 4° .

F. Input

Cards containing the initial values of B, L and λ are all the data necessary for the execution of this program. This data is entered on logical tape number two. Each card represents a single case.

Columns	Mode	Quantity	Units	Description
1-12	F	BO	gauss	initial magnetic induction
13-24	F	ELO	earth radii	initial magnetic field line
25-32	F	ALAT	degrees	initial latitude

1. Card Description

2. Sample

GENERAL PURPOSE DATA SHEET

G. Output

Output from this program appears on logical tapes 3 and 5. Both tapes contain the same information with the exception that tape 3 also contains the intermediate results of the search routine. Tape 5 is the output to be used in the longitudinal averaging processor. This tape is punched onto cards which can be combined with similar output from other runs. All this data can then be used as input to the longitudinal averaging processor, but it is important that a blank card follow the last of the data cards. This arrangement is discussed in the next section. 1. Tape 3 Sample

B0 = 0.11000	LO= 1.75	5000 INIT.	IAL LAT=26.00	000
INTERM	EDIATE RESULT	SNORTHERN I	HEMISPHERE	
LONG	LAT	ALT	· B	L
180.00000	26.00000	3533.22839	0.10159	1.75000
180.00000	28.00000	3257.93344	0.11298	1.75000
180.00000	27.47628	3330.02185	0.10985	1.74955
B = 0.10985	L= 1.7495	55		
		FINAL RESUL	TS	
-180.00	27.48	3330.02	0.10985	1.74955
-180.00	27.48	3330.02	0.10985	1.74955
-170.00	25.79	3309.07	0.10987	1.75027
-160.00	23.86	3298.23	0.10987	1.75043
-150.00	21.82	3293.89	0.10987	1.75049
-140.00	19.74	3290.96	0.10986	1.74966
-130.00	17.71	3287.41	0.10986	1.74966
-120.00	15.73	3279.11	0.10986	1.74966
-110.00	13.83	3263.27	0.10987	1.75054
-100.00	11.97	3234.47	0.10987	1.75049
-90.00	10.27	3190.87	0.10987	1.75052
-80.00	8.93	3132.92	0.10986	1.75014
-70.00	8.27	3067.73	0.10986	1.74978
-60.00	8.66	3009.01	0.10985	1.74947
-50.00	10.36	2972-82	0.10985	1.74926
-40.00	13.12	2964.85	0.10985	1.74926
-30.00	16.35	29 7 9.89	0.10985	1.74933
-20.00	19.48	3011.16	0.10985	1.74939
-10.00	22.19	3052.95	0.10985	1.74927
-0.	24.34	3101.34	0.10985	1.74913
10.00	25.90	3153.89	0.10985	1.74914
20.00	26.92	3210.03	0.10985	1.74922
30.00	27.49	3269.30	0.10985	1.74940
40.00	27.80	3331.19	0.10986	1.74874
50.00	28.10	3397.64	0.10987	1.74857
60.00	28.53	3466.52	0.10985	1.74941
70.00	29.03	3528.77	0.10985	1.74939
80.00	29.55	3579.90	0.10985	1.74936
90.00	29.99	3614.76	0.10985	1.74941
100.00	30.27	3629.99	0.10985	1.74857
110.00	30.48	3626.67	0.10985	1.74880
120.00	30.63	3605.07	0.10986	1.74932
130.00	30.67	3566.43	0.10987	1.74938
140.00	30.64	3517.70	0.10987	1.74968
150.00	30.42	3464.00	0.10988	1.75053
160.00	29.83	3410.37	0.10986	1.74985
170.00	28.87	3364.67	0.10986	1.75002

2. <u>Tape 5</u>

INTERN	EDIATE RESUL	TSSOUTHERN	HEMISPHERE	
LENG	LAT	ALT	£,	L
180.00000	-15.00000	3695.08514	0.10030	1.74998
180.00000	-17.00000	3433.09256	0.11171	1.74995
180.0000	-16.70013	3472.37378	0.10990	1.74989
B= 0.10990	L= 1.7498	9		
		FINAL RESUL	TS	
-180.00	-16.70	3472.37	0.10990	1.74989
-180.00	-16.70	3472.37	0.10990	1.74989
-170.00	-18.67	3441.67	0.10990	1.75006
-160.00	-20.70	3407.85	0.10990	1.75001
-150.00	-22.78	3370-58	0.10990	1.75002
-140.00	-24.86	3327.75	0.10990	1.75005
-130.00	-26.87	3277.04	0.10988	1.74890
-120.00	-28.92	3219.97	0.10987	1.74896
-110.00	-30.96	3153.88	0.10987	1.74892
-100.00	-32.95	3077.77	0.10987	1.74908
-90.00	-34.76	2990.94	0.10987	1.74901
-80.00	-36.23	2895.15	0.10988	1.74917
-70.00	-37.17	2794.22	0.10989	1.74943
-60.00	-37.39	2694.25	0.10990	1.74975
-50.00	-36.73	2603.75	0.10991	1.75009
-40.00	-35.09	2533.92	0.10991	1.75021
-30.00	-32.47	2497.69	0.10991	1.75013
-20.00	-29.06	2503.03	0.10987	1.74902
-10.00	-25.47	2545.84	0.10990	1.74915
-0.	-22.21	2615.13	0.10990	1.74996
10.00	-19.60	2695.72	0.10990	1.75003
20.00	-17.80	2780.87	0.10990	1.75013
30.00	-16.70	2870.66	0.10990	1.75012
40.00	-15.98	2969.88	0.10990	1.75012
50.00	-15.29	3079.53	0.11000	1.74901
60.00	-14.53	3205.88	0.10990	1.75006
70.00	-13.64	3328.53	0.10990	1.75010
80.00	-12.77	3437.57	0.10990	1.75010
90.00	-12.08	3524.42	0.10990	1.75011
100.00	-11.65	3585.00	0.10990	1.75007
110.00	-11.42	3618.98	0.10990	1.74908
120.00	-11.44	3631.77	0.10990	1.74995
130.00	-11.60	3624.71	0.10991	1.75053
140.00	-11.89	3601.71	0.10990	1.74967
150.00	-12.51	3570.65	0.10989	1.74957
160.00	-13.51	3536.55	0.10989	1.74939
170.00	-14.92	3503.21	0.10988	1.74915

40

; . .

a. Card Description

Columns	Mode	Quantity	Units	Description
1-12	F	PRLNG	degrees	geocentric longitude
13-24	F	РШ	degrees	geocentric latitude
25-36	F	ALT	km.	altitude
37-48	F	В	gauss	magnetic induction
49-60	F	EL	earth radii	magnetic field line

b. Sample

GENERAL PURPOSE DATA SHEET

	<u> </u>	-	· · · · ·									·													<u> </u>		
		N		<u> </u>																							
		R :	<u> </u>	L	L			L			1																
		R	L								1																
	1	7						1																			
				 -	<u> </u>			├ ──					-						-	h							
		5	<u> </u>	+ •	<u> </u>	l •			i		<u>↓</u>							· ·									
		- 2	-	<u> </u>		ļ		L			L								i								
		ñ	۱ <u> </u>						۱									Ł									
		R R				1		T							1							[Г — Т
		2		t		t					t	t							-		·		<u> </u>				
		R.		<u>+</u>		t														<u> </u>			<u> </u>				ļ
		ò				+		1			1						-	t	-				<u> </u>	-			
				+		ł		f			f			 				ł					<u> </u>				
		ŭ	}			+		-		<u> </u>		-								-		↓	 				
	5				-	<u> </u>		ļ		<u> </u>	<u> </u>					· ·							<u> </u>				<u> </u>
		6	<u> </u>	ļ		ļ		I	<u> </u>		l			<u> </u>								L	L				L
	1			I				I																			
			L	L		L		ļ		L		L								_							
	}	B				L																	i –				
	4	8						1															í i				
		19		1									Γ														
1		5		<u> </u>		1		1			1								· · · ·								
1		Ř		8	~	0	N	0		- 00	0	5	-	-	6	8	6	5	6	5	5	6		2	~	5	~
		Ā		5		5	5	n	5	5	5		6		- 00	0	-		**		<u>_</u>				-	m	50
						5		-	0	0	0	à	0	0	0	m		-			~					-	-
																<u> </u>										<u> </u>	
	•			<u> </u>	- 47	1 43	1 47		47	5	<u> </u>	~	<u>u</u> ,	- 7	4	T	<u> </u>	v	4	<u> </u>	4	4	<u> </u>	4	4	4	P
1	8	10		~	~	1			~	~		~		-		~	~	~	<u> </u>	~	7	~	~	~	<u> </u>	-	
				·			i	····	•	Ŀ.	· ·	•	·	•	•	•	· ·	•	·	•	•	· ·	•	·	•	•	·
		5.			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	l	-	-	-	-	l	
		8																I									ſ
1		D)																									
		5																1									
		8				1					1		1														
			<u> </u>								1			-								<u> </u>					
				4	5	5	5	4	9	v	0	0	5	4	4	9	4	4	4	4	4	6	4	4	4	4	+
			├ ──	-	~		1	~	~	~	-	-	~	~	-	~	-	-	-	~		n		~	~	-	-
												-							-			-	-	-	-		
1			<u> </u>	5	5	5	5	5	S.	5	~	5	5	5	Š	5	, v	5	5	5	- v	5	5	5	5	5	5
1			L	0	6	0	0	0	0	6	0	6	5	6	5	6	6	0	0	5	5	5	5	6	6	<u>o</u>	5
				0	0		0	0	0	<u> </u>	0	0	0	0	0	0	<u> </u>	0	0	0	<u> </u>	0	0	0	0	0	<u> </u>
		4		· ·	•	· ·	·	•	·	•	•		· ·	•	•	•	•	· ·	•	•	·	•	•	•	•	٠	•
		8		0	0	0	0	$ \circ $	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1 1 1	4	L -	L				L		<u> </u>																	
	1	9																									
	Ξ	. 8										I															
	<u>≾</u>	8																									
		R									1																
	1	10		8	2	5	4	N	8	9	0	4	5	N	0	9	8	0	3	l	0	<u></u>	~	-	-	2	N
1				0	~		2	4	4	4	6	3	3	4	5		3	4	3	5	2	N	0	-	8	5	-
1		x	— —	1.		· .					· .		÷ .	t				1 .	· · ·			t					
	5				~	0	0	-	~	5	-	~	10			5		0	-	0	5	5		~		~	<u> </u>
	<u>۲</u>		<u> </u>	<u></u>	5		m							10					-		-	1	- <u>-</u>		-		
			h	5	10	10	50		10	5					~			⊢ <u>≃</u>	- <u> </u>	~			- ~			5	1.00
ł.		8	<u> </u>								1					-								-	~		l —
			<u> </u>	1 67							- 07					,		65									0
		X		ļ		-		-		I	[I				<u> </u>					I				
																											<u> </u>
16		N													1												
Ω	1	1																									
13		18					-					[[[Ι			Ι			I						
IF		8		3	4	-	0	-	3	5	2	6	~	2	9		5	4	5	0	4	5	-	5	~	5	6
IZ				5	6	0	0	6	6	0		Ē	-			60	4		(m)	5	N	-	0	0	5	0	n.
18		N		بة ا		<u>+</u> -	÷.			-	<u>⊢</u> .	t :	ا	+	<u></u>	- .	<u> </u>	+ -	t÷÷-	+	1.	<u> </u>	t-	<u> </u>	t – Ť	<u> </u>	t÷:
1 -		N E		5	m		6		5	m		0		N			-	-	+	5	0	~		50	5	5	5
	i	Ň			~					<u> </u>	<u> </u>				10	- 0	ω.		1	-		$\overline{\sim}$		~	~	~	
1 🖱				+ • •		+ · · ·	<u> </u>	+	·	<u> </u>	+ <u> </u>	+			 			+	+	<u> </u>	⊢	<u>+</u>	⊢``				+ <u>``</u>
						I						L		<u> </u>	<u> </u>				<u> </u>								<u> </u>
1.5	{		i	<u> </u>		<u> </u>					+				ļ				l –						-		I
18		E.		ļ			<u> </u>		—			ļ	ļ		 			<u> </u>	ļ								
I₹			ļ	ļ				ļ			I		<u> </u>		ļ		·	L	I			i—	<u> </u>				
15														L	I			ļ	ļ	L							L
		1										L															
		2				1							1										1		i i		
1 **		2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.1	1 1	=		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	~	2		· ·	· · ·	1.		1.			1.	1.	Γ.	· ·	1.	· ·		· ·	1.			· ·	1.		•	•	· ·
Ē	μ			0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15	19		<u>├</u>	1m	t	15	5	+	5			ā	10	1 -	ナデ	5	5	+	1	1		tī	1-		-		15
١đ	21		h	t-Ĩ	+	+=	1		+	t÷	$\pm =$	t	+ . .	+ 📅	17	۲ř	+		<u> </u>		<u> </u>	+ <u>-</u>	<u> </u>	+	<u> </u>	<u> </u>	+'
			<u> </u>	+	÷-	+	+	+	+	1	+	+	+	+ '	↓	<u> </u>	<u> </u>	<u>↓ - '</u>	+	<u> '</u>	+-'-	├	 	<u> </u>	ł —		<u> </u>
		° ا	┣──	+	Į	+		<u> '</u>		1	+ <u>'</u>	<u> </u>	ł	I	I	.	ļ	I	L	ļ	 	 		I		<u> </u>	ļ
			┣	-	 	 	 	ļ		 		I	ļ	<u> </u>	I	<u> </u>	I	I	-		 	 	<u>↓</u>	ł	 	<u> </u>	<u> </u>
1 E	8	•	—	ļ	L	L	L	I		L	L	I	ļ	L	1	1	1	1	L	L	L	 	L	I		·	L
2	12	•	L	Ļ				L	L .			ļ	1			L					L	L					L
12	Å.	~	-											L			L						L				L
	-	-																									

GSFC FORM SA1-1 (July - 60)

<u>.</u>

H. Running Time

This program takes about ten minutes for each 100 kilometers in altitude. The initial minimum altitude is required in order to estimate the number of kilometers for a particular run. Use Figure 2 and the initial values of B, L and λ to arrive at an estimate of the initial altitude h. Subtracting 800 kilometers from this value will give the approximate initial minimum altitude of the first ring. This is the altitude used in figuring the running time.

III. LONGITUDINAL AVERAGING PROCESSOR

A. Introduction

Input to this program are the five diurnal average number density tables (Tables 1-5) and the B-L contour rings output from the B-L search routine. The tables are interpolated (extrapolated) in order to obtain a density value for every ten degrees of longitude in the B-L contours. The densities are then added together for each of the five flux models, and the resulting sum is divided by 36 to arrive at the longitudinally averaged number density. This is done for the northern and southern hemispheres separately and then these values are added together and divided by two in order to obtain one number density for each B and L and each of the five flux models. These final values are used as input to the lambda punch program.

B. Mnemonics

Quantity	Description	Units
H(J)	J th altitude from the diurnal averaged atmosphere tables, Tables 1-5	km.
S1(J),, S5(J)	diurnal averaged atmosphere densities for the J th altitude and fluxes of 250, 200, 150, 100 and 70×10^{-22} watts/m ² / cycle/sec from Tables 1-5	atoms/cm ³
A1,, A5	temporary storage of S1(J),, S5(J)	**
SS1(J),, SS5(J)	natural logarithms of S1(J),, S5(J)	
AVHA	sum of EL	earth radii
AVBN1,,AVBN5	density summation for the five flux models	atoms/cm ³
LONG	geocentric longitude	degrees
РШ	geocentric latitude	degrees

Quantity	Description	Units
ALT	altitude	km.
В	magnetic induction	gauss
EL	magnetic field line	earth radii
Y(I)	temporary storage of SSK(J) at altitude I = J depending on whether K = 1, 2, 3, 4 or 5	
НА	temporary storage of altitude	km.
YA	natural logarithm of density at altitude ALT	
BARN	density at altitude ALT	atoms/cm ³
BARNAV(K)	temporary storage of BARN for flux model K	"
JUNK	temporary storage of K	
AVERH1	average longitudinal value of EL for only one hemisphere	earth radii
AVERN1,, AVERN5	averaged densities for the five flux models and one hemisphere	atoms/cm ³
FINI	end of file trigger for tape 6	
EL1	EL for northern hemisphere	earth radii
EL2	EL for southern hemisphere	**
B1	B for northern hemisphere	gauss
B2	B for southern hemisphere	**

Quantity	Description	Units
EN1,, EN5	the first time this designation appears it represents the northern hemisphere densities for the five flux models. The second time it appears it represents the densities for the north and south averaged together.	atoms/cm ³
EN12,, EN52	averaged southern hemisphere densities for the five flux models	"
ITT	counter to keep track of which hemi- sphere is being considered	
ITTI	counter to keep track of which atmos- pheric constituent is being considered	
XLA(ITTI)	first six letters of the constituent name designated by ITTI	
XLB(ITTI)	last two letters of the constituent name designated by ITTI	
TSA	first six letters of constituent name	
TSB	last two letters of constituent name	

C. Flow Chart

-

۰.

.

D. Fortran Listing

o

- LCNGTIULIMAL AVERAGING PRCCESSUR DIMENSICN SI(20).S2(20).S3(20).S5(20),H(20).SS1(20).SS2(20) F(2KMAT(HX.354(20).S2(20).Y(20).HANNAV(5).XLM15) F(2KMAT(HX.354/20).S5(20).Y(20).HANNAV(5).XLM15) F(2KMAT(HX.354/20).S55(20).Y(20).HANNAV(5).XLM15) F(2KMAT(HX.124-NERAGE NUMBER GENSITIES FCH DIFF S / 11X. 1194HOUTHERN +EMISPHERE) F(2KMAT(HX.124-NERAGE UL=1F6.3,3X,2HB=1F0.5) F(2KMAT(HX.124-NERAGE UL=1F6.3,3X,2HB=1F0.5) F(2KMAT(HX.325+ATM05PHERE) F(2KMAT(FE12.4,12X,25+ATM05PHERE) F(2KMAT(FE12.4,12X,25+ATM05PHERE) F(2KMAT(FE12.4,12X,25+ATM05PHERE) F(2KMAT(FE12.4,12X,25+ATM05PHERE)
- N m

- - FURMAL (140) FURMAL (2F8.5,564,46.42)
- FURMAT(5612.4) FCRMAT(3612.2,2712.5) FURMAT(5612.6)
- - XLA(1)=6FFELIUM XLA(2)=6FGXYGEN XLA(3)=6F C 2 XLA(4)=6FVITRGG
 - XLA(5)=6FHYDRCG
 - XLB(1)=2h

 - XLR (2) = 2H XLR (3) = 2H XLB (4) = 2F G XLB (5) = 2F G XLB (5) = 2F F
- WHITE CUTPUT TAPE 3.5.XLA(ITTI).XLB(ITTI)
 - H(1)=120.
 - H(2)=200.
- UC 150 N=2,19
 - H [N+1]=P(N)+1CO.
 - 150
- CCNTINUE UC 151 N=1.2C RED 1NUL TAPE 7.152.51(N).52(N).53(N).54(N).55(N) 1+611(1) 151.660.151
 - 151
 - DC 10 1=1,20 **CONTINUE**
 - A1=51(1)
 - A2=52(1)
- A3=53(1) A4=54(1)
- A>= 55(1)
- SSI(1) = LCGF(A1)SS2(1) = LCGF(A2)
- S5J(I) = LLGF(A3)S54(I) = LCGF(A4)
- S55(1) = LGGF(A5)
- CUNTINCE.
 - AVHA=C. 10 2001
 - AVBR1=U.
 - AVBN2=U. AVEN3=U.
- AV3N4=0.
 - AVBN5=U.

- BU 2000 N=1,36 READ [MPUE TAPE 5, 103,LCNG,PHI,ALT.€.EL IF (8) 155,155,505 REWINE 5 104
 - 150
- ITTI=ITTI+1 IF (ITTI=5) 15/+157-153 WRITE UUTPUE TAPE 3.5.XLA(ITTI).XLB(ITTI) GL TC 153 GL TC 153 GL TC 153 GL TC 201-202-203-204)+K BC 300 I=1.20 121
 - 505
- 200

 - Y(I) = SI(I) CUNTINCE 30C
- 201 66 16 466 201 06 301 1=1,20 7(1) =552(1) 301 66111VUE 661 76 466 202 06 302 1=1,20
 - 301
- $\gamma(I) = SSJ(I)$ CCNTINUE 302
- 6C TC 400 DC 303 [=1,2C 203
 - Y(I) =554(I) CCNTINUE
 - 303
- GC TC 400 DC 304 I=1,20 Y(I) =555(I) CGNTINUE 204
 - HA=ALT 304 400

- IF(HA-126.) 1002,1000,401 IF(HA-2000.) 1000,1000,1001 DU 20 J=1,20 IF(H(J)-HA) 20,21,22 401
 - 1000
- (C) X=VX 12
- 6C TO 30 H1=H(J) 22
- Υ1=Υ[J) НG=Н[J-I)
 - YG=Y[J-1]
- 20 23 30 1001
- GU TC 23 CENTINCE Ya=Y1-{Y1-YG}*{H1-FA}/{H1-FC} GC TC 1003 GC TC 1003 Ya=Y{2v}+{FA-F{2C}}*{Y{20}-Y{19}}/{F{2C}-F{19}}
 - GL TC 1003
 - 1602 Variation (Y(2)-Y(1))/(F(2)-F(1)) 1663 Barnafapf(Ya) 502 Barnav(K)=warn
- JUNK=K
- IF(JUNK-5) 100,290,100
 - AVHA=LL+AVHA 067
- AVBVI = DARNAV(1)+AVBVI
- AVBN2 = EARNAV(2)+AVBN2 AVBN3 = EARNAV(3)+AVBN3 AVBN3 = EARNAV(3)+AVBN3 AVBN4 = EARNAV(4)+AVBN4

WRITE LUTPUT TAPE 3,8,4VERN1,AVERN2,4VERN3,4VERN4,4VERN5 Writs Lutput Tape 6,7,4VERP1,0,XL4(1111),4L4(1111) Write Luiput Tape 6,4,4Vern1,4Vern2,4Vern3,4Vern4,4Vern5,XL4(1111) READ INPUT TAPE 6.7, ELL.BL.TSA.TSU IF (ELL) 602.663.662 REAU INPUT TAPE 6.4.ENL.EN2.EN3.EN4.EN5.TSA.TSU REAU INPUT TAPE 6.7.EL2.822.TSA.TSU REAU INPUT TAPE 6.7.EL2.822.TSA.TSU REAU INPUT TAPE 6.4.EN12.EN32.EN32.EN42.EN52.FSA.TSU EL=(CL1+LL2)/2. EN5=(EN5+EN52)/2. WRITE UUFPUT TAPE 10.7+EL+B.TSA,TSB WKITE UUTPUT TAPE 10.7+EL+B.TSA,TSB GALL FAIT Fad(1+1+0+0+0+0+0+0+0+0+0+0+0) FINT=0. Write Cuipui Tape 6,7,FINI,FINI WRITE ULIPUT TAPE 3+2+AVEAFL+8 If (ITT-1) 36+35+36 WRITE UUIPUT TAPE 3+3 IITT=ITI+1 AVBN5 = BARNAV(5)+AVBN5 GU TU 37 Write Lutput Tape 3,1 Iff=1 WRITE LUTPUT TAPE 3.6 Ge to 2001 AVERHI=AVHA/36. Averni = Avnsl/36. Averni = Avns/36. Averni = Avns/36. Averni = Aven36. Averni = Aven5/36. 8≜(81+32)/2. en1=([n1+cn12)/2. EN2=(EN2+EN22)/2. EN3=(E-13+EN32)/2. EN4= (EN4+EN42)/2. 1,XLB([111) 6C 10 001 CUNTIAUE 100 CUNTINUE 2000 CUNTINUE REWIND 6 603 6 C I 602 έCU ςĘ 36 37

.

STCRAGE NET USED BY PROGRAM

UEC CUT 32561 77461 DEC CCT 1041 C2021

STATEMENTS

STCRAGE LCCATIC DEC CC1 800 C1440 900 C1724 55 240 O1724 555	CRAGE LOCATIC A S S S S S S S		с с 840 840 840	. VAN AREL CCT Cle54 C17CC C151C		1540 01 1040 01 1240 0	CC 500000000000000000000000000000000000	SS XLE	DEC DEC 1020 CI 300 CI 790 CI	- 	50 20 20 20 20 20 20 20 20 20 20 20 20 20	DEC 1000 880 220	CCT 01750 01560 01464
860 01034 - SS5 840 01510 Sturause Locations For Wariables not APF	SS5 840 CI5IC Locations for Variables not Api	840 CI5IC Variables ngt app	CISIC Bres act app	444	XLA Dearing	IN COM	rtaa VCN+ LIME	NSICN. C	S ECCIVO	ALENCE S	TATÉMENT		
	LEC CL	LEC CUT	CCT			DEC	00T	2	0EC (101 1414	۵ ن	DÉC 781	- O
78% 01421 A2 764 01420	A2 764 01420	764 C142C	0142C		ר מ מ		1414		777 0	1111	AVBN4	176	0141
780 C1414 AVDN1 775 C1413	AVDNI 775 61413	715 61413	61413 61404		A VBNZ	77:0	1405	AVERN2	772 C	1404	AVERNE	111	01403
775 01407 AVEXHI 114 01400		114 CT400	01400			768 0	1400	61	767 C	1377	E 2	766	01376
710 C1402 AVENUS 102 C131	A 764 01374	764 01374	01374		1 12	763 0	1573	ELZ	762 6	1372	EL E	761	1/ 10
760 01370 ENI 755 01367	ENI 759 01367	755 01367	01367		EN22	758 0	1366	EN2	757 C	1365	EN32	961	01304
755 01363 EN42 754 01362	EN42 754 C1362	754 C1362	C1362		E N 4	753 0	1361	EN52	752 C	1360		161	01352
75C 01356 H0 749 01355	H0 749 C1355	749 01355	01355		F1	740 0	1 c c 1	Ч.Ч	141	2021		172	37770
745 01351 J 744 0135C	J 744 0135C	744 0135C	01350		nurk	743 0	1347	A 21	742 0	1340 1441	LCNU TSB	136	01340
740 01344 N 739 01343	N 739 C1343	739 01343	C1343		1 - I - I - I - I - I - I - I - I - I -	138 0	1346	40		1 - 1	-		1
735 01337 YI 734 01336	Y1 734 01336	734 01336	01336		۸A	133 0	1:35 1						
SYMELLS AND LCCATI	SYMULLS AND LCCATI	ILLS AND LCCATI	AND LCCATI		CAS FOR S	CURC. P	PLOPAN FO	CHMAT STA	TENENTS			2 U U	001
EFN LUC EFN LUC	EFA LUC	EFA LUC	LLC		513	EFN.	LCC 1777	6.14	61N 4 0	1261	8)5	ŝ	01256
1 01324 812 2 01300 6 01246 017 7 01245	512 Z 01200	7 01245	01245		30,3	10	1242	8137	103 C	1240	8)40	152	01235
LUCATIONS FOR CTHER	LUCATIONS FOR CTHER	TIONS FOR CTHER	FGK CTHER		SYMBULS	NCI APP	EARING 11	N SCURCE	PROGRAN				
5.0 001 001	6.5C 0.0T	110 011	0.17			5 E C	סרו		DEC	CCT		DEC	CCT
724 C1325 2) 62 C1165	2) 62° 01165	62° C1165	C1165		5	655 0	1217	4)	32767 7	1111	10.0	700	
635 01173 C161 724 0143C	C161 724 0133C	724 01330	01330		C) (3	729 C	1231	C) C4	130 0	2221	0150	101	
732 01334 D1215 265 CC411	C1215 265 CC411	265 CC411	C C 4] I		C1213	0 52	0445	C)408) (1 -) (1770		3110	
85 CL125 E)8 E& C013C	E)8 E& C013C	E3 C013C	00130		£)H	141 C	0215	E)C	1 871	5757 5757	5 C C C C C C C C C C C C C C C C C C C	440	
212 CU324 E.N. 219 C0333 250 CU372	L)N 219 00333	215 60333	C0333		و 1	220 0	2450	111	n 167			- 0 J	
LCCATIONS	LCCATIONS	LCCATIONS	LCCATICNS	1	UF NAME	S IN TR	A.ISFER V	ECTCR					
NEC COT 001	0CT 0CT	0CT 0CT	00.1			DĒC	כרו		DEC	CCT CCT	11017	DEC	100
B CCCIC LXP 7 CCCC7 4 CCCC4 (R#1) 5 CCCC6	CCCC7 (R#1) 6 CCC6	7 CCCC7 6 CCCC6	CCCC7 CCCC6		LC6 (STH)	∽⊸∎ 2℃	0001 0001	(+1L) (1SF)	20	0003		>	, , , ,
ENTRY POINTS TO	ENTRY POINTS TO	ENTRY POINTS TO	PCINTS TC		SUBROUT	INES NOT	ULPUT	FROM LIER	2.0.R.Y				
- 1n (EIL)	1 L C (F L F)	(FTL)	(FIL)		(FPT)	в)	(TN)	(KMT)	51	(HL)	(15+)		

•

.

;

•

.

(RTN)

(FPT)

(F1T)

LCG

εXP

ExIi

LOC	00176	00316	LEEDO .	00356	00425	00501	00606	00752
IFN	64	67	11	86	96	104	125	145
EFN	2001	200	302	400	2 C	1003	35	602
LCC	00174	00305	CC334	C0354	C0412	C0464	CC544	00130
I F N	8 7	69	75	85	66	103	115	142
EFN	10	505	202	304	22	1002	2000	601
Loc	0123	0266	0130	1450	C403	1440	0541	0106
IFN	36 0	9 7 Q	73 0	83 C	0 16	101 0	114 0	138 0
EFA	151	157	106	204	21	1001	100	600
rc	CC 71	0245	0325	0346	0373	0446	1140	0624
24	32	530	7	8 I (58 58	100 0	108.0	130 0
EFN	£ 6 1	155	۲07 ۲07	101	1000	0f	290	55
100	20067	0220	26321	54500	00365	0421	30506	0016
241	F	56 (6 J (1 62) 28 8	े ह	105 (128 (
2	150	104	; C ()	203	101	23	205	36

EAICARAL FLAWULA NUMBERS WITH CORRESPONDING INTERNAL FURMULA NUMBERS AND DOTAL LOCATIONS

•

•

.

- -.

•____

· •

-

E. Restrictions

Input tables must have densities for altitudes starting at 120 kilometers and followed by each 100-kilometer level up to 2000 kilometers. If the tables are changed then the program must be modified. The tables must be input in the following order:

(1) helium,

- (2) oxygen,
- (3) molecular oxygen,
- (4) nitrogen,
- (5) hydrogen.

F. Input

Input to this program is handled by two tapes. On tape 2 are entered the diurnal averaged atmosphere tables (Tables 1-5). These tables are punched on cards and placed one behind the other at the end of the Fortran deck. These tables must be input in the following order: helium, oxygen, molecular oxygen, nitrogen and hydrogen. This is necessary in order that the constitutuent names may be correctly punched on the output. It is also important that a blank card follow the last table in order to notify the program when it has reached the end of the file.

On tape 5 are placed the B-L contours which were produced by the B-L search program. As with the tables, the last card must be blank in order to designate an end of file.

1. Tape 2

a. Input Card Description

ATMOSPHERE TABLES

Columns	Mode	Quantity	Units		Descrip	otion	
1-12	E	S1 (N)	atoms/cm ³	density	for flux mo	del 1, al	titude N
13 - 24	\mathbf{E}	S2(N)	11	11	**	2,	**
25-36	\mathbf{E}	S3(N)	* *	**	11	3,	17
37 - 48	\mathbf{E}	S4(N)	**	**	11	4,	11
49-60	\mathbf{E}	S5(N)	11	**	* *	5,	11

Sample
þ.

· •:

GENERAL PURPOSE DATA SHEET

VERAGING PROCESSOR
0.00
#
0 E + 1 1
3E+09
0 E + 0 8
1E+07
0 E + 0 6
9 E + 0 5
3 E + 0 4
9 E + 0 3
4 E + 0 2
0 E + 0 1
9 E + 0 1
8 E + 0 0
4 E - 0 1
3E-01
3 E - 0 2
7 E - 0 3
2 E - 0 3
4 E - 0 4
6 E - 0 5
1 E - 0 5
0 E + 1 0
9 E + 0 9
4 E + 0 8
2 E + 0 8

65FC FORM 541-1 (July - 60)

2. <u>Tape 5</u>

a. Input Card Description

B-L CONTOURS

Columns	Mode	Quantity	Units	Description
1-12	F	LONG	degrees	geocentric longitude
13-24	F	PHI	degrees	geocentric latitude
25-36	\mathbf{F}	ALT	km	altitude
37-48	\mathbf{F}	В	gauss	magnetic induction
49-60	\mathbf{F}	\mathbf{EL}	earth radii	magnetic field line

56

. .

b. Sample

GENERAL PURPOSE DATA SHEET

•••

٩.

• •

Problem	INPLIT _	I ONGITUDINA	VI AVFRA	SGING PROCE	SSOP (B_I	CONTOLL	150							
Spensor	TAPE 5					ete S.A	MPIF			å	2	j0		
1 2 3 4 5	67890				8 8 8 8 8 8 8 8 8 8		4 4 9 8		16 8 8 8 8 9 9	18 15 19			 	R
	- 1 8 0 .	00	2 5	. 6 3	3 5 8 0	. 6 8	0	9 9 0 .	7 4		74968			-
	- 1 7 0 .	0 0	2 3	. 9 4	3558	. 7 7	0	.099	7 5	-	7 5 0 4 7			-
	- 1 6 0 .	0 0	2 2	. 0 1	3546	. 1 2	0	6 6 0 .	7 6	•	7 5 0 6 0	 		
	- 1 5 0 .	0 0	1 9	. 9 9	3 5 3 9	. 2 4	0	.099	7 6	1	75062	 		
	- 1 4 0 .	0 0	1 7	16.	3533	. 4 2	0	. 0 9 9	7 4	1	1 4 9 7 9			
	- 1 3 0 .	0 0	1 5	. 9 3	3 5 2 7	. 4 8	0	0 6 6 0	7 6	-	7 5 0 5 7			
	- 1 2 0 .	0 0	1 3	. 9 5	3 5 1 5	. 4 6	0	660.	76	1	75058			E
	- 1 1 0 .	0 0	1 2	. 0 2	3 4 9 4	. 9 0	0	660.	7 6	-	5056			
	- 1 0 0 .	0 0	0 1	. 1 6	3462	. 3 4	0	990.	7 6	-	7 5 0 4 7			
	. 0 6 -	0 0	8	. 4 7	3415	. 3 5	0	9 9 .	7 5	•	75031			
	- 8 0	0 0	2	. 1 2	3 3 5 4	. 4 2	0	099	7 4	1	4971			
	- 7 0 .	0 0	9	. 4 6	3 2 8 7	. 5 9	0	0960.	7 4	1	4983		 	
	- 60.	0 0	9	. 8 1	3 2 2 6	. 1 6	0	.099	7 6	•	74898			
	- 5 0 .	0 0	8	. 4 5	3 1 9 0	. 3 8	0	6 6 0 .	7 4	-	14949			
	- 4 0 .	0 0	11	. 14	3 1 8 2	. 4 9	0	0 9 9	7 4	-	4945			
	- 30.	0 0	1 4	. 3 5	3 1 9 9	. 3 3	0	. 0 9 9	7 4	-	4949			
	- 2 0 .	0 0	1 7	. 5 0	3 2 3 2	- 51	0	6 6 0 .	7 4	1 . 7	4945			
	- 1 0 .	00	20	. 2 4	3 2 7 6	. 2 0	0	. 0 9 9	7 4	11	4937			
	· 0 -	0 0	2 2	. 4 2	3 3 2 6	. 2 8	0	. 0 9 9	7 3	1.7	4 9 2 9			
	10.	0 0	2 4	. 0 1	3 3 8 0	. 0 7	0	. 0 9 9	7 4	1.7	4 9 4 1	 	 	
	20.	0 0	2 5	. 0 5	3 4 3 7	11	0	. 0 9 9	7 4	1.]7	4 9 4 2			
	30.	00	2 5	. 6 7	3 4 9 7	. 8 1	0	. 0 9 9	7 4	4 - 1	4 9 4 7			
	40.	00	2 6	. 0 5	3562	. 5 7	0	. 0 9 9	7 4	1 1 2	4 9 3 2			
	50.	00	2 6	. 39	3631	. 1 2	0	. 0 9 9	7 4	1 1 2	4 9 5 7			

65FC FORM 541-1 (July - 60)

G. Output

Output for this program appears on logical tapes 3 and 10. Tape 3 will contain the averaged densities for each of the five flux models at a particular B and L for both northern and southern hemispheres and for each of the five constituents. The constituents (He, $0, 0_2, N_2, H$) follow each other in the same order as they exist in the tables which are input on tape 2. Tape 3 is printed with appropriate headings.

Tape 10 also contains densities for the five flux models at each B and L but here the northern and southern hemispheres are averaged together to give one final value for each B and L. Tape 10 contains no headings but each card is labeled with the appropriate constituent name. This tape is punched in order to be used as input to the lambda punch.

A scratch tape must be set up on logical tape unit 6. Although no data appears on this tape at the completion of the program it is used in intermediate steps to store data.

1. Tape 3 Sample

ATMOSPHERIC CONSTITUENT--HELIUM

AVERAGE L= 1.142 B=.23891 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.8300E 06 0.7508E 06 0.6289E 06 0.4600E 06 0.3382E 06

AVERAGE L= 1.142 B=.23890 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.1346E 08 0.1210E 08 0.1064E 08 0.9134E 07 0.8207E C7

AVERAGE L= 1.142 B=.22741 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.7137E 06 0.6282E 06 0.5063E 06 0.3493E 06 0.2433E 06

AVERAGE L= 1.142 E=.22736 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE C.1428E 07 0.1402E 07 0.1357E 07 0.1293E 07 0.1250E 07

AVERAGE L= 1.142 B=.23465 AVERAGE NUMBER DENSITIES FOR DIFF S NCRTHERN HEMISPHERE 0.7842E 06 0.7021E 06 0.5795E 06 0.4145E 06 0.2984E 06

AVERAGE L= 1.142 B=.23466 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.5205E 07 0.4932E 07 0.4608E 07 0.4235E 07 0.3986E 07

AVERAGE L= 1.142 B=.21968 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.6485E 06 0.5615E 06 0.4423E 06 0.2952E 06 0.1996E 06

AVERAGE L= 1.142 B=.21968 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.8665E 06 0.8125E 06 0.7325E 06 0.6253E 06 0.5477E 06

AVERAGE L= 1.170 B=.23992 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.7300E 06 0.6415E 06 0.5134E 06 0.3472E 06 0.2351E 06

AVERAGE L= 1.170 B=.23991 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.1571E 08 0.1399E 08 0.1217E 08 0.1032E 08 0.9197E 07 AVERAGE L= 1.170 8=.23468 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.6785E 00 0.5881E 06 0.4614E 06 0.3026E 06 0.1990E 06

AVERAGE L= 1.170 B=.23467 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.5025E 07 0.4766E 07 0.4459E 07 0.4106E 07 0.3874E 07

AVERAGE L= 1.170 B=.22957 AVERAGE NUMBER DENSITIES FUR DIFF S NORTHERN HEMISPHERE 0.6319E 06 0.5403E 06 0.4158E 06 0.2647E 06 0.1693E 06

. .

· •

AVERAGE L= 1.170 B=.22956 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.1975E 07 0.1940E 07 0.1885E 07 0.1810E 07 0.1758E 07

AVERAGE L= 1.170 B=.21976 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.5513E 06 0.4595E 06 0.3410E 06 0.2052E 06 0.1246E 06

AVERAGE L= 1.170 B=.21977 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.8559E 06 0.8062E 06 0.7343E 06 0.6406E 06 0.5740E 06

AVERAGE L= 1.170 B=.20975 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE C.4812E 06 0.3913E 06 0.2804E 06 0.1600E 06 0.9249E 05

AVERAGE L= 1.170 B=.20972 AVERAGE NUMBER DENSITIES FUR DIFF S SOUTHERN HEMISPHERE 0.6456E 06 0.5736E 06 0.4764E 06 0.3555E 06 0.2730E 06

AVERAGE L= 1.170 B=.20474 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.4513E 06 0.3629E 06 0.2560E 06 0.1428E 06 0.8090E 05

AVERAGE L= 1.170 B=.20475 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.5692E 06 0.4911E 06 0.3896E 06 0.2688E 06 0.1907E 06

AVERAGE L= 1.170 B=.20141 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.4332E 06 0.3460E 06 0.2419E 06 0.1333E 06 0.7469E 05 AVERAGE L= 1.170 B=.20134 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.5207E 06 0.4399E 06 0.3375E 06 0.2199E 06 0.1474E 06

AVERAGE L= 1.188 B=.23382 AVERAGE NUMBER DENSITIES FOR DIFF S NCRTHERN HEMISPHERE 0.6179E 06 0.5248E 06 0.3992E 06 0.2485E 06 0.1550E 06

AVERAGE L= 1.188 B=.23383 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.3782E 07 0.3632E 07 0.3447E 07 0.3229E 07 0.3084E 07

. .

AVERAGE L= 1.188 B=.21177 AVERAGE NUMBER DENSITIES FOR DIFF S NCRTHERN HEMISPHERE C.4507E 06 0.3605E 06 0.2517E 06 0.1373E 06 0.7561E 05

AVERAGE L= 1.188 B=.21175 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE 0.6639E 06 0.5964E 06 0.5050E 06 0.3904E 06 0.3108E 06

AVERAGE L= 1.188 B=.25851 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.8776E 06 0.7972E 06 0.6687E 06 0.4846E 06 0.3495E 06

AVERAGE L= 1.188 B=.25853 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE

0.8554E 09 0.6005E 09 0.3943E 09 0.2397E 09 0.1695E 09

AVERAGE L= 1.188 B=.24959 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.7733E 06 0.6856E 06 0.5550E 06 0.3807E 06 0.2603E 06

AVERAGE L= 1.188 B=.24954 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.1175E 09 0.9275E 08 0.7004E 08 0.5030E 08 0.3995E 08

AVERAGE L= 1.188 B=.23938 AVERAGE NUMBER DENSITIES FOR DIFF S NURTHERN HEMISPHERE 0.6690E 06 0.5769E 06 0.4486E 06 0.2890E 06 0.1862E 06

AVERAGE L= 1.188 B=.23934 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE 0.1212E 08 0.1095E 08 0.9695E 07 0.8383E 07 0.7571E 07 AVERAGE L= 1.188 B=.21981 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.5056E 06 0.4133E 06 0.2976E 06 0.1702E 06 0.9799E 05

AVERAGE L= 1.188 B=.21981 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.8335E 06 0.7838E 06 0.7133E 06 0.6223E 06 0.5579E 06

AVERAGE L= 1.188 B=.20482 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.4087E 06 0.3211E 06 0.2185E 06 0.1146E 06 0.6086E 05

. .

AVERAGE L= 1.188 B=.20481 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.5597E 06 0.4837E 06 0.3855E 06 0.2689E 06 0.1932E 06

AVERAGE L= 1.200 B=.24991 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.7400E 06 0.6498E 06 0.5184E 06 0.3469E 06 0.2312E 06

AVERAGE L= 1.200 B=.24992 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE C.1125E 09 0.8896E 08 0.6733E 08 0.4849E 08 0.3861E 08

AVERAGE L= 1.200 B=.23952 AVERAGE NUMBER DENSITIES FOR DIFF S NCRTHERN HEMISPHERE 0.6373E 06 0.5438E 06 0.4160E 06 0.2608E 06 0.1634E 06

AVERAGE L= 1.200 B=.23948 AVERAGE NUMBER DENSITIES FOR DIFF S SCUTHERN HEMISPHERE 0.1122E 08 0.1018E 08 0.9049E 07 0.7866E 07 0.7131E 07

AVERAGE L= 1.200 B=.22940 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.5508E 06 0.4569E 06 0.3357E 06 0.1976E 06 0.1166E 06

AVERAGE L= 1.200 B=.22938 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE C.1666E 07 0.1638E 07 0.1594E 07 0.1536E 07 0.1496E 07

AVERAGE L= 1.200 B=.21979 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.4790E 06 0.3869E 06 0.2735E 06 0.1516E 06 0.8459E 05 AVERAGE L= 1.200 B=.21980 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.8144E 06 0.7642E 06 0.6936E 06 0.6031E 06 0.5390E 06

.

. .

. .

AVERAGE L= 1.200 B=.20970 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.4136E 06 0.3249E 06 0.2207E 06 0.1151E 06 0.6061E 05

AVERAGE L= 1.200 B=.20971 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.6189E 06 0.5489E 06 0.4559E 06 0.3416E 06 0.2637E 06

AVERAGE L= 1.200 B=.18974 AVERAGE NUMBER DENSITIES FOR DIFF S NORTHERN HEMISPHERE 0.3116E 06 0.2325E 06 0.1468E 06 0.6859E 05 0.3260E 05

AVERAGE L= 1.200 B=.18975 AVERAGE NUMBER DENSITIES FOR DIFF S SOUTHERN HEMISPHERE 0.3818E 06 0.3026E 06 0.2112E 06 0.1179E 06 0.6790E 05

2. <u>Tape 10</u>

a. Output card description

	Columns	Mode	Quantity	Units	Ī	Description	<u>n</u>
B, L Card	1-8	F	EL	earth radii	averaged	d magnetic	field line
	9-1 6	F	В	gauss	magnetic	e induction	L
	72-80	-	-	-	constitue	ent name	
Density	1-12	Ε	EN1	atoms/cm ³	density f	for flux mo	odel 1
Card	13-24	\mathbf{E}	EN2	atoms/cm ³	den	"	2
	25-36	Ε	EN3	11	"	••	3
	37-48	E	EN4	**	11	11	4
	49-60	E	EN5	**	**	**	5
	72-80		-	_	constitu	ent name	

64

. .

b. Sample

•

GENERAL PURPOSE DATA SHEET

	OUTPU	T - LONG	IT UDIN.	AL AVI	ERAGIN	G PRO	CESSO	R (NOR	TH-SOL	JTH AV	/ERAG	E)											
Sponsor	TAPE 1	0						Dete	S	NPLE					d				ō				
1 2 3 4 5	0 6 8 2 9				2 4 2		16 R	1 12 13 13		498	8	8	8	18 93 15	18 18 18		8	8			F		
										E													
1 . 1 4	1960	. 2 3 8	9 0															-	1-		- z	T R O	U E N S
0 . 3	8 8 1 E	1 3	0 . 4 5	7 1 4 E	1 3	•	697	5 E	1 3	0.1	209	E 1	4	0.2	036		-				- z	8	N E V
1 . 1 4	1970	. 2 2 7	3 8								_				-						- z	0 2	EN
0.2	4 3 0 E	0	0 2 2	5 8 E	0		203	ш 8	1 0	0 1	748	-	0	0	5 2 1				-		- Z	8	U U U
1 . 1 4	1980	. 234	65																		- z	R O	E N
0 · 2	745E	12	0 . 3 1	1 9 E	12		377	1 L	1 2	0.5	095	- Ш	2	· 0	7 8 0	г- Ш					- - Z	80	N N N
1 . 1 4	2000	. 219	6 8									_									- Z	8	L N
0.6	784E	0 8	0 . 4 4	88E	0 8	0	2 5 3	3 E (8 (1 . 0	057	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	7 2 0	0					 Z	2	EN
1 1 7	0 1 0	. 2 3 9	1 6															-			- Z	No Register State	Z Z
0.5	180E	1 3	0 6 5	6 5 E	1 3	0	933	0 E 1	8	0 1	6 1 5		4	0	112						- Z	80	N N
1 1 7	0 0 0	. 2 3 4	67																		L Z	80	Z U
0.2	2 5 8 E	12	0 . 2 5	19E	12	0	296	2 E	2	0.3	819		~	4	358	-					- - z	0	Z W
1 . 1 6	9940	. 2 2 9	5 6																		- Z	800	Х Ш
0.9	956E	1 0	0 9 7	5 5 E	1 0	0	949	0 E 1	0	6 . 0	110	-	0	8.0	7 8 5 E	-					 	ROG	N U
1.17	0 2 0	. 2 1 9	76																		- Z	R 0	N N N
0.8	742E	8	0 9 . 0	89E	8		366	2 E 0	8	0 1	6 6 7	о Ш		∞	156	0					- - N	R 0 0	Z U
1.17	0 0 0	. 209	7 3	-																 	 	ROG	N N
0 . 7	353E	07	0 3 6	0 2 E	0 7	. 0	134	3 E 0	7	0 . 2	0 9 0	о ш	20	т	8 6 E	0					1 - N	ROG	N N
1 1 1	0 0 0	. 2 0 4	7 4																	E	- - z	ROG	х ш
0 . 2	587E	20	<u>6</u> 0	87E	9 0		270	2 E C	9	0 . 2	6 1 5 E	E 0	200		99 E	0 4					 - Z	ROG	Z U
1 1 7	0 5 0	201	37																		+ - V	ROG	Z W
0	2 8 1 E	20	0 4 0	79E	9 0	0	855	8 E	5	0.5	9 9 5 1	E 0 4		. 5 0	59E	0					N - T	ROG	N N
	950	2 3 3	82																		L I N	ROG	Z Ш
9.9	12 5 E		0 1 0	4 7 E	1 2		1 1 6	6 E 1	2	1.0	3 8 2 E	-	0	. 16	2 3 E	12					N I T	ROG	Z W

65FC FORM 541-1 (July - 60)

H. Running Time

An allowance of 8 seconds for each B-L line will give a close estimate of the running time for this program.

. -

.

IV. LAMBDA PUNCH

A. Introduction

This program takes the cards from the longitudinal averaging processor and punches the latitude in degrees on every B-L card. This value is necessary in the execution of the "bounce" average calculation.

Computing the latitude is done by the method of false position using the equation.

$$B = \frac{M}{r_e^3} \frac{\sqrt{4 - 3\cos^2 \lambda}}{L^3 \cos^6 \lambda}$$
(1)

where M is the earth's magnetic dipole moment, r_e is the radius of the earth and λ is the latitude. B is traded to the right hand side of equation (1) and the resulting function is evaluated for zero at a fixed B and L:

BFUNF(B, L,
$$\lambda$$
) = $\frac{M}{r_a^3} = \frac{\sqrt{4-3\cos^2 \lambda}}{L^3\cos^6 \lambda} - B$

B. Mnemonics

г.

Quantity	Description	Units
IT	counter to eliminate repetițion in computation	-
LT	L counter	-
КТ	counter to determine whether a partic- ular L is the first L considered	-
RTD	conversion factor - radians to degrees	-
DTR	" - degrees to radians	-

Quantity	Description	Units
RE	radius of the earth (6378.16 $ imes$ 10 ⁵)	cm
EM	the earth's magnetic dipole moment $(8.1 \times 10^{25} \text{ gauss cm}^3)$ divided by the radius of the earth cubed	gauss
NPT	count of the number of B's to a given L	-
BL(J)	J th magnetic field line	earth radii
B(I)	I^{th} magnetic induction for a given L	gauss
SS1(I),, SS5(I)	longitudinally averaged number densi- ties for the five flux models and the I th B.	atoms/cm ³
RATIO(I)	ratio of the upper limit on the latitude XLW2 to the lower limit on the latitude XLW1 for the I th B.	-
BCOM(I)	B computed for the final latitude XLAMP(I) at B(I)	gauss
XLW1	lower limit on the latitude	radians
XLW2	upper limit on the latitude	* *
FXLW1	BFUNF computed for XLW1	
FXLW2	'' '' XLW2	-
XLAMP(I)	final selected latitude for B(I)	radians/ degrees
TERM 1	BFUNF computed for XLW1	-
TBLAM(J, I)	latitude for the I^{th} B of the J^{th} L	degrees
TEST(K)	temporary storage of XLAMP(J)	radians
CKT(K)	the absolute value of $TEST(K)/TEST(K-$	1) -
SCKT(J)	temporary storage of final CKT(K)	_

•.

.

• .

• •

ана сайта. С 4 страна сайта

D. Fortran Listing

2

• *

しょうしい

- J
- LAMADA PLNCH DIMGNSION 8129),Telam(25,20),551(25),552(25),553(29),554(25), DIMGNSION 8129),ELAM(25,20),551(20),552(25),553(29),554(25), 1555(551,56(55),542(25),515(20),557(25),557(25),557(25), BEUNF(5:L*EL,2LAP)=E**5GRIF(4,0-3.56CG5F(XLAP)**2)/((FL**3)* DCSF(XLAM)**6)-a JCSF(XLAM)**6)-a JCSF(XLAM)**6)-a JCSF(XLAM)**6)-a
 - υu

- FURMATS FURMATILZ 100 FCRMATILZ 101 FCRMATICS-5:56.42) 102 FURMATICS-2.4.12X.A6.42) 103 FCRMATICS-12.4.12X.A6.42) 103 FCRMATICS-12.4.12X.A6.42) 104 FCRMATICS-11.0PT.5X.HL.9X.1HB.6X.6HLAMBEA.4X.9HB CCMP. .1CA.51 RATI
 - (D)
- 105 FCRMAI(14) 106 Furmat(4x,2F10,5,F10,1,2E15,7) 107 Furmat(2F8.5,FH.3,4Ex,46,4Z/5E12,4,12x,A6,42)
 - 0=11 L] = ()
- 5 ~

- КТ=0 КТ=0 L1=LT+1 READ INPUT TAPE 2.ICO.NPT RREAD INPUT TAPE 5.ICO.NP1 00 18 1=1.NPT READ INPUT TAPE 2.ICO.BLILF1.ed[]).XLA.XLb READ INPUT TAPE 2.ICO.SSI[1].SS2[]].SS3[]].SS4[[]].SS5[]].KLA.ALb TF(KT 0.7.8 READ INPUT TAPE 2.ICO.SSI[1].SS2[]].SS3[]].SS4[]].SS5[]].KLA.ALb TF(KT 0.7.8 ELI=BL[LT] ELI=BL[LT] 81

 - ~

- K1±1
- 60 10 4
 - 8 ZI
- ი ი
- TF (ELI-bL(LT) 12,10,12 TF (ELI-bL(LT) 12,10,12 TF (TT) 11,9,11 SCLVE FOM LAPBGA BY WETHCU OF FALSE POSITION DELVE FOM LAPBGA BY WETHCU OF FALSE DELVE APPROX. SCLN. USING 1 CEG. INLNEWENTS RTU=57.2578 RTU=57.2578 RTU=57.2578 RE=6314.14522 EM=8.122//RE=*3
 - œ

- 0U 199 II=1,NPT BCDM(11)=0.0 EL=8L(LT)
 - 661
- DC 2CC J=1,NPT XLW1=0.0
- 349 XLW2=XLW1+DTR

- FÄLWI-BFUNF(B(J),EM.FL,XLWI) FXLW2-2FUNF(B(J),EM.FL,XLW2) IF(FXLM1) 405,410,465 IF(FXLW2) 406,411,466 IF(FXLW2) 406,411,466 IF(FXLW1-SIGNF(FXLW1,FXLW2)) 16,401,16

 - 405 IF(FXLM2) 4 406 IF(FXLM1-SI 401 XLW1=XLW2
- IF(XL_2-1.5707961) 359,359,4C7
 - WRITE CUTPUT TAPE 3,103, LERR 4C7 LERR=1

 - CALL EAIT 410 XLAMP(J)=XLW1 GU TD 2CU

- J
- 4.1 XLAPP(J)=AL%2 6L fC 2CU MPTTCT CE PALSC POSITICM 16 L 15C RE1.1C 16 L 15C RE1.1C XLAMP(J)=XLM1+1ERP1/(1ERV1-BFUVF(0(J).EM.L.A.A.X.)) XLAMP(J)=XLM1+1ERP1/(1ERV1-BFUVF(0(J).EM.L.A.A.X.))
- 1*(XLMz-ALA1)
 TEST(X)=XLAPP(J)
 TEST(X)=XLAPP(J)
 TEST(X)=XLAPP(J)
 TEST(X)=XLAPP(J)
 SGU XLAPP(J)-SUVF(ALAVP(J), XLAL)) SGL_SGC_SGC
 F(XLAPP(J))
 SGU SGCF(XLAPP(J))**6)
 TGGSF(XLAPP(J))**6)

- 1F (K+1) 307,156,367 307 (SCT(K)=AusFFTEST(K)TTST(K-1)) 1F (CK1(K)=1,0001) 365,309,156 501 XH274(APP(J) 601 F0 362 601 F0 362

- 150 CGNTG 20 150 CGNTG 20 309 Surt(J)=CKT(K) 200 CGNTG E WHITE GUPUT TAPE 3,104 WHITE GUPUT TAPE 3,105.NP1 00 L 1.NPT 201 L=1.NPT 201 L
- - 1=1 1=1
- 11 5C 17 L=1.NPT 17 wK17E UUFPUT TAPE 5.1U7.BL(LT).2(L).TELAM(LT,L).XLA.ALB,524(L). 12 wK17E UUFPUT TAPE 5.1U7.BL(LT).2(L).TELAM(LT,L).XLA.ALB,524(L).5S4(L).SS5(L).5S5(L).5S5(L).5S5(L).5S5(L).5S 6L TC 13 6L TC 13 ENG(11.1...(.6.6.0.0.11.6.6.0.0.1.6.6.0.0) ENG(11.1...(.6.0.0.0.11.6.6.0.0.1.6.6.0.0)

.

STCRAGE NCI USEC EY PROGRAM

.

-

. ·

÷_

• -:

DEC LCI CEC OCT 1446 025446 32561 77461 STORAGE LOCATIONS FOR VARIABLES APPEARING IN CIMENSION AND EQUIVALENCE STATEMENTS

								461 50621	RFUN
c cc1	DE	DEC OCT		מבכ בנו		UEC DCT		DEC CCF	
		10NS	EFENT FUNCT	ITHWETIC STA	TICAS OF AR	HMES AND LOCA	Ż		
		(1SH)	(314)	(RTN)	(FPT)	(F1L)	SGHT	L X 1 1	cr s
		ARY	UT FRCM LIBH	NES NCT CUTPI	IC SUPRCLTI	ENTRY POINTS	-		
c cct 0 cc0c0	UE (FPT)	DEC CCT 6 CUCC6	(+[1)	CEC CCF 2 00002 3 00003	5CRT (15F)	060 001 7 00007 5 00005	EX1T (STH)	DEC UCT 1 00001 4 00004	(015) (203
			R VECTER	S IN TRAMSFE	CNS OF NAME	LGCATI			
96 00450	E 1P 2	291 00443	E)(2600 462	E I K	103 00201		3C2 CC456	- 12 - 15
85 CO125	E)e	16 00114	E)4	15+00 162	D)400	116 CO164	01400	11100114	C) 64
C CCT 67 77777	41 327 41 327	DEC GC1 445 CO675 enc rr376	(6	06C 001 439 00667 508 00775		DEC OCT 499 00763 454 00706	1(1	0110 CC1 493 CC125 504 CC1770	(1
		₽RGG&≜₩	C IN SCURCE	NCI APPEAKIN	ER SYNBCLS	TICAS FOR CTH	LOCA		
N LUC 04 00742	e)38	EFN LCC 103 CO745	1.618	EFN LCC 1C2 00750 1C7 00722	8136 8138	EFN LCC 1C1 00753 1C6 00726	8135 8134	EFN LCC 100 CC754 105 CU727	3)34 8139
		NTEMENIS	K LERNAT STI	CURCE PRUGRA	TICAS FCR S	BCLS AND LCCA	SYM		
16 01004	TERVI	512 CICCC	XTU XLW2	10010 219 10010 219	XLNI XLNI	514 01002	XLB	515 C1C03	×L4 ×L4
21 01011	. <u>.</u>	522 CICL2	ž	523 01013	=	524 01014	IERR	525 61015	FXLW2
C CCT	10 17 17	06C CCT	2	060 001 528 01626	L L	CEC 0CT 529 01C21	(11) (11)	DEC UCT 530 01022	0.13
	STATENENT	DR EQLIVALENCE	LIFENSION, 1	IN COMMUN.	T APPEARING	VARIABLES NC	CCATIONS FOR	STURAGE LI	
22 02450	525	1945 6561	\$ 5 4	1370 02532 1180 02234	SS3 XLANP	1395 C2563 1245 02335	SS2 TEST	1420 U2614 1155 02203	SSI TBLAM
	0	04C CCL	T X J	046 001 1445 02545	T	UEC 0LT 1270 02366	BL	DEC UCT 1295 02417	BCOM

CATERNAL FURMULA NUMBERS WITH CORRESPONDING INTERNAL FURMULA NUMPERS AND DUTAL LUCATIONS

EFA	.u	405	4 411	2C1	-1 -	
IFA LCC	26 CC115	4C C0167	52 C0264	64 C0426	76 CC505	
 1 1	1	46F	410	30.7	201	
IFA LƯC	23 000.64	22100 75	4d CC247	62 00356	70 00454	84 00555
EFA	١d	159	40.1	502	200	17
JFA LLC	16 CCC31	31 00132	46 CO24C	61 C0354	69 00452	14600 E3
EF2	2	5	104	100	309	11
ווא בנט	15 66375	34. 00126	4 1 LUZZ6	5e CU273	67 00445	81 CC343
アルフ	~	2	406	16	190	10

IFN LUC 29 CC122 44 CC224 54 OC27C 66 CC440 79 CC535 •.'

· •.

÷

: ·

-

E. Restrictions

Before the first card of a new L line section a counter card must be inserted in order to inform the computer of the number of B's connected with that L.

F. Input

Ξ.

There are three different cards in the input deck for this program. A counter card is followed by the designated number of card pairs for each L line of every constituent. The card pairs consist of a B-L card and a density card in that order. These are the cards output from the longitudinal averaging processor.

1. (Tape 2)

CARD DESCRIPTION

	Columns	Mode	Quantity	<u>Units</u>		Des	crip	tion		
Counter Card	1-2	I	NPT	-	B-L, de	ensi	ty ca	rd pai	r co	unter
B-L	1-8	F	EL	earth radii	magnet	ic fi	eld l	ine		
Card	9-16	F	в	gauss	magnet	ic ir	nduct	ion		
Density	73-80	-	-	-	constitu	ıent	nam	e		
	1-12	Е	SS1	atoms/cm ³	density	for	flux	model	1	
Card	13-24	Ε	SS2	**	11	11	11	11	2	
	25-36	Ε	SS3	TT	**	11	11	11	3	
	37-48	Ε	SS4	11	11	**	11	11	4	
	49-60	Ε	SS5	ŦŦ	11	**	11	11	5	
	73-80	-	-	-	constitu	ıent	nam	e		

2. Sample

GENERAL PURPOSE DATA SHEET

ĺ

i

I

Problem	INPL	JT – LA	MBDA	NN N	Ð			1							1	ł																		
Sponsor	TAPI	E 2										┡┤	ate D	S	AMF	ц							8 4											
1 2 3 4 5	6785	11 01 1	2 14 12 2	5 18 17	8	8	2	19	2	R	8	20 20 21	财政	8	8 8	4	4	- 10	9 9		05152	6 18	18 18	66 13	8	2	3	8	8	R	2	2	4	8
		 												_															_		_			
4																						_										_		
1 . 1 4	196	0	389	0																			_		-			_			z	<u>ч</u> н	0 0	и Ш
0	881	13	°	. 4	1 6 1	4 E	-	3	0) · (5 9	7 5 E	-	3	0	-	2 0	9 E	-		0	20	36	ш	1 4						z	н	0 0	и Ш
1 . 1 4	196	0	2 7 3	80																								_			z	н К	0	Z Ш
0.2	4 3 0 E	-	-		25	Ш 8	-	0	P		0	3 8 E	-	0	0	-	7 4	8 E	-	6	.0	1 5	2 1	Ш	1 0						z	н К	0	N U
1 . 1 4	198	0	3 4 6	5																					-						z	ч	0	Z Ш
0 . 2	745	1 2	•		1 1	9 E	-	2	<u> </u>		3 7	7 1 E	-	2	0	. 5	0 9	SE	-	~		67	8	ш	1 2						z	ч	0	и Ш
1 . 1 4	2 0 0	0 . 2	196	80																					-					-	z	н Н	0	N E
0 . 6	784E	о 0 Ш	•	. 4	1 4 8	ш 80	•	80	0		25	3 3 E	0	80	0	1	0 5	7 E	0	~	•	4 7	20	ш	0 7						z	ч	9 0	Z W
7																																		
1 1 7	1 0 0	0.2	399	1																_											z	ч	0	Z Ш
0 5	1801	1 3	0	. 6	5 6	5 E	-	3	0	· ·	9 3	3 0 E		3	0	1	6 1	5	-			27	-	ш	14						z	ц Н	0	N E
1 1 7	0 0 0	0 . 2	3 4 6	2 7																	-										z	1	0	Z Ш
0 · 2	258	1 2	0	0.2	51	9 E	-	2	2		29	6 2 E	-	2	0	د	8 1	9 E	1		0	48	58	ш	12				_		z	4	0	Z E
1 . 1 6	994	. 0	295	5 6																						_			_		z	4	0 0	N E
0 9	9561	10	0	6.0	7 5	5 E	-	0	0		94	9 0 E		0	0	. 9	11	Ш 0	-	0	0	8	8	ш	1 0						z	н Н	80	Z U
1 1 7	0 0 2	0	197	9																											z	4	0	Z Ш
8 0	7 4 2 t	80	0	. 6	30	3 9 E	0	8			3 6	6 2 E	0	80	0	-	66	7 E	0			8	1 5	ш	0 7			_	_		z	н Н	8	Z Ш
1 . 1 7	0 0 6	0 . 2	0 9 7	3																											z	₩ ►	00	Z Ш
0 . 7	8 5 3 1	E 0 7	3		60	2 E		~			3	4 3 1	<u> </u>	~	•	. 2	90	ш 0	0	_	0	3	8	ш	05					_	z	ц Н	ပ ဝ	Z U
1 1 2	0 0 0	0 . 2	0 4 7	7 4																-								_			z	н Н	0	Z Ш
0 . 2	6 8 7	E 0 ;		6 .	3 6 6	3 7 E	0	9 (3		2 7	0 2 1		9	0	. 2	61	5 E	0		0	3 0	9 6	ш	04	-					z	1	0 0	Z Ш
1.17	0 0 5	0 2	0 1 3	3 7																											z	н Н	0	Z W
0	2 8 1 1	E 0 7		. 4	107	9 6	0	9			8 5	5 8 E	<u> </u>	5	0	. 5	6 6	5	0		0	50	59	Е	0 3						z	TR	00	N N

GSFC FORM S41-1 (July - 60)

•

•

•

G. Output

:

Output for this program occurs on logical tapes 3 and 5. Tape 3 contains the results of the latitude calculation. The counter NPT is printed along with L, B, λ , BCOMP and the ratio RATIO. BCOMP is the new B computed by inserting the values of L and λ into equation (1). It should compare with the initial B. RATIO is the ratio of λ to a former value of the latitude computed in the intermediate steps. It is the same as SCKT (refer to the mnemonics listing). RATIO should be within .0001 of unity.

Tape 5 contains the same data that was input on tape 2 with the exception that latitudes were added. This tape is punched and used as input for the "bounce" average calculation.

1. Tape 3 Sample

N P 4

T	L	В	LAMBDA	B COMP.	RATIU	
	1.14200	0.23890	9.836	0.2389C00E-00	0.1000009E	01
	1.14200	0.22738	7.740	0.2273800E-00	0.1000034E	01
	1.14200	0.23465	9.129	0.2346499E-00	0.1000039E	01
	1.14200	0.21968	5.867	0.2196800E-00	0.1000023E	01

•

.

.

NPT 7	L	B	LAMBDA	B CUMP.	RATIO	
	1.17005	0.23991	12.444	0.2399099E-00	0.1000030E	01
	1.17005	0.23467	11.752	0.2346700E-00	0.1000012E	01
	1.17005	0.22956	11.022	0.2295600E-00	0.1000005E	01
	1.17005	0.21976	9.420	0.2197599E-00	0.1000056E	01
	1.17005	0.20973	7.346	0.2097300E-00	0.100005E	01
	1.17005	0.20474	6.014	0.2047400E-00	0.1000015E	01
	1.17005	0.20137	4.894	0.2013700E-00	0.1000025E	01

•••

•

- -:

2. Tape 5

a. Output card description

	Columns	Mode	Quantity	Units	De	script	ion	
Counter Card	1-2	I	NPT	-	B-L- λ and counter	densi	ity ca	rd pair
B-L- λ	1-8	F	\mathbf{EL}	earth radii	magnetic fi	eld li	ne	
Card	9-16	\mathbf{F}	В	gauss	magnetic in	nductio	on	
	17 - 24	F	XLAM	degrees	latitude			
	73-80	-	-	-	constituent	name		
Density	1-12	E	SS1	atoms/cm ³	density for	flux r	nodel	1
Card	13 - 24	E	SS2	11	11 11	11	**	2
	25-36	Ε	SS3	**	11 11	11	**	3
	37-48	E	SS4	11	** **	**	11	4
	49-60	E	SS5	**	11 11	**	"	5
	73-80		-	-	constituent	name	•	

80

•

•• -

b. Sample

GENERAL PURPOSE DATA SHEET

. • .

÷

- -:

•

GSFC FORM 541-1 (July - 60)

H. Running Time

This program will take close to a minute for every two L lines evaluated.

÷

· ·

V. "BOUNCE" AVERAGE CALCULATION

A. Introduction

The "bounce" average of the number density is defined⁽⁵⁾ by the equation

$$\overline{\rho} = \frac{\int_{\lambda_{s}}^{\lambda_{n}} \rho(\mathbf{B}, \mathbf{L}) \, \mathrm{ds}}{\int_{\lambda_{s}}^{\lambda_{n}} \mathrm{ds}}$$
(1)

In other words, for a given mirror point λ_0 and a given field line L, the "bounce" average of the number density is the average number of atoms/cm³ that a particle encounters while spiraling about a field line from the northern to the southern mirror points (see Figure 5). The earth is assumed to be a dipole. This gives symmetry to the magnetic field, permitting the integrals in equation (1) to be evaluated over a fourth of a complete oscillation (see page 189, reference 1, for a discussion of the motion of trapped particles in a magnetic field.)

The output from the lambda punch becomes input to this program. Results are printed and punched for use in later programs. Subroutine TABLE is included to interpolate (extrapolate) the density table to supply the appropriate density at any latitude specified by the main program.

B. Equations

÷.,

To calculate equation (1) we project the element of arc length ds onto the field line L. Next we eliminate L from the equation and use the dipole representation

$$B = \frac{M}{r^3} (1 + 3 \sin^2 \lambda)^{1/2}$$
 (2)

to express B in terms of λ . This gives the "bounce" average $\overline{\rho}$ weighted over latitude for a given field line as

RHOAV =
$$\frac{\int_{0}^{\lambda_{0}} \rho(\lambda) \mathbf{A}(\lambda) d\lambda}{\int_{0}^{\lambda_{0}} \mathbf{A}(\lambda) d\lambda}$$
(3)

where the "weighing" factor is

$$A(\lambda) = \frac{\cos^4 \lambda \, \sqrt[4]{4 - 3\cos^2 \lambda}}{\sqrt{\cos^6 \lambda \, \sqrt{4 - 3\cos^2 \lambda_0}} - \cos^6 \lambda_0 \, \sqrt{4 - 3\cos^2 \lambda}}$$

This factor allows for the fact that particles spiraling about the field line stay longer at the mirror latitudes λ_0 (see page 189, reference 1, for a complete treatment of the derivation). Figure 6 is a plot of $A(\lambda)$ versus λ for different mirror latitudes. Since $A(\lambda)$ becomes undefined at λ_0 we divided equation (3) into two cases:

$$RHOAV = \frac{\int_{0}^{\lambda_{0}-2h} \rho(\lambda)A(\lambda)d\lambda + \int_{\lambda_{0}-2h}^{\lambda_{0}} \rho(\lambda)A(\lambda)d\lambda}{\int_{0}^{\lambda_{0}-2h} A(\lambda)d\lambda + \int_{\lambda_{0}-2h}^{\lambda_{0}} A(\lambda)d\lambda}$$

Next we designate the square of the denominator of $A(\lambda)$ by $q(\lambda)$. Expanding about λ_0 by Taylor's series gives us

$$g(\lambda) = (\lambda - \lambda_0) \sum_{i=1}^{\infty} \frac{q(i)(\lambda_0)}{i!} (\lambda - \lambda_0)^{i-1}$$

where $q^{(i)}(\lambda_0)$ is the ith derivative of q evaluated at λ_0 . To approximate the infinite series we define

$$\mathbf{S}(\lambda) = \mathbf{SLAMF}(\lambda, \lambda_0) = -\sum_{i=1}^3 \frac{\mathbf{q}^{(i)}(\lambda_0)}{i!} (\lambda - \lambda_0)^{i-1}$$

where the minus sign is inserted in order to avoid the square root of a negative number. In the program we let S1LAMF(λ , λ_0), S2LAMF(λ , λ_0) and S3LAMF (λ , λ_0) represent the first, second and third terms of SLAMF(λ , λ_0) respectively and we define

WLAMF
$$(\lambda, \lambda_0) = \frac{\cos^4 \lambda \sqrt{4 - 3 \cos^2 \lambda}}{\sqrt{\text{SLAMF}(\lambda, \lambda_0)}}$$

This gives

.

÷.,

$$\int_{\lambda_0^{-2h}}^{\lambda_0} \rho(\lambda) A(\lambda) d\lambda = \int_{\lambda_0^{-2h}}^{\lambda_0} \frac{\rho(\lambda) W LAMF(\lambda, \lambda_0)}{\sqrt{\lambda_0 - \lambda}} d\lambda$$
(4)

and

$$\int_{\lambda_0^{-2h}}^{\lambda_0} A(\lambda) d\lambda = \int_{\lambda_0^{-2h}}^{\lambda_0} \frac{WLAMF(\lambda, \lambda_0)}{\sqrt{\lambda_0 - \lambda}} d\lambda$$
(5)

which are linearly approximated by the equations

$$ADDNUM = \sqrt{2h} \left[\frac{4}{5} \rho(\lambda_0) WLAMF(\lambda_0, \lambda_0) + \frac{16}{15} \rho(\lambda_0 - h) WLAMF(\lambda_0 - h, \lambda_0) + \frac{2}{15} \rho(\lambda_0 - 2h) WLAMF(\lambda_0 - 2h, \lambda_0) \right]$$

and

ADDDEN =
$$\sqrt{2h} \left[\frac{4}{5} \text{ WLAMF}(\lambda_0, \lambda_0) + \frac{16}{15} \text{ WLAMF}(\lambda_0 - h, \lambda_0) + \frac{2}{15} \text{ WLAMF}(\lambda_0 - 2h, \lambda_0) \right]$$

respectively. The final step is to integrate by Simpson's rule⁽⁶⁾ and add on ADDNUM and ADDDEN to get the correct density $\overline{\rho}$.

Additional equations used in this program are listed below:

$$AAAF(\lambda) = \sqrt{4 - 3\cos^{2}\lambda}$$

$$BBBF(\lambda) = \cos^{6}\lambda$$

$$MONEF(\lambda) = 3\cos^{4}\lambda\sin^{2}\lambda \quad \text{the first derivative of BBBF}(\lambda) \text{ used in computing S1LAMF}(\lambda, \lambda_{0})$$

$$MTWOF(\lambda) = \frac{15}{2} (\cos \lambda \sin 2\lambda)^{2} - 6\cos^{6}\lambda \quad \text{the second derivative of BBBF}(\lambda) \text{ used in computing S2LAMF}(\lambda, \lambda_{0})$$

$$MTHRF(\lambda) = 48 \cos^{4}\lambda \sin^{2}\lambda - 15\sin^{3}2\lambda \quad \text{the third derivative of BBBF}(\lambda), \text{ used in computing S3LAMF}(\lambda, \lambda_{0})$$

$$ETAF(\lambda) = 10 \cos^{2}2\lambda - 3\sin^{2}2\lambda - 6\cos^{2}2\lambda \quad \text{a factor which appears in the second and third derivatives of AAAF}(\lambda)$$

$$NONEF(\lambda) = \frac{3\sin^{2}2\lambda}{2AAAF(\lambda)} \quad \text{the first derivative of AAAF}(\lambda) \text{ used in computing S1LAMF}(\lambda, \lambda_{0}).$$

$$NTWOF(\lambda) = \frac{3ETAF(\lambda)}{4(4 - 3\cos^{2}\lambda)^{3/2}} \quad \text{the second derivative of AAAF}(\lambda) \text{ used in computing S2LAMF}(\lambda, \lambda_{0}).$$

$$NTHRF(\lambda) = \frac{3}{4} \frac{-20\sin\lambda - 6\sin^{4}4\lambda - \frac{9ETAF(\lambda)\sin^{2}\lambda}{(4 - 3\cos^{2}\lambda)^{3/2}} \quad \text{the third derivative of AAAF}(\lambda), \text{ used in computing S3LAMF}(\lambda, \lambda_{0}).$$

$$WGTF(\lambda, \lambda_{0}) \quad \text{the designation for A}(\lambda) \text{ when integrating by Simpson's rule}$$

$$ALAM \quad \text{the value of the denominator in equation (3) but without equation (5)}$$

٠.

RHOAS the value of the numerator in equation (3) but without equation (4)

BSUBO B_0 computed by equation (2) for λ_0 .

C. Mnemonics

.

÷.

• *

.

Quantity	Description	Units
DTR	Conversion factor - degrees to radians	-
RTD	Conversion factor - radians to degrees	-
RE	radius of the earth, 6378.165×10^5 cm.	cm.
EM	earth's magnetic dipole moment, 8.1×10^{25} gauss cm ³ , divided by the radius of the earth cubed.	gauss
HVAR	number of partitions in Simpson's rule	_
NPT	counter of the B's for a given L	-
XLAB1	first six letters of constituent identification name	-
XLAB2	remaining two letters of constituent identification name	-
EL	magnetic field line L	earth radii
B(I)	I th magnetic induction for a given L	gauss
SS(I,J)	(a) the first time this designation is used it represents the longitudinally averaged density for the I th solar flux model and the J th magnetic induction	atoms/cm ³
	(b) the second time this designation is used it represents the log of the densities in (a)	-
LCNT	line counter for output on tape 3	-
XMIN	storage of the smallest available latitude	degrees
XLAMW(K)	latitude in radians, sorted in decreasing order	radians
XLAMRF	storage of maximum value of the latitude	radians

Quantity	Description	Units
XLAMO	mirror latitude λ_0	radians
RHOLO(I)	density for I th flux model at mirror latitude	atoms/cm ³
HS	integration interval h for Simpson's rule	radians
RHOAV	"bounce" average density	atoms/cm ³
RATRHO	ratio of density at mirror latitude to density RHOAV	-
RHOLOP	density at mirror latitude	atoms/cm ³
DENB(K)	temporary storage of ''bounce'' average density at K th flux model for tape 5 punch	atoms/cm ³

÷

·· .

D. Flow Chart

.

•

₹.

1. Main Program

E. Fortran Listing

:

BCUNCE

- BUUNCE AVERAGE CALCULATION
- ں ں
- PROGRAM IC CCMPUTE RHG TRIPLE BAR AS FLNCIIUN CF L.LAMBDA AND FLUX DIMENSIGN B/20).XL M(20).5S(5.20). LIMENSIGN B/20).CENB(20).RFGLC(5).CEL(5) IXLAMM/20).S(5.20).CENB(20).RFGLC(5).CEL(5) FREQUENCY 102(10).106(0.110).107(10).103(5).0.5).11(99).259(100). 1.301(5).1199(C,11:0).1201(C,11:0).1202(C,1.10) 2261(59).1199(C,11:0).1201(C,11:0).1202(C,1.10)
 - - C FURMAIS
- 1 FLRMAI(12,76X,46,42)
- Z FCRMAT(ZEU.5,F8.3,48X,A6,A2) 3 FURMAT(SE12.4,12X,A6,A2)
- rrinkCR 8,4X,03HFLUX AVERAGE INTEGRAL UF INTEGRAD €,100 C 4 FCRMAT(16HICCNSTITUENT L,5X,11HPIRRCR
- IHU RHU AT MIAROR RHUZAV, RHO INTEGRAL UF INTEGRAL OF 53 (LA 2004) FUAKZZX44HLAT.131X48HLATITUDE,194,21HAHC44 CLAM A CLAM.4X4
 - 313HINT. INTERVAL//) 5 FLRMAT(3X, Do. A2, FE. 4, F8. 3, F8. 4)
- 6 FURMATI36X,12,1P6E14.4 7 FURMATI36X,12,1P6E14.4 7 FURMAT(36A+0 EREDR S(LAM) IS NEG. CR ZEKU/0H SLI =E15.5 10 SL2 =E15.5,0H SL3 =E15.5,9H XLAMO =E12.5,5H HS =E15.5 8 FURMAT (25HLLVIDE CHUCK HAS OCCURED) 9 FURMAT (25HLLVIDE CHUCK HAS OCCURED) 9 FURMAT (20HLUVIDE CHUCK HAS OCCURED)
- ں
 - ARTHAETIC FUNCTIONS
- AAAF[XL]=SCRTF[4.C-3.O+[CCSF[XL]++2]]
- BebF(XL)= CCSF(XL) **6
 ETAF(XL)=10.64(CCSF(Z.0*XL))-3.0*(SINF(Z.0*XL)**2)
- 1-6.0#((CG5F(2.0#XL))##2) MGNEF(XL)=-3.G#(GC5F(XL)##4)#SINF(2.0#XL)
- MIWDF(XL)=1.5*(CCSF(XL)+SINF(2.C+XL))++2-6.0*(CCSF(XL)++6)
 - MTHRF(XL)=48.6+(CCSF(XL)++4}+(SINF(2.0+XL))
 - 1+15.0*((SINF(2.0*XL))**3)

- NGNÉF(KL)=1.5%SINF(2.0+XL)/AAAF(KL) N1WGF(AL)=0.75+FT4F(XL)/({4.6-3.0+KL)}+*2))+*1.5) N1HRF(AL)=(0.75+(-20.0+(SINF(2.0+XL))-6.6*(SINF(4.0+XL))
- 1-[9,6*.Tar [xr]+(51NF[2,0+xL])]/[4,0-3,6+[uGSF(xL)]++2]]) 2/[(4,u-4,0+(GGSF(xL)++2])++1,5) 51LAMF(xu-ALC)=-1.0+(AAAF(ALC)+MGNEF(XLC)-BBBF(ALC)+NuNEF(XLC)) 52LAMF(Xu-ALC)=(AAAF(XLC)+MTMUF(XLC)-MEBF(ALC)+NTMCF(XLC))

 - 2*(XL-XLC)/(-2.0)
- SJLAVF (XL, XLC) = (AAAF (XLC) * WTHRF (XLC) BEBF (XLC) * MTHRF (XLC))
- SLAMF (XL, XLC)=SILAMF (XL, XLC)+S2LAMF (XL, XLC)+S3LAMF (XL, XLC) 2*({×L-×LU)**2)/(-6.0)
- WLAMF(XL,XLU)=(COSF(XL)++4)+AAAF(XL)/SGRIF(SLAMF(XL,
 - IXLOUN
- WGTF(AL,ALC)=(CCSF(AL)++4)+AAAF(AL)/SORTF(
 -] AAAF (XLU) * BREF (XL) 6884 (XLU) * AAAF (XL))
 - C TURN UFF LIVIUE CHECK LIGHT C AND GUDTLUNT UVERFLCM LIGHT IF CIVILE CHECK 36,30 30 IF GUTLENT UVERFLCM 31,31 C PAGGRAPM CUNSTANIS 31 DTR=1,4935335-2 ں ں
 - - - ں
- - - 810=57.2951795
- EM=8.1c20/Sc++3 RE=6310.10585
 - FVAR= LU.C

105 CCNTINUE C XLAMMKN=MCRKING VALLE GF LAMBDA (IN RAD.) SURTED IN DEGREASING URLER C LENSITY SUBSCRIPTS MATCHED UP MITH SURTED LAMBDA-S C LINEAA INTEAP. (EXTRAP.) TO FING DENSITY (FALM TABLE) ASSOCIATED WITH C PIMAGR LALITUDE REAL IN TABLES LE CENSITY FUR GIVEN L AND VARICUS LAMEDA-S CENSITY - FIRST SUBSCRIPT = FLUX ND., SECCND SUBS. = LATITUDE NC. 32 REAL ENPLY TAPE 2.1.NPT,XLAB1.XLAB2 UC ICC I=1.NPT SORT LAMEGA-S ÎN UÜGCAEASING CEGEÊ SUBSCRIPT = L = MAX VALU≧ UP IC SUBSCRIPT = NPT = MIN VALUE READ TAPE 2.2.EL.8(1),XL M(1),XLAE1,XLAB2 160 RLAD INPUT TAPE 2.3.(55(1F,1),1F=1,5),XLAU1,XLAD2 WRITE CUTPUT TAPE 3.4 Iz0 UC 1140 Kl=1.5 Call Tagle (Kl:XLAMC.SS,RFGS,NPT.XLAMW) 1440 RHOLOIALD = HACS 1140 RHOLOIALD = HACS C FIND INTUGENTION INTERVAL FCR SIFPSCN-S RLLE (HS) 197 HS=XLAFC/FVAR S3FUN=S3LAMF(XLAMU+TWCF,XLAMC) 198 If(A85F(S3FUN)-1.6E-7) 266,260,199 1300 IF(XLarC-XLAMRF) 1301,120,1302 101 XM1N=50.0 102 EC 105 1=1.NPf 103 EF(XM1-XL M(1)) 105,105,104 103 XM1N=AL M(1) 105,105,104 99 IF DIVIUE CHECK 32+98 98 IF QUCIIENT CVERFLOM 34+32 33 WRITE LUIPUT TAPE 3+8
 DC
 1160
 1L=1.5

 1108
 SSI(1.1)
 1LGG(1S(1L,1))

 108
 CONTINC
 C

 0
 MTRUE LATITUDE
 C
 CALL EXIT 34 WRITE CUTPUT TAPE 3,9 CALL EXIT LUG IF (K) LC7, LC7, LC1 C STGRL LC5 CF CENSITLS LC7 CL LC3 I=1, NPT 13ul xLAFG=xLaFC+C.Cl74 1302 XLAM0=ALAM0-0.(174 XLAMM{K}=XMIN*LTR 1105 S(KF,K)=5S(KF,JJ) $XLA^{WRF} = XLA^{WW}(1)$ UC 1105 KF=1,5 1,9 HVA3=FVAx+2.C XL N(JJ)=66.6 XLAMG=0.0174 EL3=EL*EL*EL TMDF=/.6*PS CL TC 13CC GC 1C 197 LCNT=0K=K+1 K=NPT]=[[ပပ с u

. ,

•

;

<u>.</u> .

*[HGIF[0.0,XLAPC]+4.0*A4+2.0*A2+HGTF[XLIMIT, C INTEGRATE CLUMINATOR AY SIMPSON-S RLLE (ALLAM) FUNCTION) XLIMII=XLAMC-1MHA Xn={XLIMIT/TACH)+0.1 CALL TARLE (K,XLANC-HA,SS,NHGWZ,NPT,XLANM) CALL TARLE (K,XLANC-TMHA,SS,NHGWZ,NPT,XLAMM) CALL TARLE (K,XLANC-TMHA,SS,RHGWZ,NPT,XLAMM) ACONUF SG2PH (0.04 PHIGH HMLANF (XLANL,XLANC)+1.0666667* IRPODA-LAMH (XLANC)+4.13332333*RHGW3. ZWLAMF (ALANG-TMHA,XLAMC)) INTEGRATE NUMERATOR BY SIMPSCN-S NULE RHC(LAM),A(LAM) 1201 FF(5L2) 1200,1200,1202 1202 FF(5L2) 1200,1200,1203 1203 AUDDEW=Su2H#(C.8*klamf(XlamC,Xlaml)+1.0666667* 1203 AUDDEW=Su2H#(C.8*klamf(XlamG,Xlaml)+1.0666667* 1wLamf(AlamG-ma,XlamC)+0.13333334wLamf(XlamG-ThHA, GUPPLE AUCHAL FUNCTION FOR FINAL INTEGRATION STOPS 200 Sulth-Sunth(Thode) WKITE LUTPUT TAPE 3,5,XLA21,XLA82,EL,XLAPF,85UEC WRITE LUTPUT TAPE 5,2,6L,85UEC,XLAPP,XLAB1,XLA62 1199 [F(SLI) 1200-1200-1201 1200 WRITE UUTPUT TAPE 3,7+SLL+SL2+SL3+XLAMG+HS C ENU SIMPSUN-S HULE FUR ALLAMBUA)
RSUBG==M*AAAFIXLAMG)/IEL3*BHBF[XLAMU)) SL3=SLAME (XLANG-THCH, XLANC) DC 300 K=1.5 ADDEND FLNC1ICN FOR NUMERATCA INTEGRATE FIVE CENSITY MUDELS SL2=SLAMF (XLAND-H5, XLAND) C TEST IF SLAMF NEG.
SL1=SLAMF(XLAMU,XLAMU) 209 DU 210 IS=1,0M1 XLAM=XLAM+ThCH 210 A4=A4+hGTFfXLAM,XLAMD) 212 AZ=A2+NG1F(XLAM,XLAM0) 211 DU 212 155=1,NM2 XLAMP=XLAMC*RIC 259 DC 26C KS=1, AM1 XLAM=ALAP + 1 WLH RH0, 1 = 4HULC (K) XLAM=XLAM+TWCH ALAM=HSU3 Ha03=F5/3.C LCNT=LCNT+L CALL EXII TkHA=Tw0r RH0A2=0.0 RH044=U.0 XLAM=0.C XLAM=-HS XLAM=-HS ZXLAME)) NN 2=N-1 IXLAMU)) A4=0.C A2=0.C 41242 NETAN N = X N 203 ں Q ں ں

÷.

• -]

END(1,1,0,0,0,0,0,1,0,0,0,0,0,0)

LCN1=0 60 TO 120 •

÷

:• *•*

STCRAGE NET USED BY PROGRAM

÷

UEC 0CT 32561 77461 DEC LCT 1733 C33C5

UFC

STGRAGE LECATIONS FOR VARIABLES APPEARING IN LIXENSION AND EQUIVALENCE STATEMENIS

					U 1	₹ F N		A 160		EFN LCC	
			TEMENTS	M FCRWAT STA	PRUGRA	CURCE	LAS FCR SI	S AND LUCATI	SYMBOL		
										1387 C445	ZX
10100	1 348		1389 02555	XLIMIT	02056	1340	VLAN	51 02551	ALAMKF 13	1392 02560	XLAMP
02461	1101	XIANC	1394 02562	XLAB2	02563	1395	1901v	50 02564	I MOH I 3	COC.70 / 65 1	
02566	1398	SG2F	1399 C2567	SL3	0/520	14CU	512		3F1 14		
02573	1403	k 1C	1404 02574	RHUHS	42 G Z D	4041	Z H C H Z	00 02516			
02600	1408	RECS	1409 02601	RHCNUM	02602	1410	X PLLL P	11 02503			
C2605	1413	RHCAS	1414 C2606	RFCASO	02001	1415	21 C N 2 N	10 9/010		17520 JIL	
02612	1418	жe	1415 C2613	RATKHO	02614	1420		121 52515		1712 07120 2717	OLCA 3
02617	1423	1 1 1	1424 02620	LCNT	12020	6241	×	77271 17		1420 02020	
02624	1428	-	1429 02625	201	97070	1430	L L	12220 101			-
02631	1433	2 1	1434 52632		65020		<u>,</u>				
02636	1436	ALAN	15020 6641							1437 7541	DHUNA
ר נר					0.244.0	144.	A F L P C A	41 62641	A4 14	1442 62642	24
1.0	5		DEC CCT		001	C c C		c ccr	C.	DEC CCT	
		STATEMENT	R EQUIVALENCE	LIPENSION, C	- NOWNO	וא רו	arpearing	ARIAGLES NIT	ATIONS FCR VI	STURAGE LCC	
03006	1542	2	49153 ZGQ1	4FULU	63760	1712	XLY XLY	575 C3234	XLAWN 16	1642 C3152	5.5
001	D.C	u	DEC CCT	01048	001 01 10 03 1 10	CEC 1672	GENB	C CCT	מבר זי מבר זי	DEC LCI 1732 C33C4	÷

DEC CCT 1364 02524 1368 02524 1244 02334 1281 02545 1381 02554 168 002552 168 002552 168 002552 DEC CCT 3 CC003 9 C0011 EFN LGC 5 02411 č)5 DEC CCT 1)3 1356 C2516 4) 32767 77777 4)5 1375 C2537 4)5 1375 C2544 C)102 1380 C2542 C)102 C252 C)102 C252 C)102 C252 C)102 C252 C)102 C252 C)102 EFN LCC 814 4 C2455 819 9 U2347 0EC 0C1 10 CCC12 0 CCCC02 LOCATIONS FOR CIHER SYMUCLS ACT APPEARING IN SCURCE PROGRAM LECATIONS OF NAMES IN TRAASFER VECTOR 060 001 1349 02005 1313 02505 1313 02595 1314 02594 1344 02594 1346 02594 222 00356 222 00356 DEC CUT 4 COCO4 6 00006 EFN LUC 8)3 3 02460 8)8 6 02355 1)2 4,24 6,14 6,12 6,101 6,102 6,100 6,100 6,100 6,100 6,100 6,100 6,100 6,100 6,100 6,100 (F1L) (F1L) CCC CLT 1345 C2477 12C9 C2471 1371 02533 1381 02542 1383 02542 1383 02547 223 00547 223 00537 223 00537 0EC 0CT 7 0CC07 11 0C013 8 0C010 2 62464 7 02401 51 P EXIT TABLE (TSH) DEC LCT 1336 02470 1360 02526 1369 02526 1377 02541 1377 02541 1197 02547 115 00167 DEC CCT 1 CCOC1 2 CCCU2 5 CCCO5 1 U2467 6 02464 1) 1)5 4)2 4)2 7) 50100 0)100 0)100 d)1 8)6 CCS SURT (STH)

ENTRY POINTS IC SUBRGUTINES NOT GUTPUT FROM LIBRARY

SIN (RIN)

L06 (FPT)

(× T ×)		c cur	70 01546	58 01746	32 02154		N LCC	39 CC054	58 CC172	68 CC266	76 00325	86 00376	CO CC472	15 CC621	46 01141	
		90	MIHR 6	SILAN 9	hlar ll	LICNS	EFN IF	5 5	102	106	1301	158	1201 1	211 1	262 l	
	S	C CC1	10 01452	1/ C1625	63 C2213	AND OCTAL LCC	N LEC	37 CC650	57 CC170	65 CO251	75 CO320	83 CO361	97 C0451	13 CO6C4	42 01120	67 C1345
	al Fundiica	56	PUNC 3	N TWC 9	NGT L1	LA NUMPERS	EFN IF	ن ت	101	1105	1300	1 A 7	1200	210 1	261 1	307 1
	-Petic StateP	-c cut j	786 01414	342 010-56	100 02122	INTERNAL FURN	.N LLĈ	36 00-46	46 00L24	62 00213	72 00:10	82 CO354	96 00446	00576 III	140 01100	166 01340
LIN IF ANTI		5	. 1 4	NTER .	SLAN L	K. SPLAUING	LFA II	6.5	100	105	106	1140	1199	209	260	301
אנצ אתם וננשוו		Lic 0LT	164 61374	563 61667	1Ce7 C2053	Motas with CCR	IFA LCC	31 (Cu26	43 COU66	60 CO205	71 CO3CO	79 00340	69 CO41C	102 00502	136 01061	165 01334
	1.2.1	-	400	NUNE	SBLAN	דנצמטנס אנו	C FN	١ć	32	104	1104	120	200	1203	259	306
		JEC (CT	740 01354	634 PI562	1031 62967	ZALFGNAL	IFN LCC	29 (UG23	41 ((())	5- 00200	69 Ciz/I	75 CC 132	87 CC404	101 CC410	117 00627	160 01300
5 1 E)		Ļ	0 V V	CM I N	521.AU		1 1 1	343	34	103	107	1:02	661	1202	212	90 U

96

•.'

•

÷

:•••

.

ں ں

.

•

.

- -:

- ں

- END(1,1,0,0,0,0,0,0,1,0,0,0,0,0,0)

STCRAGE VCT USED BY PROGRAM

DEC UCT UEC CCT 204 0U314 32561 77461

	=C CCT		5C CCT		EC CCT 129 00201	73 00111		EC 0CT			
ENTS	Df	STATEMÊNT	DE		DE DE	D)1C3		Df			
VALENCE STATEM	DEC OCT	EQUIVALENCE	DEC DCT	PROGRAM	DEC 0CT 150 C0226	161 CC241		DEC OCT	4RY		LATO OUT A
ION ANC EQUIV		CIMENSION. DI		G IN SCURCE I	16	C)102	K VECTCR		LT FROM LIBRA		SONING 4 UINOO
S IN DIMENS	JÉC QÚT	IN COMMON.	0CT 0CT	CT APPEARIN	DEC 0CT 144 00220	160 00240 77 00115	IN TRAWSFE	100 DEC	ES NOT LUTP		
ES APPEARINI		APPEARING	_	S SYMBOLS N	() ()	C)1CI E)4	VS OF NAMES		C SUBRCLIN		
OK VARIABL	C CUT	RIABLES NCT	2 00242	S FOR DIHE	2 0CT 12 00216	12 00237 12 00110	LCCATIC	001	A PCINTS TI		
LCCATICNS F	Y DEC	LIONS FOR VAF	ы Та 16	LOCATICN	2) UEC	C162 15		LE (ENTE		
STCRAGE	EC LC1 183 C0267	STURAGE LOCAT	40 LCT 163 CC243		EC UCT 154 C0232	158 C0236 121 CC171		ες ΓΩΙ Σ			
	ter D		D ¥ ¥		0	C)61 E)108		U E X H		ĿХР	

98

EFN IFN LCC 50 8 00112 65 16 C0152

IFN LUC 6 CCC71 12 CO132

CFN 20 57

IFN LCC 9 CC062 11 CU125 12 CU125

ЕFN 15 36 100

.

•.

-•

<u>.</u>•

•

-

F. Input

÷.

The input to this program are simply the cards output from the lambda punch. Each constituent can be run separately or they can all be run at the same time. Any number of L lines may be run also. A counter card must state the number of points to each L line which is run. Counter cards are included in the output from the lambda punch but they must be corrected if the number of points per L line are changed before running this program. Input occurs on tape 2.

1. Input card description

	Columns	Mode	Quantity	Units	Des	cription	
Counter Card	1-2	Ι	NPT	-	$B-L-\lambda, de counter$	ensity car	rd pair
B-L- λ	1-8	F	EL	earth radii	magnetic	field line	e
Card	9-16	F	B(I)	gauss	magnetic	induction	1
	17-24	\mathbf{F}	XLAM(I)	degrees	latitude		
	73-80	-	-	-	constituer	nt name	
Density	1-12	Е	SS(1,I)	atoms/cm ³	density fo	or flux mo	odel 1
Card	13-24	13-24 E		11	11	11	2
	25-36	Ε	SS(3,I)	11	11	**	3
	37-48	Ε	SS(4,I)	11	11	**	4
	49-60	Ε	SS(5,I)	**	**	**	5
	73-80	-	-	-	constituer	nt name	

2. Sample

GENERAL PURPOSE DATA SHEET

Problem INPUT	- "BOUNCE"	AVERAGE	CALCUL.	ATION												-
Sponsor TAPE	2				e 0	SAM	PLE				Poge		5			-
1 2 3 4 5 6 7 8 9 10	1 2 3 4 2 2 1	7 18 19 20 21 22	R R R	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		第三百百	1 2 4 6 4	4 5 5 4	8 8 8	8 24 35		8 8 8 8 9 8	8 6 8 8 8	6 7 7 7 7 8	74 2 2 7 2 2	8
4				-												
1.142000	23890	6.8	3 6											-	XYGEN	
0 . 9 3 4 7 E	0 111	9836E	11	0 1 0	8 1 E 1	120	1.128	8 E	2	0	5 1 E	12			XYGEN	
1.142000	22738	7.7	4 0											0	XΥGEN	
0 . 5 8 8 2 E	0 6 0	5 6 2 6 E	60	0.53	1 8 E (0 6 (490	0 1E (6 (0 . 4	5 5 8 E	6 0		0	XYGEN	
1.142000	. 2 3 4 6 5	1.6	29							-				0	XYGEN	
0 . 1 4 7 1 E	0 1 1	1 5 0 8 E	11	0 . 1 5	8 2 E 1	1	1 7 3	3 E	-	- 0	9 1 0 E			0	XYGEN	
1.1420000	. 2 1 9 6 8	5.8	67											0	XYGEN	
0 . 7 5 9 9 E	0 8 0	5 8 2 6 E	8 0	0 . 4 1	3 0 E	0 8 (. 2 4 7	, 0 E (8	- 0	5 7 2 E	0 8		0	XYGEN	
7																
1 1 7 0 0 5 0	23991	12.4	4 4											0	XYGEN	
0 1 2 0 5 E	1 2 0.	1 2 7 0 E	1 2	0 1 4	0 0 E	120	1 6 7	7 E	1 2	0 . 2 1) 3 1 E	12			XYGEN	
1 1 7 0 0 5 0	. 2 3 4 6 7	11.7	5 2											0	XYGEN	
0.1349E	110.	1 3 8 0 E	11	0.14	4 1 E	1 1	1 5 6	5 2 E	11	0 1	7 0 3 E	1 1	-	0	XYGEN	
1 1 7 0 0 5 0	2 2 9 5 6	1 1 0	2 2												XYGEN	
0 1 5 6 3 E	1 0 0	1 5 4 1 E	10	0.15	1 3 E	0	. 1 4 7	7 6 E	0	- 0	4 4 3 E	0 1		0	XYGEN	
1 . 1 7 0 0 5 0	. 2 1 9 7 6	9.4	2 0											-	XYGEN	
0 .8147E	0 8 0	6 5 5 6 E	0 8	0 4 9	4 8 E	0 8 0	321	1 8 E	8	0 · 2	184E	8		-	XYGEN	1
1 . 1 7 0 0 5 0	. 2 0 9 7 3	7.3	4 6											0	XYGEN	
0 . 2 2 0 6 E	080.	1353E	0 8	0.69	0 5 E	0 7 0).246	5 9 E	0 7	6 0	4 6 1 E	0 6			XYGEN	
1 . 1 7 0 0 5 0	. 2 0 4 7 4	1 6 0	1 4											0	XYGEN	
0.1256E	0 8 0	6731E	0 7	0 . 2 8	1 5 E	07 (0 . 7 4 3	3 0 E	0 6	0 . 2	1 2 8 E	0 6		0	XYGEN	
1 1 7 0 0 5 0	. 2 0 1 3 7	4 . 8	394												XYGEN	
0 8 5 8 9 E	0 7 0	4 1 8 4 E	0 7	0 . 1 5	2 0 E	07 0	3 2 0	0 1 E	0 6	0 . 7	3 9 1 E	0 5			XYGEN	

CSFC FORM 541-1 (July - 60)

•

.

.

G. Output

Output from this program appears on logical tapes 3 and 5. Tape 3 gives results which are to be printed. Each page is devoted to a single L line for a specific constituent. Of the eleven columns which cross the page, the first contains the constituent name. This is followed by the value of L, the mirror latitude λ_0 , the corresponding value of B, the flux model number, the "bounce" average number density, the longitudinally averaged number density, the ratio of the longitudinally averaged number density to the "bounce" averaged number density, the value of $\int_0^{\lambda_0} \rho(\lambda) A(\lambda) d\lambda$, the value of $\int_0^{\lambda_0} A(\lambda) d\lambda$ and the third term of SLAMF($\lambda_0 + 2h$, λ_0). All these additional values are included as an intermediate check on the process.

Tape 5 contains the data to be punched. The counter card has been eliminated and all that remains are the B-L- λ card and the "bounce" average density card with constituent names punched to the right of each card.

1. Tape 3 Sample

CONSTITUENT		× الايل × الايل	°.	FLuX	AVERAGE RHÚ	RHC AT MIRRCR LATITUDE	KHU/AV. RHO	IVTEGPAL CF RHD*A CLAM	INTEGRAL CF A CLAM	S3 (LAM.) FCF INT. IVTERVAL
FELIUN	1.1420	6.973	C • 2 3 38	-0.74:	1.04236.06 1.0098E.06 8.9410E.05 7.6346E.05	2.6674f C0 2.5110F C0 2.3114f C6 2.3114f C6 2.0673F C6	2.4419C CO 2.4866E CC 2.5707E CC 2.7044E CC 2.4714E CC	8.2198E 05 7.5985E 05 5.7449E 05 5.7449E 05	7.5248E-01 7.5248E-01 7.5248E-01 7.5248E-01 7.5248E-01	-9.9948E-08 -9.9948E-08 -9.9948E-08 -9.9948E-08 -9.9948E-08
HEL ILW	1.1420	£79.0	C.2239	ר איים א	0.11251 00 6.2964E 05 5.5898E 05 4.6631E 05 3.56631E 05 3.56631E 05		1.4654E 00 1.5474E 00 1.6467E 00 1.86467E 00 1.86467E 00	4.6/8/L 05 4.6/8/L 05 4.1802E 05 3.5022E 05 2.6778E 05 2.6778E 05	1.4783E-01 7.4783E-01 7.4783E-01 7.4783E-01 7.4783E-01 7.4783E-01	-9.9891E-08 -9.9891E-08 -9.9891E-08 -9.9891E-08
HELIUM	1.1420	4.973	C.2168	-2-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	4.7748E C5 4.1045E O5 3.2762E O5 2.2162E 05 2.2164E 05	6.4203C 05 5.7017E 05 4.7126H 05 3.444036 05 2.644036 05	1.3446E 00 1.3891E 00 1.4668E 00 1.5793E 00 1.6520E 00	3.5538E 05 3.0549C 05 2.4012E 05 1.6449E 05 1.1807E 05	7.4428E-01 7.4428E-01 7.4428E-01 7.4428E-01 7.4428E-01	-9.98466-08 -9.98466-08 -9.98466-08 -9.98466-08 -9.98466-08
HELILW	1.1426	2.073	C.2122		3.6833E 05 3.0546E 05 2.26196 05 1.4996 05 05 0507E 05	2. 43965 05 2. 753465 05 2. 88016 05 1. 88695 05 1. 28155 05	1.2042E 00 1.23306F 00 1.2733C 00 1.3445C 00 1.4130F 00	2.73256 05 2.26561 05 1.67806 05 1.03786 05 6.72836 04	7.4185F-01 7.4185E-01 7.4185E-01 7.4185E-01 7.4185E-01	-9.97036-08 -9.97036-08 -9.97036-08 -9.97036-08 -9.97036-08
HEL 1 C &	1.1420	0.973	6.2039	- うりょう	2.8749E 05 2.8749E 05 2.3060E 05 1.6177E 05 9.12544 04 9.12544 04	3.0644E 05 2.4774E 05 1.7601C 05 1.0136E 05 0.1189E 05	1.0655C 00 1.0743E 00 1.0743E 00 1.05880E 00 1.1107E 00 1.1327E 00	2.1293E 05 1.7079E 05 1.1981E 05 6.7586F 04 4.0009E 04	7.4664E-C1 7.4664E-C1 7.4664E-C1 7.4664E-C1 7.4664E-C1 7.4664E-C	-9.5809E-08 -9.5809E-08 -9.5809E-08 -9.5809E-08 -9.5809E-08

102

.

•• .

CONSTITUENT		MIRRCR Lat.	പ	FLUX	AVFRACE	вно	RHC AT MIRKOR Latitude	RHD/AV. RHU	INTEGRAL DF Rhd*A DLAM	INTEGRAL OF A CLAM	S3 (LAM.) FCR INT. INTERVAL
HELL'N	1.1700	11-963	6-2362								
				1	1.1005E	06	3.9406E 06	3.39555 00	8.8337E 05	7.6118E-01	-9.9974E-08
				\sim	1.0554E	06	3.6392E 06	J.44806 00	8.0338E 05	7.6118E-01	-9.9974E-08
				~	9.2413C	60	3.2852E 06	3.5549E 00	7.0342E 05	7.6118E-01	-9.9974E-08
				4	7.73535	05	2. AB 70E UL	3.7323E 00	5.8879E 05	7.6118E-01	-9.9974E-08
				5	6.7968Ē	65	2.6315E 06	3.8716E CC	5.1736E 05	7.6118E-01	-9.9974E-08
HELIUM	1.1760	9.963	C.2229								
					5.7759E	50	8.6715E 05	1.5013E 00	4.3617E 05	7.5516E-01	-9.9922E-08
				~	4.9057E	05	1.9498E 05	1.5945E 00	3.7650E 05	7.5516E-01	-9.9922E-08
				Ĩ	3.9051E	05	6.9577E 03	1.746UE 00	3.0093E 05	7.5516E-01	-9.9922E-08
				4	2.3489E	05	4.7327E US	<.0123E 00	2.1513E 05	7.5516E-01	-9.9922E-08
				ۍ.	Z.1014E	65	4.9280E 05	2.2600E 00	1.6322E 05	7.5516E-C1	-9.9922E-08
HELIUM	1.1760	1-563	C.2124								
					4.938/F	05	6.0193E 05	1.2188F 0C	3.7041E 05	7.5001E-01	-9.9847E-08
				~	4.1153E	05	5.2299E 05	1.2708E 00	3.0865E 05	7.5001E-01	-9.98476-08
				Ţ	3.09896	05	4.2009E 05	1.3556F 0C	2.3242E 05	7.5colE-01	-9.9847E-08
				4	1.9/67E	05	2.9864E 05	1.5108E 0C	1.4826E 05	7.5C01E-01	+9.9847E-08
				, C	1.3185E	<u>60</u>	2.2157E 05	1.6805E 00	9.8892E 04	7.5C01E-C1	
HELIUM	1.1700	696.4	C.2046								
				~	4.4908E	05	9.0365E 05	1.1326E 00	3.3497E 05	7.4590E-01	-9.9979E-08
				ر-	3.65446	05	4.2540ë 05	1.1641E 00	2.7259E 05	7.4590E-01	-9.99796-08
				- - -	2.6457E	05	3.2122E 05	1.2142E 00	1.9734E 05	7.4590E-C1	-9.99796-08
				4	1.500bE	ر 0	2.C438E 05	1.3047E 00	1.1684t 05	7.4590E-01	-9.9979E-08
				J	9.5d89E	50	1.3457E 05	1.4034E 00	7.1524E 04	7.4590E-C1	-9.99796-08
HEL IUM	1.1700	3.963	C.1991								
				7	4.1452E	60	4.5089E 05	1.0578E 0C	3.0794E 05	7.4290E-01	-9.9457E-08
				2	3.3017E	c 0	3.6669E Ob	1.1085E 0C	2.4573E 05	7.4290E-01	-9.9457E-08
				~,	2.319uE	05	2.6479E 05	1.1414E 0C	1.7234E 05	7.4290E-C1	-9.9457E-08
				÷	1.29475	¢0	1.551E 05	1.2011E 00	9.6186E 04	7.4290E-01	-9.94576-08
				J.	1.4132E	40	9.3376E 04	1.2663E 00	5.5073E 04	7.4290E-C1	-9.9451E-08
HELIUM	1.17CU	1.963	0.1929								
				1	3.8312E	50	3.5969E C5	1.0432E UC	2.8393E 05	7.411UE-01	-9.9592[-08
				\sim	2.9494E	ς ζ	3.1601E 05	1.0534E 0C	2.2233E 05	7.4110E-01	-9.9592E-08
				m	2.0408E	65	2.1828E 05	1.0095E 0C	1.51256 05	1.4110E-01	-9.9592E-08
				4	1.0/700	с5 С	CO 36691.1	1.C98/E 00	7.9820E 04	7.4110E-C1	-9.9592E-08
				۲.	4.7330F	40	6.5489F 04	1.1305F 00	4.2932F 04	7.41105-01	-9.95925-08

2. <u>Tape 5</u>

a. Output card description

	Columns	Mode	Quantity	Units	Des	cription	
B-L-∖	1-8	F	\mathbf{EL}	earth radii	magnetic	field line	;
Card	9-16	\mathbf{F}	BSUBO	gauss	magnetic	induction	L
	17 - 24	\mathbf{F}	XLAMP	degrees	latitude		
	73-80	-	-	-	constituer	nt name	
Density	1-12	Е	DENB(1)	atoms/cm ³	density fo	r flux mo	odel 1
Card	13 - 24	\mathbf{E}	DENB(2)	11	11	11	2
	25-36	\mathbf{E}	DENB(3)	11	ŤŤ	11	3
	37 - 48	E	DENB(4)	**	Ť Ť	11	4
	49-60	\mathbf{E}	DENB(5)	11	**	11	5
	73-80	-	-	-	constituer	nt name	

-

-

b. Sample

GENERAL PURPOSE DATA SHEET

. - [.]

•

• -

_		-	_	_																							
		1 8	3	1			1	1		1	1		Т	1	1	T	T	1	1	Υ	T	T	1	T	1		· · · ·
	1	1.6	6			1	1		1	1	+	+	+	+	+	+	+	+	+	+	+					1	
				-	+-	+	+	+	+			+	-		1		1	1			1	Į	1	1	1		
1		1 1	·	-		Z		1 Z	Z	z	Z	Z	1 Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	7	7
	1	1 6	2		1	ш	Ш	T III	1 111	111	111	1.1	+	1 111	1	1	+	+	+ =			1 -		- <u>-</u>			-
	1						+	+ =	+	+		+			1 -		1	<u> </u>	L LL	1	L m	1	1	<u>i m</u>		L m	[Ш
		1 2	∼	+		0	10	10	10	0	0	10	U U	0	10	O	0	0	0	0	10	10	0	10	0	0	0
1	1	1 '					1	≻	-	i >-	1 >-	-	1 >	×	1	٢	~	×	1	1			$t \sim$		1		-
1		1 3	E 🗌		1	1-5	1~				1	1		1	1.2	1.2	1.	+	+	1	1-	+-			+-		
1	1	1 2	<u> </u>		+	+	1-	+~	1	-	1~	\mathbf{x}	$\perp \times$	×	$\perp \times$	\sim	×	\sim	×	$ \times$	\times	\sim	\times		\sim	\times	\sim
	1	1 5	21			0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0		0		0	0	0
1		1 6			1			1	1		1	+	+	-		-		+ -		+	+~	1 -	1-2	<u> </u>	<u> </u>		
1	1			+	+	+	+	+	+	I	ł			I	1	L	-	1	L	1				1			
		1 2	:			+	I	+	+	I	1	L		1	1				1	1		1	1				
1		1 6	2				1	1	1			1			1		1	1	1	1	T	1					
1		1 8			1	1	1		1 -		1	t	<u>+</u>	<u>+</u>		 	1	+	-	+			<u> </u>	1			
1				-+		+	 		ł		÷		1	1			1	1				1		1			
1	5		•	_	-	1	L	1						1		1		1	1	1	1		1				
1	-	1 6	3	1				1	1 -	-					T			1			t	1	+				
1					1	1	1	<u>+</u>	+				+	<u> </u>	<u>+</u>	ł	-	i		+	· · ·		L	L			
		1 2		+	+		ł		-	L	L												1	1	1 1	1	
								1								1		T			l	1	T				
1		1 1	5			T		1							1	t	1	1		1	<u> </u>	t		t			
1		1		1-		1	t	+	1					ł	ł	i		ļ		+	ŧ			I			
1		1 2	: —	-	+		I	÷	-				_			1		1		1	L	1	1				
1	1	1 6			1.	1						1												1			
	1	1 2	5 1	1		1												t		<u> </u>		t		-	-		
				+		+		<u> </u>		-					1	l	+				-		f	L			
1	1	1 2	?—		+		-	L			Ó.		ŝ		4		0		8		0		2		5		4
							-	1	0		0		0		0		-		0		0		0		0		0
1		1 2	3			1		T							t		1				· - ·						4
	1	6	· —	-+	+	1		÷		-				L		· · ·					L						
1		1 1	:	+	+	ļ	<u> </u>	<u> </u>	<u> </u>		ш (ш		ш		L L L		_ய		ш	L	l m		ш		L m	I T	- uul
1	18	1 8			1		œ		[m]	٦	-		~		0		4		0		0		9		5	-	2
1	a.	1		T	1	1	5				~		10	-	5		10	<u> </u>	Ē			<u>+</u> − −			<u> </u>		
1	-	1 📮	· +	+	+	1 · ·			<u> </u>								15	ļ	0	· · · · ·	0	L	~~~~		0		3
1		1 2	' 	+			0		0		5		0		4		4		ŝ		0	1]	6		3	T	7
1	1	8	1	1	1		3		2		80		3		-		+				10	1					-
ł I	1	1 .	· /	1	1	1. 1									t		<u> </u>					ţ	\vdash				
1		1 =		+	+	t	-	-	·				•	<u> </u>	<u> </u>	L	L			ļ	· ·	⊢. ∣	•		•		•
1	1	1 6	·		1		0		0		0		0		0		0	1	0		0	1 1	0		0	T	0
1	1														_						<u> </u>						
1	1			1	1		_		-					h							<u> </u>						
	1	1 2																L									
1					1		0		∞		~	1	5		4		0		00		~]	~		5		5
ł		0					1		0		0		0		0		_							-			<u> </u>
1					1								-		-						- 2		0		-91		
	1	1 3		4	+																						
	1	9		1			ш		m I	- 1	ш		ш		E L		E		LU I		ш		ш		ш		ш
1		1 3					2		6		0	- 1	9		2		6						~			+	
		2								+	-										-				<u> </u>		
		•	·	1					æ		0		æ		3		œ		<u> </u>		7		~	1		- 1	~
1	1	1 8					0		4		~				3		0		0		4		2		2		2
1	1	1 =					_		-				~													+	
1	1 4			+			· · · ·						~~				- 4				-		2				2
	1 2			-	L						· ·		•		•		•		-		-		•	1	-		•
1	3	8					0	1	0		0		0		0		0		0		0		0		0		
	13			+					+												-		<u> </u>			+	
[S	1 2		+	1																						
	ł	1 4									1		1											1			
		1 8					0		00		2		9		5		0		- 00		~		N			+	5
				1	1													ļ	~						~		~
	-	1 2		+					-0		- 0		0		0		-		0	1	0		<u> </u>		0		0
1	ΙE	8	L					1	1	1		i	1		i	1	1	i		i	- 1		1	1			
	bő –	1 8		1			ш	-	111		ш		111		111				Tut	- 1			111	- +		-+	
	_			+								+										-					
				+	<u> </u>						-01		ω		<u>v</u>		-		6		æ				0		~~
		្រគ		1	1 1		-		0		0		4		- 0		5		0		- 0		4		-	T	5
	1	8					80		60		00	1	N				N						~		0		
z				+	+ +	-+	-			+										+						-+	
<u> </u>			-	+	+						<u>_</u>	\rightarrow	<u>_</u>		<u></u>		<u> </u>		<u></u>		4				- 2		~
	1		1				- 1	i	-		•		• • •						•	1							
∢	1	Þ		1		- +	0		<u></u> †			- 1	-		<u>_</u>	+		+		+						+	_
Ľ I			-	+	I I		-			+			~										0				
	ł	1	_	1																- 1	[1		- 1	1	
0	ł.	18	1	1	ı T	1	T					T						1	1			- 1		1	T	1	1
17	I.	×.		1	1 1	-	6	-	- m t	m1	The t	~ t	-51	~	~	~		+	~ <u></u> +	-				+	+	+	
ើ	1		H	+	<u> </u>						+																
	1	1 14	-	1	L	2	-	~	0	~	0	~	0	2	0	0	-	0	0	<u>v</u>	0	<u>v</u>	0	0	0	<u>v</u>	0
цų.	1	8		1		0		0		0		0	1	0		0	_	0	1	0		0	-	0	-	0	
0	ł	5	1	T		• 1	111		111	†	14.1		ш.	···· ,	<u></u>		111		111			<u> </u>	111				
≾	1		—	1	<u> </u>			+	+					-						+		+			<u> </u>		
		N.		+	\vdash	80	œ	0	0	4		2		3	8	-	80	0	-	-	- 0	~	<u>∞</u>	3	2	-	— i
1			<u> </u>				e co	1	0		•• [Γ	0	Ţ	~	- 1	∞	- T	2		æ	1	80		2		0
-	1		1				00		~	+	5		5	- 1	6	+	5	+		t		t	<u>_</u>	+	N		
	1	5	t	t	+ +	+	+			+		+		\rightarrow		+		+		}	+						_
*	1	- -	ł	+			-		0	1	0		~		-		<u> </u>		4		80		3				0
<u> </u>	1	-		1		Ś	. • I	4	• F	o	•1	ŝ	· • [∞]	- T	m	• 1	~	· • [2		2	- 1	2	•	2	
ι¥	1		1	1	1	~	0	0	at	m +			0	00	-		61	- 00	<u>s</u> t	 †		- 50			ot	at	
1 4		-	<u> </u>	t	┝──┤	+		<u> </u>				+								+							4
エ	1		-		1	3		3		0		2		0		0		2		2		4		0		5	1
ŭ		9	L	1	1 T	e	T	2		-		-		0	-1	3		2	1	-	1	0	-	0	1	0	
	1	2	<u> </u>	1 -	r+	~	-		m+		<u></u> +	- t	N	<u></u> +	- - +	+	+	<u></u>	<u></u>	+	+		-	<u> </u>	+	+	
1	1	1 2	h	+	┝───┥				<u> </u>		<u>~</u>		+	C4			5				80	(N)	-		-	-1	5
		=		1		·		•	0	•	0		0	•	0	- 1	-	- 1	0	-	0	- 1	0	- [0	- F	0
	1 50	2	1	1	1	ot	1	0		0		0	1	0		6	†	ot	-+	ol	- +	ot			-+	-	
<u> </u>	I ш			t	ŧ∔	+	+			<u> </u>	+	+	-+			+	- +		-+								
Ē	٦ d	•	h	1	11		<u> </u>		ш j		ш,	1	ш	l	ш		ш		ш		ш		ш		ш		шļ
			F _	1	1 1	0	m	01	4	0	en l	0	∞ [0	4	5	-	5	0	5	0	5	3	5	N	5	5
0				t	tł	- t	mt	6	in t	et.	- t		i sit	int i	· · · · ·	+			<u></u> +	+	+	+			+		
				+	ŧ↓			- 1	~	~+	<u> </u>					<u> </u>			5		- 00			3	~)	3	4
		÷	L	1 _	1	2	8	~	4	2	0	2	4	2	5	0	5	0	-	oſ	~ m [oſ	0	0	-	0	5
		-	1	I	r	→	_1	- - - †	~	-		-	-1	4	2	1	ent.	~	5	~		nt.	N	N	+	N	
		1 1	<u> </u>	1	+	+	-+	+	+				-+		+	+	+	+		+		<u> </u>	· - +	+		<u> </u>	
5	<u>š</u>	•	H	+	├ ──↓	+			i	-=1		-+	_:∔				·	-1	<u>_:</u>]		· · ·	-		-	_ : [-	-
ā	12	•	L	L		[0	.	0	- f	0	•	0	- [0	•	0	. F	oſ		0	T	0		0	.1	0
2		N		1		_1					†	_1	- T	-1		_1			— †		+					-	
6	5	-	t	ti		-+	+		-+-	-+			+			+	+	-=-+	·-· ‡	+				_=!	-+	-	í
_			L	L	L			1					1		i			1							1		

GSFC FORM 541-1 (July - 60)
H. Running Time

This program will take about twenty minutes for every two L lines if five constituents are run together.

•

VI. R, Σ CALCULATION AND FLUX ELIMINATION

A. Introduction

This program computes the atmospheric scale factor R and the atmospheric loss parameter Σ . The scale factor is used in the next program in order to relate the energy loss of the atmosphere with the measured energy loss data.⁽⁷⁾ The atmospheric loss parameter appears in the calculation of the proton loss term of the conservation equation in the next section. Solar flux S is eliminated from both R and Σ by subroutine ELIM. This subroutine logrithmically interpolates Figure 9 to yield R and Σ as functions of time rather than solar flux S. B, L, and λ and the "bounce" averaged number densities are input to this program. B, L, λ , R and Σ are output for use in the conservation equation.

B. Equations

For a given B and solar flux model, the "bounce" average number densities of the five constituents are put together to form an average number of equivalent oxygen $atoms/cm^3$ by the equation OXY = RHO/8 where

$$\text{RHO} = 14\overline{\overline{n}}^{(N_2)} + 8\overline{\overline{\overline{n}}}^{(0)} + 2\overline{\overline{\overline{n}}}^{(\text{He})} + 16\overline{\overline{\overline{n}}}^{(0_2)} + \overline{\overline{\overline{n}}}^{(\text{H})}$$

and $\overline{\overline{n}}^{(J)}$ is the "bounce" average number density for the Jth constituent.

The scale factor R is given by the equation

$$R(L, B, t) = \frac{(OXYGEN ATOMS/CM^3)ATMOS}{(OXYGEN ATOMS/CM^3)NTP}$$

where (oxygen atoms/cm³) ATMOS is 0XY and (oxygen atoms/cm³) NTP comes from the following relationship of an ideal gas:

$$22414 \,\mathrm{cm^3/Kmole} = .60249 \times 10^{24} \,\mathrm{atoms/Kmole}$$

or $(\text{oxygen atoms/cm}^3)_{\text{NTP}} = 2.69 \times 10^{19}$. Figure 7 is an example of the output from this program. It shows the time dependence of the atmosphere in terms of the scale factor R.

Sigma is given by the equation

$$\sum = \frac{\overline{\overline{n}}(He)}{2} \operatorname{s}(He) + \left[\frac{\overline{\overline{n}}(0) + 2\overline{\overline{n}}(0)}{8} + \frac{2\overline{\overline{n}}(0)}{7} \right] \sigma(0) \operatorname{atoms/cm}.$$

where $\sigma(\text{He})$ and $\sigma(0)$ are the interaction cross sections of helium and oxygen respectively. Figure 8 again illustrates output from this program. It shows $\log_e \Sigma$ as a function of time for various values of B at an L of 1.25 earth radii.

C. Mnemonics

Quantity	Description	Units
NPT	counter of the number of B's to a given L	-
C	(oxygen atoms/cm ³) NTP = 2.69×10^{19}	atoms/cm ³
SIGHE	$\sigma(\text{He}) = .143 \times 10^{-24}$	cm^2
SIGO	$\sigma(0) = .36 \times 10^{-24}$	**
EL	magnetic field line L	earth radii
B(N)	N th magnetic inductionB for a givenL line	gauss
ALATO(N)	latitude corresponding to B(N)	degrees
HE1(N),, HE5(N)	helium "bounce" averaged densities for B(N) and the five flux models	atoms/cm ³
01(N),, 05(N)	oxygen "bounce" averaged densities for B(N) and the five flux models	atoms/cm ³
021(N),, 025(N)	molecular oxygen "bounce" averaged densities for B(N) and the five flux models	atoms/cm ³
AN21(N),, AN25(N)	nitrogen "bounce" averaged densities for B(N) and the five flux models	atoms/cm ³

Quantity	Description	Units
H1(N),, H5(N)	hydrogen "bounce" averaged densities for B(N) and the five flux models	atoms/cm ³
RHO1(N),,RHO5(N)	RHO for $B(N)$ and the five flux models (see equation on page 105)	atoms/cm ³
OXY1 (N),, OXY5 (N)	OXY for B(N) and the five flux models (see equation on page 105)	atoms/cm ³
SIG1(N),, SIG5(N)	atmospheric loss parameter Σ for B(N) and the five flux models	atoms/cm
RAT1(N),, RAT5(N)	scale factor R for B(N) and the five flux models	-
LCNT	counter to notify subroutine whether it is working with R or Σ	-
ARG1	temporary storage of RAT1 or SIG1 depending on LCNT	depends on LCNT
ARG2	temporary storage of RAT2 or SIG2 depending on LCNT	depends on LCNT
ARG3	temporary storage of RAT3 or SIG3 depending on LCNT	depends on LCNT
ARG4	temporary storage of RAT4 or SIG4 depending on LCNT	depends on LCNT
ARG5	temporary storage of RAT5 or SIG5 depending on LCNT	depends on LCNT

. ·

÷,

• -:

D. Flow Charts

1. Main program

.

-- .

•

.

E. Fortran Listing

FCRMAI (14x,bFS=250,7x,5HS=2C0,7x,5HS=15C,7x,5HS=1CC,7x,4HS=70) FURMAT (5HCLA=F8.4,4x,2HL=F8.4,4x,2HB=F8.4) FURMAI (3FE.4) CUNTISLE DC 19 ∧=1.NPT EC 19 ∧=1.NPT READ INPUT TAPE 2,1.€L.0(N),ALATO(N) READ INPUT TAPE 2,8,AM21(N),AN22(N),AN29(N),AN29(N) $\begin{array}{l} RFDI(v) = i 4 \ast a N 21(v) + 3 \ast s C1(v) + 2 \ast s + E1(v) + 16 \ast s C21(v) + H1(v) \\ RFD2(v) = i 4 \ast a N 22(v) + 6 \ast s C2(v) + 2 \ast s + E2(v) + 16 \ast s C22(v) + H2(v) \\ RFD3(v) = i 4 \ast a N 23(v) + 8 \ast s C3(v) + 2 \ast s + E3(v) + 2 \ast s + E3(v) + 10 \ast s C23(v) + H3(v) \\ RFD3(v) = i 4 \ast a N 23(v) + 8 \ast s C3(v) + 2 \ast s + E3(v) + 10 \ast s C23(v) + H3(v) \\ \end{array}$ SI3HE=.|43e-24 >160=.66c-24 Subde=.66c-24 Rued in≥lr Pape 2,1,6L,3(N),ALATO(N) Rued inPut Tape 2,4,Hül(N),Hü2(N),Hü3(N),Hü4(N),Hü5(N) Read TrpUT TAPE 2.1.EL.9(N).ALATO(N) Read TrpUT TAPE 2.9.G21(N).C22(N).C23(N).L24(N).C25(N) 00 (T N≓1,APT REAU INPUT TAPE 2+1,EL,8(N),ALATO(N) REAU INPUT TAPE 2+6,01(V),02(N),04(N),05(N) ÜL 14 N=1,NPT RIAD INPLE TAPE 2,1,EL,B(N),ALATO(N) RIAD INPLE TAPE 2,6+H1[N)+H2(N)+H3(N),F4(N),H5(N) FCRWAT (5E12.6) FCRWAT (5E12.6) FURMAT (12A,2HL=F8.5,4X,2HB=F8.5,4X,4HLAT=F6.3) FURMAT (12A,2HL=F8.5,4X,2HB=F8.5,4/ FURMAT (12A,14X,5E12.4////) FURMAT (5512.4) RATIO, SIGMA CALCULATION AND FLUX ELIMINATION READ INPUT FAPE 2,9,NPT WRITE UUTPUT TAPE 3,3 MRITE UUTPUT TAPE 3,10 CONTI∿LC DC 18 N≐L•NPI C. 15 N=1.871 FERMAT (1H1) (77) FLRMAT (//) C=2.69rl9 1 FLAMAT (21 2 FCAMAT (21 3 FCAMAT (21 4 FCAMAT (21 5 FLAMAT (11 5 FLAMAT (11 6 FCAMAT (11 9 FLCAMAT (11 10 FCAMAT (11 12 FLURAAT (11) GUNTINUE CONTINUÉ SCALL>CE 8A110 ÷ ÷. 10 0 1 ې

•_

•

.•

:- -

Prof A Distance Stating ... Coll Distance .

÷.,

• -:

.

STCRAGE NCT USED BY PROGRAM

UEC OCT 32555 77453 DEC 0CT 1194 02252

	DEC OCT 2556 77454		DEC DCT 926 01636	AGR 01272	818 01462	770 01402	878 01556	1097 02111	1037 02015	1157 02205	638 01176	989 01735				DEC 0CT 586 01112		EFN LUC 5 01072 10 01047		DEC CCT 526 01016
	AR65 3	ENTS	76.44		л С С С С С С	U22	63	0 X Y 3	RA13	RHC3	S162	12	'n		STATEMENT	5160		8)5 8)A		6)
FATEMENTS	DEC DCT 32557 77455	VALENCE STATEN	DEC OCT	70010 010 70010 010	830 C1506	782 01416	AGO C1572	1109 02125	1049 C2031	1169 C2221	650 C1212		10110 106		R EQUIVALENCE	DEC OCT 587 01113	TEMENTS	EFN LCC 4 C1C74 9 01050	PROGRAM	DEC CCT 32767 7777
IN COMMON S.	ARG4	CN AND EQUI		ANZ3	H2 HE2	111		0XY2	RAT2	RHD2	1915		Λ		IMENSION C	S 16HÉ	FCRMAT STA	8)4 8)9	IN SCURCE	4)
S APPEARING	DEC OCT 32558 77456	NG IN DIMENSI	DEC CUT	950 01666	722 01322	21610 248 203 01908	7000TO 706	17100 1011	1020 1711	1181 02/35	10210 200		602 01132		IN COMMUN. U	DEC CCT 588 01114	CURCE PRUGRAP	EFN LCC 3 01075 8 01052 13 01024	NOT APPEARING	DEC CCT 518 01006
FCR VARIABLF	ARG3	LES APPEARIN		AN22	Ĩ	I I I		220			17UX	×	S165		JI APPEARING	Τ٩Ν	ATIČNS FG4 S	8 (8 8 (8 9 (8	HER SYMBULS	31
E LOCATIONS	uec oct 2559-77457	S FUR VARIAB	DEC CCT	562 01/02	1153 02251	614 01242	754 U1432	746 01392	076T0 568	10/20 2/01	49/10 E101	CC120 2811	614 01146	A17 7114	VARIABLES NO	DEC DCT 589 CI115	SCLS AND LCC	LUC 2 01101 7 01057 12 01026	LLONS FOR CL	CEC CCT 513 C1C01
STORAG	AKG2 3	AGE LECATION		A 121	ж	Η5	H25	024	6	c X X D	417 5	RH05	S164	~	CATIONS FOR	EL	SYME	4) Z 4) Z 4) Z		(2)
	C CCT 60 77460 61 77461	STLR	c + 6.1	14/10 10	14 01622	86 01256	106 01446	99613 85.	16e 01542	81 070 580	125 02001	45 02171	20 01162	:62 01226	STURAGĒ LO	EC UCT 690 01116		-N LCC 1 01104 6 01063		CC CCF 581 01105
	0F A461 325 LCNT 325		40	ALATO 10	A125 9	H4 6	hE4 c	023 1	3 40	CXY4 10	RA14 10	8r04 11	5163 6	x S K		10° 0		8) i 1 (9 6) i 1 (9 7)	010	1)

ENTRY POINTS IC SULACUTINES NOT CUTPUT FROM LIBRARY DEC CCT 5 CCCU5 1 CCOC1

(F17)

ELIM (15H)

(HIN)

(Łს[)

(11)

CULP.

(STF) (TSt·)

DEC CCT (S1+) 3 CCCC3

LECATIONS OF NAMES IN FRANSFER VECTOR

•.

• •

ŀ

· ·

•

CATERNAL FERMULA HUMDERS WITH CERRESPLACING INFERNAL FURPULA NUMBERS AND OCTAL LUCATIONS

.

•

₽.

• -:

L CC	C0221	00612	
ILN	54	e e	
EFN	51	2 C	
IFN LEC	48 CC164	81 CO566	
L F V	14	25	
IFN LLC	4- 60127	14 00421	
ьFN	11	20	
IFA LCC	36 COC72	67 00403	120 00176
N L U	16	15	50
IFN LUC	24 CCCL3	6C CU256	58 CC703
EFN	100	14	40

•

•

WRITE CUTPUT TAPE 3.5 DO 20 J=1.5 GO TO 1000 DO 50 J=1.5 IF(HA-S(J))50,51,52 IF(HA-250.)40,41,41 IF(HA-70.)42,42,43 ANS=Y(1) DO 30 K=1,12 HA=ST(K) Y(J)=LUGF(A) GU TO 1000 ANS=Y(5) ANS=Y(J) 60 T0 1000 H1=S(J) CONTINUE (C) 8=V 13 43 5 20 42 52 4 0 7 1

•,

•

.-

•••••

•

J

.

-

- · -·

. ·

2

• -:

STCRAGE NCT USED BY PROGRAM

CCT 77453
DEC 32555
001 00504
0 E C 324

STORAGE LUCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

0CT 77454		0CT 00462		CCT 00430 00423		LOC 00367		0CT 00420 00211		001		
DEC 32556		DEC 306		DEC 280 275		EFN 5		DEC 272 137		DEC		
ARG5	s	*	TEMENT	4 P V		815		C)G1 E)E				
DEC OCT 32557 77455	VALENCE STATEMENT	DEC DCT 296 C0450	R EQUIVALENCE STA	DEC DCT 281 C0431 276 C0424	LTEMENTS	EFN LOC 4 C0404	PROGRAM	DEC DCT 227 C0343 107 C0153		DEC CCT 0 CCCCO	2 A R Y	
ARG4	ANC EQUI	xs	VSION, C	Η×	RMAT STA	4)4	SCURCE	6) £)C	CTCR	(STH)	KCP LIB	
DEC DCT ARG3 32558 77456	APPEARING IN CINENSICN /	DEC OLT ST 323 00503	PEARING IN COMMUN, UIMEN	DEC CCT F0 282 00432 K 277 00425	S FOR SCURCE PRUGRAM FOR	EFN LÚC 8)3 J 00410	YMBCLS NOT APPEARING IN	DEC DUT 3) 214 C0326 D)20G 141 00215	GF NAMES IN TRANSFER VE	DEC DCT (FIL) 1 00001	UBRCUTINES NOT CUTPUT F	
UEC DCT 4xG2 32559 77457	E LOCATIONS FOR VARIABLES	UEC OCT S 3C1 00455	TICNS FOR VARIABLES NOT API	LEC CCT A 283 C0433 J 278 C0426	SYMBELS AND LECATION	EFN LCC 8)2 2 00412	LOCATIONS FOR CTHER S	DEC 0CT 2) 211 00323 0)2C6 E2 C0122	LLCATICNS	υές ΟύΤ LOG 2 CCU02	ENTRY POINTS TC 5	(FIL) (STH)
DFC CCT 256C 7/46C 2561 77461	STCRAG	DEC CC1 311 C0467	SICRAGE LOCA	DEC LCT 284 Sc434 279 Su427 274 CG422		EFN LCC L CC414 E CC352		DEC LCT 269 06415 273 00421		DEC LCT 3 CC003		LÜG
ARG1 3 LCNT 3		æ		ANS TIME		d)1 516		1) C)62		εxP		ЧX

118

IFN LOC 44 CO131 53 00161 EFN 4C 52 EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS EFN IFN LCC 20 40 C0115 51 51 00154 EFN IFN LLC 18 37 00105 43 49 00144 30 65 00250 EFN IFN LCC 17 36 COICI 42 47 CO141 16CC0 60 CO216 IFN LUC 34 CC074 45 CU136 55 CC12 6FN 14 50

ĿÜЪ

EXP

·.

`.

.

•••••

.

F. Input

.

4

Input to this program are the "bounce" average density cards together with the $B-L-\lambda$ cards output from the last program. The cards are rearranged by L line rather than by constituent as they have been arranged in previous programs. A counter card must again be inserted in order to inform the computer of the number of card pairs per constituent for a given L-line. All input is on tape 2. For a given L-line the constituents must be in the following order:

(1) helium,

(2) oxygen,

(3) molecular oxygen,

(4) nitrogen,

(5) hydrogen.

1. Input Card Description

	Columns	Mode	Quantity	Units	Description		
Counter Card	1-2	I	NPT	-	B-L- λ and density card pair counter		
B-L- λ	1-8	\mathbf{F}	EL	earth radii	magnetic field line		
Card	9-16	F	в	gauss	magnetic induction		
	17-24	F	ALATO	degrees	latitude		
	73-80	-	-	-	constituent name		
Density	1-12	Е	*	atoms/cm ³	density for flux model 1		
Card	13-24	Е	*	**	density for flux model 2		
	25-36	Ε	*	**	density for flux model 3		
	37-48	Ε	*	**	density for flux model 4		
	49-60	Ε	*	**	density for flux model 5		
	73-80	-	-	_	constituent name		

^{*}All of the five constituents use the same card format here. Therefore the quantity on a given density card (HE, 0, 02 N2 or H) will depend on the constituent name listed in columns 73-80 of that same card.

2. Sample

GENERAL PURPOSE DATA SHEET

	5	567 48 49 77 73 74 75 77 78 78 98 99		HELIUM	HELIUM	HELIUM	HELIUM	HELIUM	HELIUM	HELIUM	HELIUM	HELIUM	HELIUM	O X Y G E N	O X Y G E N	ΟΧΥΘΕΝ	OXYGEN	O X Y G E N	O X YGEN	0 X Y G E N		O X Y G E N	O X Y G E N	0 2	0 2	
e e	P age	5 X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0			6 7 4 2 E 0 6		2 8 6 8 E 0 6		1 5 8 6 E 0 6		9070E05		5 4 0 2 E 0 5		2 0 5 8 E 1 0		2 6 1 3 E 0 8		8 5 3 1 E 0 6		3 0 5 7 E 0 5		1 4 3 0 E 0 4		1 3 2 0 E 1 1	
	APLE	0 0 4 5 9 4 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			0 . 7 6 3 5E 0 6 0 .		0 . 3 5 8 1 E 0 6 0 . 2		0.2210E 06 0		0.1399E 06 0.		0.9125E050.		0 . 1 9 5 2 E 1 0 0 . 2		0 3 4 8 9 E 0 8 0		0 1 7 0 9 5 0 7 0		0.9186E 05 0.		0.6337E 04 0.		0.1026E11 0.	
INATION	Date SAM	10 11 22 14 22 14 27 37 38 3			991E06		6 8 3 E 0 6 (2 2 6 E 0 6 (262E 06 (6 1 8 E 0 6 (8 7 0 E 1 0		8 9 8 E 0 8		8 0 9 E 0 7		2 4 8 E 0 6		4 6 6 E 0 5		872E10	
INPUT-R, 2 CALCULATION AND FLUX ELIMI	TAPE 2	7 8 9 0 11 12 13 14 28 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13		0 0 0 2 3 3 7 6 8 9 7 3	9 2 E 0 7 0 1 0 1 0 E 0 7 0 8	0 0 0 . 2 2 3 9 4 6 . 9 7 3	5 6 E 0 6 0 . 5 5 9 0 E 0 6 0 . 4 6	0 0 0 0 2 1 6 8 0 4 9 7 3	7.5 E 0 6 0 4 1 0 5 E 0 6 0 3	0 0 0 2 1 2 1 5 2 9 7 3	8 3 E 0 6 0 3 0 5 4 E 0 6 0 2	0 0 0 2 0 9 8 8 0 9 7 3	7 5 E 0 6 0 2 3 0 6 E 0 6 0 1 0	0 0 0 2 3 3 7 6 8 9 7 3	3 3 E 1 0 0.1 8 3 8 E 1 0 0.1 8	0 0 0 2 2 3 9 4 6 9 7 3	8 4 E 0 8 0 . 6 2 0 0 E 0 8 0 . 4	0 0 0 0 2 1 6 8 0 4 9 7 3	03E 08 0.6560E 07 0.3	0 0 0 0 2 1 2 1 5 2 9 7 3	6 8 E 0 7 0 . 7 5 9 5 E 0 6 0 3	0 0 0 0 2 0 9 8 8 0 0 9 7 3	84E 06 0.11078E 06 0.3	0 0 0 2 3 3 7 6 8 9 7 3	68E 10 0.6665E 10 0.7	00 0 2 2 3 9 4 6 9 7 3
Problem	Sponsor	1 2 3 4 5 6	5	1 1 4 2	0	1 1 4 2	0 6 2	1 1 2 2	0 4 7	1 1 4 2	0 3 6		0 7 8	1 1 4 2			0 7 4	1 1 4 2	0 1 0	1 1 4 2	0 1 4	1 1 4 2	0 . 2 5	1 1 4 2	0 59	1 1 4 2

GSFC FORM 541-1 (July - 60)

. .

. .

.:

.

.

G. Output

•

1

Output for this program occurs on tapes 3 and 5. Tape 3 contains two groups of data for each L. The first group lists the values of R, Σ and OXY as functions of position and flux model. The second group contains R, $\log_e R$, Σ , $\log_e \Sigma$ and solar flux as functions of position and time.

On tape 5 is the data to be punched for use in the conservation equation calculation. Each B-L- λ card is followed by two R cards which are followed in turn by two Σ cards.

1. Tape 3 Sample

	5=250	5=200	S=150	S=100	S = 7 ()
	L= 1.14200	8= 0.2337	6 LAT= δ.	973	
∩XY	9.5479E 11	0.5975E 11	0.68248 11	0.8475E 11	0.10468 12
ATIO	0.2037E-08	0.2221E-05	0.2537E-08	0.3151E-08	0.38895-08
SIGMA	0.3031E-14	0.33031-14	0.37682-14	0.46728-14	0.57578-14
	L= 1.14200	8= 0.2239	4 LAT= 6.	973	
OXY	0.3250E 09	0.2545E 09	0.1835E 09	0.1138E 09	0.7492E 08
RATIO	0.1208E-10	0.94526-11	0.6822E-11	0.42316-11	0.27052-11
SIGMA	0.1765E-15	0.13798-16	0.9905E-17	0.61018-17	0.39848-17
	L= 1.14200	8= 0.2168) LAT= 4.	973	
OXY	0.16318 08	0.9054= 07	0.5278E 07	0.2141E 07	0.1007± 07
RATIO	0.6965E-12	0.3700E-12	0.19628-12	0.79588-13	0.37448-13
SIGMA	0.8406E-18	0.5144č-18	0.27470-10	0.11456-18	0.56336-19
	L= 1.14200	B= 0.2121	5 LAT= 2.	973	
OXY	0.1731E 07	0.8997c 06	0.39828 00	0.1296E 06	0.5424E 05
RATIU	0.6435E-13	0.3345e-13	0.1480E-13	0.4816E-14	0.20168-14
SIGMA	0 .1 023E-16	J.⊃¥69E-19	0.3173c-19	0.1425E-19	0.7878±-25
				· . 7 .	
	E= 1.142JU	L → 0+2098	5 LAI-U.	713 0 2061£ 05	0 1657- 05
	0.3371E 00 0.1363E 13		0.1090E UD	0.1100E.14	0.1007E 00 0.87008-18
RALLU	0.12036-13	0.02028-14	0.10146-14	0.11086-14	0.00031.00
516MA	○・375っに=し♪	じゃどよりうビーエナ	しゃしろ14ヒービジー	0.6810E-20	- 0・39とすとことし

LAT=	8.9730	L=	1.1420	8=	0.2338	
TIME	SÜL	AR		LOG D	F	RATIO
YRS)	FLU	Х		RATIO		
0	70.	00	-0-1	17365E	02	0.38892E-08
1	75.	00	-0.	19400E	02	0.37550E-08
2	130.	00	-0.	19706E	02	0.27666E-08
3	230.	00	-0.	L9977E	02	0.21087E-08
4	250.	00	-0.	20012E	02	0.20368E-08
5	220.	00	-0.	19960E	02	0.21457E-08
6	185.	00	-0.	19885É	02	0.23118E-08
7	140.	00	-0.	L9749E	02	0.26492E-08
8	105.	00	-0.	L9597E	02	0.30832E-08
9	90.	00	-0-1	L9505E	02	0.33798E-08
10	75.	00	-0.	19400E	02	0.37550E-08
11	70.	00	-0.	193656	02	0.38892E-08

•

.

. •·

.

TIME	SOLAR	LUG OF	SIGMA
(YRS)	FLUX	SIGMA	
0	70.00	-0.32788E 02	0.57570E-14
1	75.00	-0.32823E 02	0.55601E-14
2	130.00	-0.33126E 02	0.41067E-14
3	230+00	-0.33396E 02	0.31370E-14
4	250.00	-0.33430E 02	0.30307E-14
5	226.00	-0.33378E 02	0.31915L-14
6	135.00	-0.33304E 02	0.34365E-14
7	140.00	-0.33169E 02	0.39339E-14
8	105.00	-0.33019E 02	0.45726E-14
9	90.00	-0.32928E 02	0.50088E-14
10	75.00	-0.32823E 02	0.55601E-14
11	70.00	-U.32768E 02	0.57570E-14

LAT=	6.9730	L =	1.1420	() =	0.2239	
TIME	50L	AR		L06 0	F	RATID
(YRS)	FLU	Х				
0	70.	ÚΟ	-Ű.	26607E	02	0.27852E-11
1	75.	00	-0.	26537E	02	0.29862E-11
2	130.	00	-0.	25902E	02	0.56356E-11
3	230.	ÜΟ	-0.	25237E	02	0.10957E-10
4	250.	00	-0.	25139E	02	0.12083E-10
5	220.	00	-0.	25286E	02	0.10434E-10
6	185.	00	-0.	25482E	50	0.85774E-11
7	140.	00	-0.	25806E	92	0.62006E-11
8	105.	eb –	-0.	26141Ë	02	0.44381E-11
9	90.	00	-0.	26328E	0.2	0.36806E-11
10	75.	00	-0.	265 37 E	02	0.29862E-11
11	70.	00	-U.	26607E	02	0.27852E-11

TIME	SULAP	L06 0F	SIGMA
YRS)	FLUX	SIGMA	
0	70.00	-0.40064£ 02	0.39844E-17
1	75.00	-0.39993E 02	0.42776E-17
2	130.00	-0.39347E 02	0.81603E-17
3	230.00	-0.38675E 02	0.159916-16
4	250.00	-0.38576E 02	0.17648E-16
5	220.00	-0.38724L 02	0.15221E-16
6	185.00	-0.38922E 02	0.12488E-16
7	140.00	-0.37250E 02	0.89911E-17
8	105.00	-0.30590E 02	0.64039E-17
9	90.00	-0.39780E 02	0.52931E-17
10	75.00	-0.39993E 02	0.42776E-17
11	70.00	-0.40064E 02	0.39844E-17

LAT= TIME	4.9730 L≠ SOLA®	1.1420 E= 0.2168 L05 UF	RATIO
17851	FLUX	2001 - CO	0 07/11 13
0	(0.00	-0.30918£ 02	0.5/4416-15
1	75.00	-0.30790E 02	0.42455E-13
2	130.00	-0.29620F 02	0.136776-12
3	230.00	-0.28329E 02	0.49772E-12
4	250.00	-0.28131E 02	0.60649E-12
5	220.00	-0.28428E 02	0.45089E-12
6	185.00	-0.28815E 02	0.30591E-12
7	140.00	-0.29440E 02	0.16382E-12
8	105.00	-0.30072E 02	0.87100E-13
9	90.00	-0.30413E 02	0.61897E-13
10	75.00	-0.30790E 02	0.42455t-13
11	70.00	-0.30916E 02	0.37441L-13

TIME	SULAR	LOS OF	SIGMA
(YRS)	FLUX	SIGMA	
0	70.00	-0.44323E 02	0.56327E-19
1	75.00	-0.44205E 02	0.63395E-19
2	130.00	-0.43089E 02	0.19356E-18
3	230.00	-C.41817E 02	0.69067E-18
4	250.00	-0.41620E 02	0.84064E-18
5	220.00	-0.41915E 02	0.62604E-18
6	185.00	-0.42300£ 02	0.42613E-18
7	140.00	-0.42914E 02	0.23059E-18
8	105.00	-0.43526E 02	0.12495E-18
9	90.00	-0.43850E 02	0.90378E-19
10	75.00	-0.44205E 02	0.63395E-19
11	70.00	-0.44323E 02	0.563276-19

LAT=	2.9730	L =	1.1420	B=	0.2121	
TIME	SULA	R		LUG UI	F	RATIO
YRS)	FLUX	ζ.		RATIO		
0	70.0	0	-0.	33838E	02	0.201638-14
1	75.0	0	-0.	33692E	02	0.23311E-14
2	130.0	0	-0.	32293E	02	0.94462E-14
3	230.0	0	-0.	30636E	02	0.49528E-13
4	250.0	0	-0.	30374E	02	0.64346E-13
5	220+0	0	-0.	30767E	02	0.43452E-13
6	185.0	0	-0.	31273E	02	0.261898-13
7	140.0	0	-0.	320695	02	0.11824E-13
8	105.0	0	-0.	32855E	02	0.53884E-14
9	90.0	0	-0.	332578	02	0.36028E-14
10	75.0	0	-0.	33692E	02	0.23311E-14
11	70.0	0	-0.	33838E	02	0.20163E-14

TIME	SOLAR	LOC OF	SIGMA
(YRS)	FLUX	SIGMA	
0	70.00	-C.46290E 02	0.78783E-20
1	75.00	-0.46191E 02	0.869676-20
2	130.00	-0.45217E 02	0.23039E-19
3	230.00	-0.439425 02	0.82457E-19
4	250.00	-0.43727E 02	0.10228E-18
5	220.00	-0.440505 02	0.740376-19
6	185.00	-0.44455E 02	0.49381E-19
7	140.00	-0.45057E 02	0.27037E-19
8	105.00	-0.45617E 02	0.15442E-19
9	90.00	-0.458958 02	U.11698E-19
10	75.00	-0.461910 02	0.86967E-20
11	70.00	-6.45290E 02	0.76783E-20

LAT=	0.9730	L =	1.1420	B=	0.2099	
TIME	SOL	AR		LUG ül	-	RATID
(YRS)	FLU	Х		RATIO		
0	70.	00	-0.	35085E	02	0.57888E-15
1	75.	00	-0.	34977E	υ2	0.64504E-15
2	130.	00	-0.	33875E	50	0.19426E-14
3	230.	00	-Ū.	32290E	02	0.94762E-14
4	250.0	00	-0.	32011E	02	0.12530F-13
5	220.0	00	-0.	32430E	.02	0.82409E-14
6	185.0	00	-0.	32946E	9 Z	0.491511-14
. 7	140.	00	-0.	33688E	02	0.23424E-14
8	105.0	00	-0.	34343E	02	0.121678-14
9	90.	00	-0.	346538	02	0.89241E-15
10	75.	00	-0.	34777E	02	0.64504E-15
11	70.	00	-0.	35085E	62	0.57888E-15

٢.

••

TIME	SULAR	LOG UF	SIGMA
YRS)	FLUX	SIGMA	
0	70.00	-0.46986E 02	0.39268E-20
1	75.00	-0.468956 02	0.43043E-20
2	130.00	-0.46041E 02	0.101048-19
3	230.00	-0.45039L 02	0.275418-19
4	250.00	-0.44872c 02	0.32550E-19
5	226.00	-0.45122E 02	0.25333E-19
6	185.00	-0.454368 02	0.18509E-19
7	140.00	-0.45910E 02	0.11524E-19
8	105.00	-0.45370E 02	0.72732E-20
9	90.00	-0.46619E 02	0.56685E-20
10	75.00	-0.468950 02	0.430431-20
11	76.00	-0.45986E 02	0.39268E-20

<u>^</u>

2. <u>Tape 5</u>

.

••

, · -

- 7

-

a. Output Card Description

	Columns	Mode	Quantity	Units	Description
B-L- λ	1-8	F	ALATO	degrees	latitude
	9-16	F	EL	earth radii	magnetic field line
	17-24	F	В	gauss	magnetic induction
1st R	1-10	Ε	XS(1)	-	R for time 0
Card	11-20	Ε	XS(2)	-	R for time 1
	21-30	E	XS(3)	-	R for time 2
	31-40	E	XS(4)	-	R for time 3
	41-50	E	XS(5)	-	R for time 4
	51-60	Ε	XS(6)	-	R for time 5
2nd R	1-10	Ε	XS(7)	-	R for time 6
Card	11-20	E	XS(8)	-	R for time 7
	21-30	E	XS(9)	-	R for time 8
	31-40	Ε	XS(10)	-	R for time 9
	41-50	E	XS(11)	_	R for time 10
	51-60	Ε	XS(12)	-	R for time 11
1st Σ	1-10	E	XS(1)	atoms/cm	Σ for time 0
Card	11-20	Ε	XS(2)	11	Σ for time 1
	21-30	Ε	XS(3)	11	Σ for time 2
	31-40	E	XS(4)	11	Σ for time 3
	41-50	Ε	XS(5)	11	Σ for time 4
	51-60	Е	XS(6)	75	Σ for time 5

	Columns	Mode	Quantity	Units	Description
2nd Σ	1-10	E	XS(7)	atoms/cm	Σ for time 6
Card	11-20	E	XS(8)	**	Σ for time 7
	21-30	Ε	XS(9)	**	Σ for time 8
	31-40	E	XS(10)	**	Σ for time 9
	41-50	E	XS(11)	**	Σ for time 10
	51-60	E	XS(12)	**	Σ for time 11

•

٤.

This five card group is repeated for each new \boldsymbol{B} and \boldsymbol{L} .

Sample	
°.	

GENERAL PURPOSE DATA SHEET

-

ĩ

÷

	1	8					1		1	· · · · ·		T	1				r	·	1					1	<u> </u>	<u> </u>	T
		Ř		-	1					t		+	<u>+</u>		ł									 			+
		R		-	1			1 —	<u> </u>			 -	 		↓ ·····	-			ł						<u> </u>		┢
1		4		t	t—		t		+ · ·		-	+										-			<u> </u>		+
					1				+			 		<u> </u>			<u> </u>								<u> </u>		
ł					f								-	ļ				ļ	ļ						I	L	_
					 		÷		ł								<u> </u>	L	ļ					ļ	.		1
1		1 2			 		 	ļ	 				ļ	L			L.										1
		ĸ			L																						Γ
		2	L																								1
			1	<u> </u>	L		L	L																			i
		R	L	L																							
	1	8	_									I												<u> </u>			
	-	8																-									
		6										—															t—
		8					1	-																	 		-
		8																								-	<u> </u>
		15							· · · ·	-																	
		Ī	\vdash										-			-											
					1														<u> </u>								
			<u> </u>																								–
				· · · · -					-					-	-	-			-			_	-	ļ			-
			h		- -	~	4	Y								69	3	6		63	7	5	-		4	5	0
							-	-				<u> </u>				-	-	-		-	-	-	2			-	
1	1		⊢ İ			1				. 1																	
1		1 1			<u> </u>	ш	ш	ш		ш	ш	ш	ш		μ, μ	ш	ш	ш		ш	ш	μ	LUI]		ш	ш	1 II
1	8		<u> </u>		<u> </u>	6	_	1		ŝ	S	2	4		0	4	0	ŝ		5	v	4	80			6	6
	P	4 5	L		4	8	6	5		4	œ	2	80		0	4	9	3		4	-	0	7		4	8	6
	1	1 8				8	-	7		0	~	S	0		ŝ	7	~	9		3	0	4	80		2	7	5
	1	8			5	3	e	5			2	_	З		4	Э	9	ŝ		4	2	~	7		80	5	5
1		18			·	•	•	•		•	•		•		•	•	•	•		•	•	•			•	•	
	-	5			0	0	0	0		0	0	0	0		0	0	0	0		C	0	0	0		0	0	10
l	1	18			8	_∞	4	4		oİ		9	~	1	2	3	80	6		3	4	80	0		3	5	0
1	1				0	0	-	-		_	-	-				_	-	-		-	_		2		-		1-
	1				1			1		1	1	1				1				-	1	1			- F	1	
					ш	ш	ш	ш		ш.	111										- <u></u>			_			
					~	5	=	5		8	9	5	8		5	-5	6	6		5		8	-			<u> </u>	1 10
					6	5	6	5		0	-		~		5		0			-	-	~	~				1
		11				~				~	~	-	~			~	1								4)	4,	-
					~		~			<u> </u>										4			~		2	4	15
		1 2						'					- 4			-4		~				-	~			0	1
	1		⊢ −− 		0	0		-		÷	0	0	0					<u> </u>		<u> </u>			-		- i		
	1 1	51 Z	┝── ┥		-	-					1		~		<u> </u>			- 21				~	~			0	
	ā		┝──┥		$\tilde{\sim}$	~		- v			I.	-			~			6		<u> </u>	v	~	~		4	2	0
1	13	1 1			4															-	-	-	-		-	-	
	S		\vdash		1										- 1					- 1							
					m	ш	<u> </u>	<u> </u>		<u> </u>	ш	ш	ш		ш	ш	ш			ш	<u> </u>	ш	m		ш	m	ш
			ļ		0	-0	~	5		~	-	0	<u> </u>		~		~	œ		<u> </u>	3	0	0		9	4	
		1 14				~	<u> </u>	0		0	<u>∞</u>	<u>~</u>	<u></u>		~	0	0	3		2	0	4	~		~	5	<u> </u>
16					-	m								i	- o		0			n 1	0 :	\sim			4	6	
_ ≃	1				-+					0			2				_										- ~
-	-	8			2	S	3	5	_	-	ŝ		5 2		4	\$	6	6		4	e	80	=		6	8	
A1		1 1 1 1			. 2	т	е	. 5		0 	۳		. 5 2		4	· 6	•	6		4	т	80	-		6.	co	
NAT	8	1 1 1 1 1 1 1 1 1 1 1 1 1			0.2	0.3	0 3	0.5(-	0 1 0	0.3	-	0 . 5 2		0 . 4	0.6	0.6	0 9 0		0 . 4	0	. 8	0 1 1		0.9	0.8	C
MINAT		8 9 5 9			80.2	80.3	40.3	40.50		10.10	10.3	7 0 1	7 0 . 5 2		20.4	30.6	80.6	80.90		40.4	40.3	90.8	90.11		40.9	40.8	0 0
LIMINAT					080.2	080.3	140.3	140.5(1 1 0 . 1 0	110.3	1 7 0 1	1 7 0 . 5 2		120.4	130.6	180.6	180.90		140.49	140.3	190.8	1 9 0 . 1 1		140.9	1 4 0 8	1 0 0 1
ELIMINAT					-080.2	-080.3	-140.3	-140.5(-110.10	-110.3(-170.1	-170.52		-120.4	-130.6	-180.6	-180.90		- 1 4 0 . 4	-140.3	-190.82	-190.11		- 1 4 0 . 9	- 1 4 0 8	1 0 0 1
IX ELIMINAT		林 第 第 万 第 希 表 口			E - 0 8 0 . 2	E - 0 8 0 . 3	E - 1 4 0 . 3	E - 1 4 0 . 5 (E - 1 1 0 . 1 0	E - 1 1 0 . 3 (E _ 1 7 0 1	E - 1 7 0 . 5 2		E - 1 2 0 . 4	E - 1 3 0 · 6	E - 1 8 0 · 6	E - 1 8 0 . 9 C		E - 1 4 0 . 4 9	E - 1 4 0 . 3	E - 1 9 0 . 8 2	E - 1 9 0 . 1 1		E - 1 4 0 . 9	E - 1 4 0 8	
LUX ELIMINAT	Date	其 第 第 万 元 元 元 元 二			7 E - 0 8 0 . 2	3 E - 0 8 0 . 3	7 E - 1 4 0 . 3	3 E - 1 4 0 . 5 (6 E - 1 1 0 . 1 0	8 E - 1 1 0 . 3 (0 E - 1 7 0 . 1	4 E - 1 7 0 . 5 2		8 E - 1 2 0 . 4	0 E - 1 3 0 · 6	6 E - 1 8 0 . 6	0 E - 1 8 0 . 9 C		6 E - 1 4 0 . 4 9	8 E - 1 4 0 . 3	4 E - 1 9 0 . 8 2	4 E - 1 9 0 . 1 1		3 E - 1 4 0 . 9	7 E - 1 4 0 8	
FLUX ELIMINAT	4	非常空 计学校 化 化			5 7 E - 0 8 0 . 2	83E-080.3	07E-140.3	73E-140.5(3 6 E - 1 1 0 . 1 0	3 8 E - 1 1 0 . 3 (5 0 E - 1 7 0 . 1	04E-170.52		5 8 E - 1 2 0 . 4 9	10E-130.6	36E - 180.6	5 0 E - 1 8 0 . 9 C		4 6 E - 1 4 0 . 4 9	8 8 E - 1 4 0 . 3	04E-190.82	4 4 E - 1 9 0 . 1 1		4 3 E - 1 4 0 . 9	17E-180.8	1 0 F - 1 9 0 5
D FLUX ELIMINAT	2	其其章 化化化化化			7 6 7 E - 0 8 0 . 2	083E-080.3	107E-140.3	5 7 3 E - 1 4 0 . 5 (5 3 6 E - 1 1 0 . 1 0	1 3 8 E - 1 1 0 . 3 (160E-170.1	4 0 4 E - 1 7 0 . 5 2		3 6 8 E - 1 2 0 . 4	7 1 0 E - 1 3 0 . 6	936E-180.6	2 5 0 E - 1 8 0 . 9 C		4 4 6 E - 1 4 0 . 4 9	3 8 8 E - 1 4 0 . 3	3 0 4 E - 1 9 0 . 8 2	5 4 4 E - 1 9 0 . 1 1	٥ ٥	9 4 3 E - 1 4 0 . 9	2 1 7 E - 1 4 0 8	0 1 0 F L 1 9 0 1
ND FLUX ELIMINAT	2			3 8	2767E-080.2	3 0 8 3 E - 0 8 0 . 3	1 1 0 7 E - 1 4 0 . 3	1 5 7 3 E - 1 4 0 . 5 (3 9	5 6 3 6 E - 1 1 0 . 1 0	1438E-110.3	1 1 6 0 E - 1 7 0 . 1	5 4 0 4 E - 1 7 0 . 5 2	5 8	1 3 6 8 E - 1 2 0 . 4	3710E-130.6	936E-180.6	1 2 5 0 E - 1 8 0 . 9 C	-	446E-140.49	5 3 8 8 E - 1 4 0 3	2304E-190.82	544E-190.11		1 9 4 3 E - 1 4 0 . 9	2 1 7 E - 1 4 0 8	0 1 0 F _ 1 9 0 3
AND FLUX ELIMINAT	Det	· · · · · · · · · · · · · · · · · · ·		338	2767E-0802	3 0 8 3 E - 0 8 0 . 3	4 1 0 7 E - 1 4 0 3	4 5 7 3 E - 1 4 0 . 5 (239	5 6 3 6 E - 1 1 0 . 1 0	4 4 3 8 E - 1 1 0 . 3	8 1 6 0 E - 1 7 0 . 1	6 4 0 4 E - 1 7 0 . 5 2	8 9	1368E-120.4	8710E-130.6	1936E - 180 6	1 2 5 0 E - 1 8 0 9 C	2 1	9 4 4 6 E - 1 4 0 4 9	5 3 8 8 E - 1 4 0 3	2 3 0 4 E - 1 9 0 . 8 3	1 5 4 4 E - 1 9 0 . 1 1	66	1 9 4 3 E - 1 4 0 . 9	1 2 1 7 E - 1 4 0 8	1 0 1 0 F _ 1 9 0 7
IN AND FLUX ELIMINAT	Det	其此之下的故事之实故其实之.		3 3 8	0. 2767E-080.2	0.3083E-080.3	0.4107E-140.3) . 4 5 7 3 E - 1 4 0 . 5 (239	0 . 5 6 3 6 E - 1 1 0 . 1 0	1.4438E-110.3	1.8160E_170.1	0 . 6 4 0 4 E - 1 7 0 . 5 2	1 6 8	0. 1368E-120.49	0.8710E-130.6	0.1936E - 180.6	0 . 1 2 5 0 E - 1 8 0 . 9 C	121) . 9 4 4 6 E - 1 4 0 . 4 9) . 5 3 8 8 E - 1 4 0 . 3) . 2 3 0 4 E - 1 9 0 . 8 2	0.1544E-190.11	0 9 9) . 1 9 4 3 E - 1 4 0 . 9) . 1 2 1 7 E - 1 4 0 . 8	1 0 1 0 F - 1 0 0
ION AND FLUX ELIMINAT	Dete D			2 3 3 8	10.2767E-080.2	10.3083E-080.3	10 . 4 1 0 7 E - 1 4 0 . 3	0 . 4 5 7 3 E - 1 4 0 . 5 (2 2 3 9	0 . 5 6 3 6 E - 1 1 0 . 1 0	0 . 4 4 3 8 E - 1 1 0 . 3 (0 8 1 6 0 E -1 7 0 1	0 . 6 4 0 4 E - 1 7 0 . 5 2	2 1 6 8	10.1368E-120.4	0 . 8 7 1 0 E - 1 3 0 . 6	0 . 1 9 3 6 E - 1 8 0 . 6	10.1250E-180.90	2 1 2 1	0.9446E-140.49	10.5388E - 140.3	0 · 2 3 0 4 E - 1 9 0 · 8 2	0.1544E-190.11	2099	0 . 1 9 4 3 E - 1 4 0 . 9	0 1 2 1 7 E 1 4 0 8	0 1 0 1 0 F - 1 9 0
VTION AND FLUX ELIMINAT				. 2 3 3 8	80.2767E-080.2	80.3083E-080.3	40.4107E-140.3	4 0 . 4 5 7 3 E - 1 4 0 . 5 (. 2 2 3 9	10.5636E - 110.10	10.4438E-110.3	70.8160E-170.1	70.6404E-170.52	. 2 1 6 8	30.1368E-120.4	20.8710E-130.6	90.1936E - 180.6	80.1250E-180.90	. 2 1 2 1	40.9446E-140.49	30.5388E - 140.3	00.2304E-190.82	90.1544E-190.11	. 2 0 9 9	50 1943E - 140 9	40.1217E_140.8	
LATION AND FLUX ELIMINAT				0.2338	.080.2767E-080.2	080.3083E-080.3	1 4 0 4 1 0 7 E - 1 4 0 3	140.4573E-140.5(0 . 2 2 3 9	1110.5636E - 110.10	1110.4438E - 110.3	1 7 0 8 1 6 0 E - 1 7 0 1	1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	0 . 2 1 6 8	1 3 0 . 1 3 6 8 E - 1 2 0 . 4 9	1 2 0 . 8 7 1 0 E - 1 3 0 . 6	190.1936E - 180.6	1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	0 . 2 1 2 1	1 4 0 . 9 4 4 6 E - 1 4 0 . 4 9	1 3 0 5 3 8 8 E - 1 4 0 3	200.2304E-190.83	1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	0 . 2 0 9 9	1 5 0 1 9 4 3 E - 1 4 0 9	1 4 0 1 2 1 7 E 1 4 0 8	
ULATION AND FLUX ELIMINAT				0 . 2 3 3 8	-080.2767E-080.2	-080.3083E-080.3	-140.4107E-140.3	-140.4573E-140.5(0 . 2 2 3 9	-1110.5636E-110.10	-1110.4438E-110.3	-170.8160E-170.1	-170.6404E-170.52	0 . 2 1 6 8	-130.1368E-120.4	-120.8710E-130.6	-190.1936E -180.6	-180.1250E-180.90	0 . 2 1 2 1	-140.946E-140.4	-130.5388E-140.3	-200.2304E-190.8	-190.1544E-190.11	0 . 2 0 9 9	- 1 5 0 · 1 9 4 3 E - 1 4 0 · 9	-140.1217E-140.8	
-CULATION AND FLUX ELIMINAT				0 . 2 3 3 8	E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 0	0.2239	E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	E - 1 1 0 . 4 4 3 8 E - 1 1 0 . 3 4	E - 1 7 0 8 1 6 0 E - 1 7 0 1	E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	0 2 1 6 8	E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4 9	E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	0 . 2 1 2 1	E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4 9	E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	0 . 2 0 9 9	E - 1 5 0 1 9 4 3 E - 1 4 0 9	E - 1 4 0 1 2 1 7 E - 1 4 0 8	
ALCULATION AND FLUX ELIMINAT				0 0 2 3 3 8	5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	9E -080.3083E -080.3	0E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 (0 0 2 2 3 9	6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	1 E - 1 1 0 . 4 4 3 8 E - 1 1 0 . 3	8E - 1 7 0 8 1 6 0 E - 1 7 0 1	1 E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	0 0 2 1 6 8	5E - 1 30 . 1 368E - 1 20. 4	8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	9E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	6E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	0 0.2121	1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	7E-200.2304E-190.83	4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	0 0 2 0 9 9	0 E - 1 5 0 1 9 4 3 E - 1 4 0 9	2 E - 1 4 0 1 2 1 7 E - 1 4 0 8	4E _ 2 0 0 1 0 1 0 F _ 1 9 0 3
CALCULATION AND FLUX ELIMINAT				200.2338	5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	34E-140.4573E-140.50	200.2239	86E-110.5636E-11000	0 1 E - 1 1 0 . 4 4 3 8 E - 1 1 0 . 3	78E-170.8160E-170.1	9 1 E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	2 0 0 . 2 1 6 8	4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4 9	3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	39E-190.1936E-180.6	06E-180.1250E-180.90	200.2121	3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	9 7 E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	2 0 1 0 2 0 9 9	5 0 E - 1 5 0 1 9 4 3 E - 1 4 0 9	4 2 E - 1 4 0 1 2 1 7 E - 1 4 0 8	
2 CALCULATION AND FLUX ELIMINAT				4 2 0 0 . 2 3 3 8	755E-080.2767E-080.2	6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	9 3 4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 0	4 2 0 0 . 2 2 3 9	9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	2 0 1 E - 1 1 0 . 4 4 3 8 E - 1 1 0 . 3 0	2 7 8 E - 1 7 0 . 8 1 6 0 E - 1 7 0 . 1	9 9 1 E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	4 2 0 0 . 2 1 6 8	2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4 9	6 3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	3 3 9 E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	4 2 0 0 . 2 1 2 1	3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	697E-200.2304E-190.82	7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	4 2 0 4 0 . 2 0 9 9	4 5 0 E - 1 5 0 1 9 4 3 E - 1 4 0 9	3 4 2 E - 1 4 0 1 2 1 7 E - 1 4 0 8	3 0 4 E _ 7 0 0 1 0 1 0 F _ 1 9 0 5
. 2 CALCULATION AND FLUX ELIMINAT				1 4 2 0 0 . 2 3 3 8	3 7 5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	2 6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	3 9 3 4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 (14200.2239	2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	6 2 0 1 E - 1 1 0 . 4 4 3 8 E - 1 1 0 . 3 0	4 2 7 8 E - 1 7 0 8 1 6 0 E - 1 7 0 1	8 9 9 1 E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	1 4 2 0 0 . 2 1 6 8	4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4 9	1 6 3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	6 3 3 9 E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	2 3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	14200.2121	2 3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	8 6 9 7 E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	2704E-190.1544E-190.11	1 4 2 0 1 0 . 2 0 9 9	6 4 5 0 E - 1 5 0 . 1 9 4 3 E - 1 4 0 . 9	2 3 4 2 E - 1 4 0 1 2 1 7 E - 1 4 0 8	4 3 0 4 E _ 7 0 0 1 0 1 0 F _ 1 9 0 5
-R, 2 CALCULATION AND FLUX ELIMINAT		2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3		· 1 4 2 0 0 . 2 3 3 8	· 3 7 5 5 E - 0 8 0 · 2 7 6 7 E - 0 8 0 · 2	· 2 6 4 9 E - 0 8 0 · 3 0 8 3 E - 0 8 0 · 3	· 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	· 3 9 3 4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 (. 1 4 2 0 0 . 2 2 3 9	· 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	. 6 2 0 1 E - 1 1 0 . 4 4 3 8 E - 1 1 0 . 3	. 4 2 7 8 E - 1 7 0 . 8 1 6 0 E - 1 7 0 . 1	. 8 9 9 1 E – 1 7 0 . 6 4 0 4 E – 1 7 0 . 5 2	. 1 4 2 0 0 . 2 1 6 8	· 4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4 9	. 1 6 3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	. 6 3 3 9 E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	· 2 3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	. 14200.2121	· 2 3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	· 1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	. 8 6 9 7 E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	· 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	. 142010.2099	. 6 4 5 0 E - 1 5 0 . 1 9 4 3 E - 1 4 0 . 9	2 3 4 2 E - 1 4 0 1 2 1 7 E - 1 4 0 8	4 3 0 4 E - 2 0 0 1 0 1 0 E - 1 9 0 5
T-R, & CALCULATION AND FLUX ELIMINAT		计数据 化化合金 化化合金 化化合金 化化合金 化化合金 化化合金 化化合金 化化合		1.14200.2338	0 . 3 7 5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	0. 2 6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	0 . 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	0 . 3 9 3 4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 (1.14200.2239	0 . 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	0. 6201E-110. 443BE-110. 30	0 . 4 2 7 8 E - 1 7 0 . 8 1 6 0 E - 1 7 0 . 1	0 . 8 9 9 1 E – 1 7 0 . 6 4 0 4 E – 1 7 0 . 5 2	1.142000.2168	0 . 4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4	0 . 1 6 3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	0 . 6 3 3 9 E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	0.2306E-180.1250E-180.90	1.14200.2121	0 . 2 3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	0 . 1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	0 . 8 6 9 7 E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	0. 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	1.142010.2099	0 . 6 4 5 0 E - 1 5 0 . 1 9 4 3 E - 1 4 0 . 9	0 2 3 4 2 E - 1 4 0 1 2 1 7 E - 1 4 0 8	0 4304F_200.11010F_190
UT-R, 2 CALCULATION AND FLUX ELIMINAT	5	林和说不得你的心思我不能说得我的说得我是让你的不能说"		1.14200.2338	8 0 . 3 7 5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	80.2649E-080.3083E-080.3	4 0 . 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	4 0 · 3 9 3 4 E - 1 4 0 · 4 5 7 3 E - 1 4 0 · 5 (1.14200.2239	10.2986E-1110.5636E-1110.10	10.6201E-110.4438E-110.3	70.4278E-170.8160E-170.1	60.8991E - 170.6404E - 170.52	1.142000.2168	3 0 . 4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4 9	20.1638E-120.8710E-130.6	90.6339E-190.1936E-180.6	8 0 . 2 3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	11.14200.2121	40.2331E-140.9446E-140.49	3 0 . 1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	00.8697E-200.2304E-190.81	9 0 . 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	11.142010.2099	50.6450E-150.1943E-140.9	<u>4</u> 0 2 3 4 2 E - 1 4 0 1 2 1 7 E - 1 4 0 8	0 0 4 3 0 4 E - 2 0 0 1 0 1 0 F - 1 9 0 5
PUT-R, & CALCULATION AND FLUX ELIMINAT	PE 5	· · · · · · · · · · · · · · · · · · ·		1.14200.2338	0 8 0 . 3 7 5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	0 8 0 . 2 6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	1 4 0 . 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	1 4 0 . 3 9 3 4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 (1.14200.2239	1 1 0 . 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	1 1 0 . 6 2 0 1 E - 1 1 0 . 4 4 3 B E - 1 1 0 . 3	1 7 0 . 4 2 7 8 E - 1 7 0 . 8 1 6 0 E - 1 7 0 . 1	1 6 0 . 8 9 9 1 E – 1 7 0 . 6 4 0 4 E – 1 7 0 . 5 2	1.14200.2168	1 3 0 . 4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4 9	1 2 0 . 1 6 3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	190.6339E-190.1936E-180.6	1 8 0 . 2 3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	1. 1420 0. 2121	1 4 0 . 2 3 3 1 E – 1 4 0 . 9 4 4 6 E – 1 4 0 . 4	1 3 0 . 1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	2 0 0 . 8 6 9 7 E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	1 9 0 . 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	11.142010.2099	1 5 0 . 6 4 5 0 E – 1 5 0 . 1 9 4 3 E – 1 4 0 . 9	1 4 0 . 2 3 4 2 E - 1 4 0 . 1 2 1 7 E - 1 4 0 . 8	2001 4304E 2001 1010F 1001
UTPUT-R, 2 CALCULATION AND FLUX ELIMINAT	APE 5 Deer			0 11 . 1 4 2 0 0 . 2 3 3 8	- 0 8 0 · 3 7 5 5 E - 0 8 0 · 2 7 6 7 E - 0 8 0 · 2	-080.2649E-080.3083E-080.3	-1 4 0 . 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	-140.3934E-140.4573E-140.50	0 1.1420 0.2239	-110.2986E-1110.5636E-1110.10	-110.6201E - 110.4438E - 110.3	-170.4278E-170.8160.8160E-170.1	- 1 6 0 . 8 9 9 1 E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	0 11.1420 0.2168		-120.1638E-120.8710E-130.6	-190.6339E-190.1936E-180.6	- 1 8 0 . 2 3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 0	0 11.1420 0.2121	-140.2331E-140.9446E-140.4	-130.1182E-130.5388E-140.3	-200.8697E-200.2304E-190.81	- 1 9 0 . 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	0 11.142010.2099	- 1 5 0 . 6 4 5 0 E - 1 5 0 . 1 9 4 3 E - 1 4 0 . 9	- 1 4 0 . 2 3 4 2 E - 1 4 0 . 1 2 1 7 E - 1 4 0 . 8	
OUTPUT-R, & CALCULATION AND FLUX ELIMINAT	TAPE 5	林寨村石田寺市口市寺市市村石田寺市山市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市		3 0 1 . 1 4 2 0 0 . 2 3 3 8	- 0 8 0 . 3 7 5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	E - 0 8 0 . 2 6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	E - 1 4 0 . 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	E - 1 4 0 . 3 9 3 4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 (10 1.1420 0.2239	E - 1 1 0 . 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	<u>= 1110.6201E - 110.4438E - 110.3</u>	= -170.4278E -170.8160E -1770.	E – 1 6 0 . 8 9 9 1 E – 1 7 0 . 6 4 0 4 E – 1 7 0 . 5 2	3 0 1 . 1 4 2 0 0 . 2 1 6 8	E	E - 1 2 0 . 1 6 3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	E - 1 9 0 . 6 3 3 9 E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	E - 1 8 0 . 2 3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	3 0 11.1420 0.2121	E - 1 4 0 . 2 3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	E - 1 3 0 . 1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	E - 2 0 0 . 8 6 9 7 E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	E - 1 9 0 . 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	3 0 11. 14 2 0 1 0. 2 0 9 9	: - 1 5 0 . 6 4 5 0 E - 1 5 0 . 1 9 4 3 E - 1 4 0 . 9	: - 1 4 0 . 2 3 4 2 E - 1 4 0 . 1 2 1 7 E - 1 4 0 . 8	
OUTPUT - R, & CALCULATION AND FLUX ELIMINAT	TAPE 5	林市村市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市		7 3 0 1 . 1 4 2 0 0 . 2 3 3 8	7 E - 0 8 0 . 3 7 5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	F E - 0 8 0 . 2 6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	7 E - 1 4 0 . 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	7 E – 1 4 0 . 3 9 3 4 E – 1 4 0 . 4 5 7 3 E – 1 4 0 . 5 (30 1.1420 0.2239	5E - 1 1 0 . 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	<u>-</u> E - 1 1 0 . 6 2 0 1 E - 1 1 0 . 4 4 3 8 E - 1 1 0 . 3	1 E - 1 7 0 . 4 2 7 8 E - 1 7 0 . 8 1 6 0 E - 1 7 0 . 1	9 E - 1 6 0 . 8 9 9 1 E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	730 1.1420 0.2168	1 E - 1 3 0 . 4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4	7E - 1 2 0 . 1 6 3 8E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	3E - 1 9 0 . 6 3 3 9E - 1 9 0 . 1 9 3 6E - 1 8 0 . 6	1 E - 1 8 0 . 2 3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 0	30 11.1420 0.2121	5 E - 1 4 0 . 2 3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	9E - 1 3 0 . 1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	3 E - 2 0 0 . 8 6 9 7 E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	3 E - 1 9 0 . 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	30 11.1420 0.2099	7 E - 1 5 0 . 6 4 5 0 E - 1 5 0 . 1 9 4 3 E - 1 4 0 . 9	5 E - 1 4 0 2 3 4 2 E - 1 4 0 1 2 1 7 E - 1 4 0 8	
OUTPUT -R, & CALCULATION AND FLUX ELIMINAT	TAPE 5	非常能不同病情以 的复数有限的不同者 电子电电子 电位 二 只 4 年 1 9		7 3 0 1 . 1 4 2 0 0 . 2 3 3 8	9 E - 0 8 0 . 3 7 5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	2 E - 0 8 0 . 2 6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	7 E - 1 4 0 . 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	17 E - 1 4 0 3 9 3 4 E - 1 4 0 4 5 7 3 E - 1 4 0 5 0	7 3 0 1 . 1 4 2 0 0 . 2 2 3 9	5 E - 1 1 0 . 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	77E = 1110.6201E = 110.4438E = 110.3	1.4 E - 1 7 0 . 4 2 7 8 E - 1 7 0 . 8 1 6 0 E - 1 7 0 . 1	19E – 160 . 89991E – 170. 6404E – 170. 52	0;730 1 1 4 0 0 2 1 6 8 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	14 E - 1 3 0 . 4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4	5;9E-120.1638E-120.8710E-130.6	3 3 E - 1 9 0 . 6 3 3 9 E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	511E - 180. 2306E - 180. 1250E - 180. 9 C	730 11.1420 0.2121	6 E - 1 4 0 . 2 3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	9 E - 1 3 0 1 1 8 2 E - 1 3 0 5 3 8 8 E - 1 4 0 3	7 8 E - 2 0 0 . 8 6 9 7 E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	18E - 190.2704E - 190.1544E - 190.11	730 11.1420 0.2099	19E - 150.6450E - 150.1943E - 140.9	5 E - 1 4 0 . 2 3 4 2 E - 1 4 0 . 1 2 1 7 E - 1 4 0 . 8	
OUTPUT-R, 2 CALCULATION AND FLUX ELIMINAT	TAPE 5	林市村市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市		9730 11.1420 0.2338	8 9 E - 0 8 0 . 3 7 5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	1 2 E - 0 8 0 . 2 6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	5 7 E - 1 4 0 . 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	3 7 E - 1 4 0 . 3 9 3 4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 (9730 1.1420 0.2239	8 5 E - 1 1 0 . 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	777E - 110.6201E - 110.4438E - 110.3	784E-170.4278E-170.8160E-170.70	4 9 E - 1 6 0 . 8 9 9 1 E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	9730 1.1420 0.2168	4 4 E - 1 3 0 . 4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4	0 5 9 E - 1 2 0 . 1 6 3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	5 3 3 E - 1 9 0 . 6 3 3 9 E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	<u>61E-180.2306E-180.1250E-180.00</u>	9730 11.1420 0.2121	V1 6 E - 1 4 0 . 2 3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	1 9 E - 1 3 0 . 1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	78E-200.8697E-200.2304E-190.83	2 3 8 E - 1 9 0 . 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	9730 11.1420 0.2099	89E-150.6450E-150.1943E-150.1943E-140.9	1 5 E - 1 4 0 . 2 3 4 2 E - 1 4 0 . 1 2 1 7 E - 1 4 0 . 8	27E - 200 4304E - 200 11010E - 190
•• OUTPUT-R, 2 CALCULATION AND FLUX ELIMINAT	or TAPE 5	林市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市		1.9730 1.1420 0.2338	8 8 9 E - 0 8 0 · 3 7 5 5 E - 0 8 0 · 2 7 6 7 E - 0 8 0 · 2	3 1 2 E - 0 8 0 . 2 6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	757E-140.5560E-140.4107E-140.3	4 3 7 E - 1 4 0 . 3 9 3 4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 0	. 9 7 3 0 1 . 1 4 2 0 0 . 2 2 3 9	7 8 5 E - 1 1 0 . 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	5 7 7 E - 1 1 0 . 6 2 0 1 E - 1 1 0 . 4 4 3 8 E - 1 1 0 . 3	984E-170.4278E-170.819160E-1700.8	2 4 9 E - 1 6 0 . 8 9 9 1 E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	. 9.7 3 0 1 . 1 4 2 0 0 . 2 1 6 8	7 4 4 E -1 3 0 . 4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4	059E-120.1638E-120.8710E-130.6	6 3 3 E - 1 9 0 6 3 3 9 E - 1 9 0 1 9 3 6 E - 1 8 0 6	2 6 1 E - 1 8 0 . 2 3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	. 9 7 3 0 11. 1 4 2 0 0. 2 1 2 1	0 1 6 E - 1 4 0 . 2 3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	6 1 9 E - 1 3 0 . 1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	8 7 8 E - 2 0 0 . 8 6 9 7 E - 2 0 0 . 2 3 0 4 E - 1 9 0 . 8 2	9 3 8 E - 1 9 0 . 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	. 9 7 3 0 11. 1 4 2 0 1 0. 2 0 9 9	7 8 9 E - 1 5 0 . 6 4 5 0 E - 1 5 0 . 1 9 4 3 E - 1 4 0 . 9	9 1 5 E - 1 4 0 2 3 4 2 E - 1 4 0 1 2 1 7 E - 1 4 0 8	927E - 200 4304E - 200 1010F - 190
blem OUTPUT-R, 2 CALCULATION AND FLUX ELIMINAT	meer TAPE 5 Dear	非常的过程表现了的实际,你就不会能是以我们的人们的。""你,你们就会会了。"		8 . 9 7 3 0 1 . 1 4 2 0 0 . 2 3 3 8	3 8 8 9 E - 0 8 0 . 3 7 5 5 E - 0 8 0 . 2 7 6 7 E - 0 8 0 . 2	2 3 1 2 E - 0 8 0 . 2 6 4 9 E - 0 8 0 . 3 0 8 3 E - 0 8 0 . 3	5 7 5 7 E - 1 4 0 . 5 5 6 0 E - 1 4 0 . 4 1 0 7 E - 1 4 0 . 3	3 4 3 7 E - 1 4 0 . 3 9 3 4 E - 1 4 0 . 4 5 7 3 E - 1 4 0 . 5 (6 . 9 7 3 0 1 . 1 4 2 0 0 . 2 2 3 9	2 7 8 5 E - 1 1 0 . 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 1 0	8 5 7 7 E - 1 1 0 . 6 2 0 1 E - 1 1 0 . 4 4 3 8 E - 1 1 0 . 3	3 9 8 4 E - 1 7 0 . 4 2 7 8 E - 1 7 0 . 8 1 6 0 E - 1 7 0 . 1	1 2 4 9 E - 1 6 0 . 8 9 9 1 E - 1 7 0 . 6 4 0 4 E - 1 7 0 . 5 2	4.9730 11.1420 0.2168	3744E-130.4245E-130.420.42	3 0 5 9 E - 1 2 0 . 1 6 3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	5 6 3 3 E - 1 9 0 6 3 3 9 E - 1 9 0 1 9 3 6 E - 1 8 0 6	4 2 6 1 E - 1 8 0 . 2 3 0 6 E - 1 8 0 . 1 2 5 0 E - 1 8 0 . 9 C	2.9730 11.1420 0.2121	2 0 1 6 E - 1 4 0 . 2 3 3 1 E - 1 4 0 . 9 4 4 6 E - 1 4 0 . 4	2 6 1 9 E - 1 3 0 . 1 1 8 2 E - 1 3 0 . 5 3 8 8 E - 1 4 0 . 3	787878E - 200.8697E - 200.2304E - 190.82	4 9 3 8 E - 1 9 0 . 2 7 0 4 E - 1 9 0 . 1 5 4 4 E - 1 9 0 . 1 1	0.9730 11.1420 0.2099	5 7 8 9 E - 1 5 0 6 4 5 0 E - 1 5 0 1 9 4 3 E - 1 4 0 9	4 9 1 5 E - 1 4 0 . 2 3 4 2 E - 1 4 0 . 3 4 0 . 8 4 2 E - 1 4 0 . 8	3927E - 200 4304E - 200.11010F - 190
"*************************************	pontor TAPE 5	2345、4、4、4、2、2、2、2、4、2、2、2、2、2、2、2、2、2、2、2		8 9 7 3 0 1 . 1 4 2 0 0 . 2 3 3 8	· 3 8 8 9 E – 0 8 0 · 3 7 5 5 E – 0 8 0 · 2 7 6 7 E – 0 8 0 · 2	· 2 3 1 2 E – 0 8 0 · 2 6 4 9 E – 0 8 0 · 3 0 8 3 E – 0 8 0 · 3	· 5 7 5 7 E - 1 4 0 · 5 5 6 0 E - 1 4 0 · 4 1 0 7 E - 1 4 0 · 3	· 3 4 3 7 E – 1 4 0 . 3 9 3 4 E – 1 4 0 . 4 5 7 3 E – 1 4 0 . 5 0	6 . 9 7 3 0 1 . 1 4 2 0 0 . 2 2 3 9	. 2 7 8 5 E - 1 1 0 . 2 9 8 6 E - 1 1 0 . 5 6 3 6 E - 1 1 0 . 7 0	. 8 5 7 7 E – 1 1 0 . 6 2 0 1 E – 1 1 0 . 4 4 3 8 E – 1 1 0 . 3	3 9 8 4 E - 1 7 0 4 2 7 8 E - 1 7 0 8 1 6 0 E - 1 7 0 1	. 1 2 4 9 E – 1 6 0 . 8 9 9 1 E – 1 7 0 . 6 4 0 4 E – 1 7 0 . 5 2	4 9730 1.1420 0.2168	. 3 7 4 4 E - 1 3 0 . 4 2 4 5 E - 1 3 0 . 1 3 6 8 E - 1 2 0 . 4	· 3 0 5 9 E - 1 2 0 . 1 6 3 8 E - 1 2 0 . 8 7 1 0 E - 1 3 0 . 6	· 5 6 3 3 E - 1 9 0 . 6 3 3 9 E - 1 9 0 . 1 9 3 6 E - 1 8 0 . 6	. 4 2 6 1 E – 1 8 0 . 2 3 0 6 E – 1 8 0 . 1 2 5 0 E – 1 8 0 . 9 C	2.9730 11.1420 0.2121	· 2 0 1 6 E - 1 4 0 · 2 3 3 1 E - 1 4 0 · 9 4 4 6 E - 1 4 0 . 4	· 2 6 1 9 E - 1 3 0 . 1 1 8 2 E - 1 3 0 . 5 3 8 E - 1 4 0 . 3	· 7878E - 200.8697E - 200.867 · 8 · 2 00 · 2 304E - 190.8	. 4 9 3 8 E – 1 9 0 . 2 7 0 4 E – 1 9 0 . 1 5 4 4 E – 1 9 0 . 1 1	0.9730 11.1420 0.2099	· 5 7 8 9 E - 1 5 0 . 6 4 5 0 E - 1 5 0 . 1 9 4 3 E - 1 4 0 . 9	. 4 9 1 5 E - 1 4 0 . 2 3 4 2 E - 1 4 0 . 1 2 1 7 E - 1 4 0 . 8	3027E - 200 4304E - 200 1010E - 100

GSFC FORM 541-1 (July - 60)

Ń

H. Running Time

The running time for this program will be about three minutes for every L line.

VII. CONSERVATION EQUATION CALCULATION

A. Introduction

This program studies the build-up of proton density by use of the conservation equation (see equation (1)). Several lines of action are available. Either a transient or a time-averaged steady state solution can be calculated for any of 15 desired energy levels without altering the program.

In the transient steady-state solution the conservation equation is integrated as a function of time for a particular energy level until maximum and minimum values of the densities start repeating from one solar cycle to another. At this point the cycle number is recorded together with the time of the maximum and minimum densities. These values are printed with the maximum and minimum density and flux values as well as with the ratio of the maximum flux to the minimum flux. In addition, when calculating the transient steady-state solution, one may have the time history of any one of the energy levels printed on tape 5 with as many points as desired.

In the time-averaged steady-state solution the condition $dN_p/dt = 0$ yields a density equation for density N_p which is solved using the relative neutron source strength Φ together with Σ and R from the last program. All these values are averaged over time for this solution of the conservation equation.

Three subroutines assist the main program: subroutine RUNGE is used in integrating by the Runge Kutta technique, subroutine DERIV is used to evaluate dN_p/dt for a given t and N_p and subroutine TABLE interpolates any given table either logarithmically or linearly.

B. Equations

The form of the particle conservation equation used for the study of the proton population as a function of time is given by

$$\frac{\mathrm{d}\mathbf{N}_{\mathbf{p}}}{\mathrm{d}\mathbf{t}} = \mathbf{C}_{\mathbf{0}} \Phi - \mathbf{C}_{\mathbf{1}} \mathbf{N}_{\mathbf{p}} \left(\frac{\mathrm{d}\mathbf{E}}{\mathrm{d}\mathbf{x}}\right) - \mathbf{C}_{\mathbf{2}} \mathbf{N}_{\mathbf{p}} \frac{\mathrm{d}}{\mathrm{d}\mathbf{E}} \left(\frac{\mathrm{d}\mathbf{E}}{\mathrm{d}\mathbf{x}}\right) - \mathbf{C}_{\mathbf{2}} \mathbf{N}_{\mathbf{p}} \Sigma$$
(1)

where $\frac{dE}{dx}$, $\frac{d}{dE} \left(\frac{dE}{dx} \right)$, Φ and Σ are the quantities to be supplied and where: $N_p = \text{density}$ $C_0 = A_0 / L^2 E^{B_0} \cos^4 \lambda_0$ $C_1 = A_1 / E^{B_1}$ $C_2 = A_2 E^{B_2}$ E = Energy

 A_0, \ldots, A_2 = high or low energy conservation equation coefficients depending on whether E > 80 Mev. or E \leq 80 Mev. respectively

The condition dNp/dt = 0 yields the equation for the time averaged steady state proton density:

$$N_{p} = \frac{A_{0}\Phi}{L^{2}E^{B_{0}}\left[\frac{A_{1}}{E^{B_{1}}}\left(\frac{dE}{dX}\right) + A_{2}E^{B_{2}}\frac{d}{dE}\left(\frac{dE}{dX}\right) + A_{2}E^{B_{2}}\Sigma\right]\cos^{4}\lambda_{0}}$$

where Φ , Σ and the scale factor R used in calculating dE/dx and d/dE (dE/dx) are all averaged over time.

The density $N_{_{\rm D}}$ gives a flux by the equation:

$$F1ux = 2C_2N_p = N_pv$$

where v is the neutron velocity factor.

C. Mnemonics

Quantity	Description			Units
TIME(J)	Abscissa of 12 years	time in in	crements of years for	years
ELOSS(J)	dE/dk corre	Mev/cm.		
E(J)	energy corre	Mev.		
CONVM	conversion f	actor – n	nonths to seconds	-
ALO	$A_0 \text{ for } E \leq 8$	80 Mev. (s	see page 130)	# protons cm. sec. Mev.
AL1	A ₁ "	**	"	cm./sec.
AL2	A ₂ ''	**	"	cm./Mev ² /sec.
AH0	A_0 for $E > 8$	30 Mev. (s	see page 130)	# protons cm. sec. Mev.
AH1	A ₁ ''	**		cm./sec.
AH2	A _ ''	**	11	cm./Mev ² /sec.
BL0	$B_0 \text{ for } E \leq 8$	80 Mev. (s	see page 130)	_
BL1	B ₁ ''	**	"	-
BL2	B ₂ ''	**	**	-
BH0	$B_0 \text{ for } E > 8$	80 Mev. (s	see page 130)	-
BH1	B ₁ "	11	"	-
BH2	B ₂ "	**	**	-
DELOSS(J)	d(dE/dx)/dE (see Figure	correspo 12)	onding to DE(J)	cm. ⁻¹
DE(J)	energy corr (see Figure	esponding 12)	to DELOSS(J)	Mev.

Quantity	Description	Units
PREL(J)	ϕ for TIME(J) (see page 130 and Figure 11)	-
AVPRL	simple average of PREL(1),, PREL(12)	-
ALAT	mirror latitude λ_0	degrees
EL	magnetic field lineL	earth radii
В	magnetic induction B	gauss
CONVR	conversion factor – degrees to radians	-
ALATO	ALAT in radians	radians
CSLAT4	cos ⁴ (ALATO)	-
ELEL	L ²	(earth radii) ²
R(I)	atmospheric scale factor R for TIME(I)	-
SIG(I)	atmospheric loss parameter Σ for TIME(I)	atoms/cm.
ENO	initial density N_{p_o} for integration	# protons/cm ³
TSUBO	initial time t_o for integration	months
DT1	integration interval for ICSUBO	months
DT2	integration interval for all other cycles	months
TEND	end limit on integration	months
IEST	initial energy level subscript	-
IEDEL	increment for energy level subscript	-
IEEND	final energy level subscript	-
IEPR	subscript of energy level whose time history is desired	_

Quantity	Description	Units
NPRINT	a control factor for the time history print on tape 5. Density and flux are given for every NPRINT increments in time. (See Restriction (1)).	_
ICSUBO	initial cycle number corresponding to ENO and TSUBO	-
SUMR	sum of R(1),, R(12)	-
AVR	simple average of $R(1),, R(12)$	-
SUMSIG	sum of SIG(1),, SIG(12)	atoms/cm
AVSIG	simple average of SIG(1),, SIG(12)	atoms/cm
Т	time	months
TMAX	time of an eleven year cycle – 132 months	months
тск	time check to see if TEND has been reached	months
DT	increment in time	months
ICYCLE	cycle number	-
EMAX(J)	maximum density for cycle J	atoms/cm ³
EMIN(J)	minimum density for cycle J	atoms/cm ³
ETMAX(J)	time at EMAX(J)	months
ETMIN(J)	time at EMIN(J)	months
Μ	subscript to indicate the energy level which is under consideration	-
ENER	energy level M under consideration	Mev.
ITEST3	test value to see if the energy level under consideration is to have its time history printed on tape 5	_

٠.

- -

Quantity	Description	Units
ALOSS	temporary storage of ELOSS(M)	Mev./cm.
X(1),,		
X(15)	temporary storage of DE(1),, DE(15)	Mev
Y(1),,		
Y(15)	temporary storage of DELOSS(1),, DELOSS(15)	cm ⁻¹
ALOSSA(J)	$(dE/dx) \times R(J)$ for energy ENER	Mev./cm.
DLOSSA(J)	$(d(dE/dx)/dE) \times R(J)$ for energy ENER	cm ⁻¹
A0	temporary storage of ALO or AHO	# protons cm. sec. Mev.
A1	temporary storage of AL1 or AH1	cm/sec
A2	temporary storage of AL2 or AH2	$\rm cm/Mev^{2}sec$
В0	temporary storage of BL0 or BH0	-
B1	temporary storage of BL1 or BH1	-
B2	temporary storage of BL2 or BH2	-
C0	conservation equation coefficient (see page 129)	# protons/cm ³ sec Mev.
C1	conservation equation coefficient (see page 129)	cm/sec. Mev.
C2	conservation equation coefficient (see page 129)	cm/sec. Mev.
DEDX	temporary storage of ALOSSA(J)	Mev./cm.
DDEDX	temporary storage of DLOSSA(J)	cm ⁻¹

136

٠.

Quantity	Description	Units
DENS	proton density N _p	# protons/cm ³ Mev.
FLUX	proton flux	# protons/cm ² sec. Mev.
NP	counter of the increments in time; used as a check for NPRINT	-
N5	counter of the number of prints on tape 5	
EN	proton density N_{p}	atoms/cm ³ Mev
ICYM1	the value ICYCLE-1 used in testing for steady-state	-
TEST1	test to see if steady state has been reached	-
TEST2	test to see if steady state has been reached	-
EPR1	minimum density in cycle ICYM1	# protons/cm ³ Mev.
FLPR1	flux for EPR1	# protons/cm ² sec. Mev.
TPR1	time of EPR1	months
EPR2	maximum density in cycle ICYM1	# protons/cm ³ Mev.
FLPR2	flux for EPR2	# protons/cm ² sec. Mev.
TPR2	time of EPR2	months
RATIO	ratio of FLPR2 to FLPR1	-

137

٠.

D. Flow Chart

1. Main Program

٠.

.

5

- - -

 $\mathbf{138}$

2. Subroutine RUNGE

• •

3. Subroutine DERIV

4. Subroutine TABLE

.

• •

E. Fortran Listing

CCNSER

10/01/64

000

CCNSERVATION EQUATION CALCULATION IF DI1=0.0 THON RRANCH TO TIME AVERAUE STEACY STATE SCLUTION. UTHERMIS-INFEGDATE STEAUY STATE SOLUTION AVERAGEC UVER TIME. DIMENSION CILS).ELOSS(15),TIME(12).KIL2).VELG5S(15),DE(15),PREL(12 1),ALU35AC(12).ELOSS(12),YIL5).YIL5).YIL2).KIL2).EG(55(12),DE(15),PREL(12) 1),ALU35AC(12).EUS3S(12),YIL5).YIL5).YIL5).YIL2).HIL2).EG(500).EC(500)

IFESTSCUCD FESTSCUCD CCMMCN CUCLLC2.x.Y.TIME.PREL.ALOSSA.CLCSSA.SIG FRECUENCY TUCTSC.10) I FCRMAT(SFL.4) 2 FURMAT(SFL.4) 3 FURMAT(IP15.3, IE2C.4, F20.3) 3 FURMAT(ZELU.4/3FR.4/313/315) 720 FLRMAT(ZELU.4/3FR.4/313/315) 710 FLRMAT(ZELU.4/3FR.4/313/315)

DC 11 J=1.11

1

1 Time(1+1)=TIPE(J)+12.0 ELOSS(1)=5.39956-2 ELOSS(1)=2.57356-2 ELOSS(3)=1.67756-2 ELOSS(5)=1.67756-2 ELOSS(5)=1.67756-2 ELOSS(5)=1.67766-3 ELOSS(1)=6.47406-3 ELOSS(1)=6.47406-3 ELOSS(1)=6.47406-3 ELOSS(1)=4.6546-3 ELOSS(1)=4.45546-3 ELOSS(1)=4.45546-3 ELOSS(1)=3.46026-3 ELOSS(1)=3.46026-3 ELOSS(1)=3.47016-3 ELOSS(1)=3.47016-3 ELOSS(1)=3.47766-3 ELOSS(1)=3.47766-3 ELOSS(1)=3.64766-3 ELOSS(1)=5.47766-3 ELOSS(1)=5.47766-3 ELOSS(1)=5.47766-3 ELOSS(1)=5.47766-3 ELOSS(1)=5.47766-3 ELOSS(1)=5.47766-3 ELOSS(1)=5.47766-3 ELOSS(1)=5.47766-3 ELOSS(1)=5.47766-3 E(0)=1.5.6

142

E(8)=200.

č(9)=250. E(10)=360. E(11)=350.

E(12)=400. E(13)=500. E(14)=600.

E(15)=/00

 $_{\odot}$

CCNVERT 1MG.= 36CC+24+30 SEC CCNVM= 2.592E6

10-E-80 MEV ر ب

AL0=CCAVM* 2.964E-13 AL1=CCAVM*3.463E+E

AL2=CC VVN+7.255E+8

810=2.503

8L1=. 223 BL2=.417

CONSER

C 80-F-TCO FEV AHD-GCOWN-3.4792E-13 AHD-GCOWN-3.4792E-13 AHD-GCOWN-3.4792E-13 AHD-GCOWN-3.4792E-13 AHD-GCOWN-3.4792E-13 AHD-GCOWN-3.4792E-13 AHD-GCOWN-3.4792E-13 AHD-GCOWN-1.343EF4 DECOMPACTON DECOMPACTO

10/01/64

CONSER

10/01/64

ZF5.1//23h ENERGY LEVEL START =13./23H UELTA ENERGY LEVEL =13/ 323H ENERGY LEVEL ENU =13//30H ENERGY LEVEL TIME HISTORY =13. 474,92P INUIGATES ENERGY LEVEL AT WHICH TIME HISTORY CF DENSITY AND 5FLUX WILL BE PRINNED ON TAPE 5. /44X,43H,ERO INDICATES NO TIME HI 6STORY ON TAPE 5. /130H CYCLE AT T SUB LERG ***** =15//35H PRI 7NITNG UN TAPE 5. /120H CYCLE AT T SUB LERG ***** =15//35H PRI 701 FUX WHITE CUIPUT TAPE 5. /122.(A(1).51G(1).1=1.12) 702 FURMAT(LX.4HH(1).10X.0HSIG(1)/(2E14.4)) I VAX н NO. I TIME (MC) IF(DTI) SUC(ICCC,ICG) 1000 WKITE UUTPUT TAPE 3,1001 ALAT,EL.6 1000 FERMAT(48H) TIME 30,1001 ALAT,EL.6 101 FERMAT(48H) TIME 30,5328UY STATE SCLUTION FCR LATO =F8.4, 101 Left 4,64 & e=F7.44/// PROTON- PHI BAR SIG BAK 286H LNLRGY PROTON- PROTON- PHI BAR SIG BAK C HEADING C HEADING AND R.SIG.PREL, AVERAGED FCR TIME AVERAGE SI.SI. SOLUTION 400 READ TWPUT TAPE 2,720,ENC, ISUBO, DIII, CT2, TENC, IEST, IECEL, ILENC, T ENC ** TEENC MUST UP LESS THAN OR EGUAL TO IS , BUT GREATER THAN O 7CG FGRMIT(2011 ***** PRGGAM INPUT ****///) WRITE UUTPUT TAPE 3.701.ALAT.EL.B.FDC.TSU00.BT1.UT2. ITEN0.LEST.ICEEL.IEEN0.IEPR.ICSUBO.NPRINT 7CI FCRMATLIJH LATG *** =F8.4/13H L ***** =F8.4/13H IEA.4/10H NB SUB C =E12.4/13H L ***** =F8.4/13H 113H UCLTA FI =FF.4/13H CELTA T2 =F8.4 /135 DENSITY/) FLUX, 9X, 31PDENSITY I TIME (MC) C(CE/DX)/DE/ 53x,13H1 (MAX/WIN)/ 51bX,1H1,37X,1H1,35X,1H1) WRITE CUTPUT TAPE 3,700 FLUX SUMSIG=SUMSIG+SIG(NN) LIEP4-WERIAT.ICSUBC C INPUE PRIMILUT AVS16=SUMS16/12.C DC 1006 NN=1.12 DC 1003 NN=1,12 DC 1068 NA=1,12 DU 1002 NN=1.12 SUMR=SUMK+R(NN) DC 1005 NN=1,12 ICU8 PREL(NN)=AVPRL 1006 SIG(NN)=AVSIG AVR=SUPR/12.0 $(N \in V)$ LNERGY SUMS16=0.0 3 (DE/LX) ICO3 R(NN)=AVR TEAX=132. SUMR=0.0 1CK=0.0 T=TSULC 286H 434H 1005 1002 J

144

CONSER

۶,

FLUX Ľ JUX CENSITY) MRITE CUTPUT TAPE 5,900,ICYCLE 900 FERMATICAH CYCLE NU. =14,35X,1H1,33X,1H1) 900 FERMATICAH CYCLE NU. =14,35X,1H1,33X,1H1) 911 MRITE CUTPUT TAPE 3,902 902 FERMATICIAHONPRINT MILL CAUSE T5,E5,AND FL5 TO EXCEED UIMENSIGN GF C TIME HISTURY HEADING CN TAPE 5 ITESTJAT HEADING CN TAPE 5 ITESTJAT-LLPK IF(ITC)13) 31C,301,31C 301 WHIFE UUTPUT TAPE 5,302.EAER.ALAT.EL.B 301 WHIFE UUTPUT TAPE 5,300 WHIFE TAPE 5,300 WHIFE TAPE 5,300 WHIFE TAPE 5,300 WHIFE TAPE 5,300 WHIFE TAPE 5,300 WHIFE TAPE 5,300 WHIFE TAPE 5,300 WHIFE 5,300 ALOSSA(J)=K(J)*ALCSS ALOSSA(J)=K(J)*EANS 20 DLOSSA(J)=R(J)*EANS NOM HAVE (DE/DX)ATMOS ANG (D(DE/DX)/DE)ATMCS AS FUNCTIONS OF TIME FUR A GIVEN ENERGY AND L 710 IF(ENER-B0.) 21+21+22 DENS=AU#AVPRL/((AC/CO)*(C1*DEDX+C2*(EDECX+AVS16))) FLUX=2.0*DENS+C2/CENVM C COMPUTE TIME AVERAGE STEADY STATE SCLUTICA IFFUTI) 50C+11C0+1959 23 CU=A0/{ELEL*ENER**80*CSLAT4) 1099 DU 300 M=IEST,IEENG,IECEL X(K)=UL(K) 201 Yik=20L055(K) CALL TABL055(K) D0 20 J=1+12 Cl=A1/(ENER**B1) DUEDX=ULGSSA(1) C2=A2*LNEx**62 1100 0EDX=AL055A(1) 310 ALOSS=LLOSS(M) DC 201 K=1,15 ICYCLE = ICSUBC E1MAX(1)=0.0 EIMIN(1)=0.0 EMAX(1)=LNC EMIN(1)=CNO 60 10 500 A2=AL2 B0=BLC B1=6L1 B2=bL2 G0 T0 23 A0=AH0 A2=AH2 21 AU=ALC Al=AHL B0=BH0 81=8H1 B2=8H2 01=011 15000.1 A 1 = AL 1 22

υu

FL5(V0)=-N1*2.0*C2/CCNVM WAITE CUTTAPE 5.916.(T5(1),FL5(1),E5(1),I=1,N5) 916 FCMMATI20X.0PF9.3.0PF11.4,1PE12.4,2H I,CPF9.3.CPF11.4,1PE12.4, 12H 1.0PF5.3.CPF11.4,1PE12.4) 1CY5=ECYCLE+1 WRITE ULFPUT TAPE 3,1101,ENER,FLUX.DENS.AVPRL.AVSIG. BII IF(EMIN(ICYCLE)-ENI) a15,815,612
BII IF(EMIN(ICYCLE)=ENI)
a12 EMIN(ICYCLE)=ENAX
C TEST STEALY STATE SCLUTIUN
d15 TCK=TCK+132.C CHECK ENU PLINT FCR WIN-MAX 101 IF(EMAA(IUVCLE)-ENI) «10,815,011 799 IF(EMAX(ICYCLE)-EA1) 800, 30,801 801 [F(EMIN(LLYCLE)-EN1) 30,30,802 802 EMIN(LYCLE)=EN1 EIMIN([CYCLE)=EN1 60 TC 30 EN=EN0 30 CALL RUNGE(T.EN.CT.DEN.T1.EN1) 1F(T1-TPAX) 31,10C,1C0 IF(ICYLLE-16SUEC) 019,849,820 WRITE CUIPUT TAPE 5,900, ICY5 1101 FURMAF(1HC,FE.2,1F6E13.4) IF(NP-NPKINF) 799,911,911 911 N5=N5+1 C ADJUST ENL CF 11 YEAR CYCLE 100 EN1=EN+((FMAX-T)/CT)*CEN 1F(ITC5T3) 101,915+101 C PRINT TIME MISTCRY GN 5 E5(N5)=EN1 FL5(N5)=EN1+2.0+C2/CGNVM BEGIN RUNGE KUTTA TECHNIQUE C TEST/STORE FIME HISTCRY TF(TTEST3) 799,910,793 C TEST AND STURE MIN-MAX ETMAX(ICYCLE)=TMAX 810 EMAX(ICYCLE)=EN1 SCO EMAX(ICYCLE)=ENI ETMAX(iCYCLE)=T1 T5(N5)=TA.2X 6C TC J5 1DEDX, CUEUX GU TC 3C0 11=(4N)41 GC TO 30 915 N5=N541 1+4N=4N 016 31 EN=EN1 0=4N 0 ≞ d N 0=dN 6651 0=GN 0=dN 1=11 CONSER ں Q

<u>,</u>•

146

831 WRITE CUTUUT TAPE 3,832 832 FORMATI//// 524 - I BLCW UP. KERUN THIS CASC WITH SMALLER DELTA Bo7 FURMAT(UPFY.2.3X.13.4H I.CPF9.4.CPF13.4.1PE13.4.3H I.OPF1C.4. 10PF14.4.1Pe13.4.3H 1.0PF1C.4. 122HNC 1.5.S. SCLN. AS YET) WRITE UUTPUT TAPE 3.824 wkITE LUFPUT TAPE 3,857,ENER,ICYCLE,FPRI,FLPKI,EPKI,FPR2,FLPR2, Lepr2,Failu WALTE CUTPUT TAPE 3,823,6NER, ICYML , TPRL, FLPRL, EPKL, TPR2, FLPR2 C NO FRANSLUK SFEAUY STATE SCLUTION AS YET USS TPRIBELMIN(ICYCLE) EPRIBELMIN(ICYCLE) TESTI=LWAKIGYCLE)/EMAX(IGYM1)-1.C TEST2=cMIN(ICVCLE)/EMIN(IGYM1)-1.C TEST2=cMIN(ICVCLE)/EMIN(IGYM1)-1.C TEATS(ILST1)-1.CC=4) 821,821,849 821 II(AUSF(TEST2)-1.CC=4) 822,849 822 TPR1=CIMIN(IGYM1) G() TO 2CV 830 WRITE CUTPUT TAPE 3,824 824 FORMAT(L4X,1PL1,37X,1H1,39X,1H1) GU TU 45¢ 849 IF(TCK-1⊾NC) 850.855,855 850 f=0.0 TPR2=L[MAX(ICVM]) EPR2=EMAX(ICVM]) FLPR2=EPR2#2*0*C2/CONVM EPR1=FMIN(ICYM1) FLPR1=LPM1*2.C*C2/CONVM FLPR1=EPR1*2.0*C2/CONVM TPR2=E1MAX(1CYCLE) FLP32=EPR2+2.C+C2/CUNVM RATIU=/LPR2/FLPR1 EIMAX(ICYCLE)=0.C EIMIN(ICYCLE)=0.C GC TD 30 EPR2=[MAXIICYCLE] KATIG=FLPK2/FLPR1 ICYCL+=ILYCLE+1 EMAX([LYCLE)=EN] EMIN([LYCLE)=EN] 019 510P 77777 020 ICYM1=ICYCLE-1 1.CPR2,KAI1U GU FC SCU 856 T=150mC TCK=0.0 EN=ENI 01=012 : CUNSER

CCNSER

ENEENO 3CO CUNTINUE 60 TO 2CU END(1,1,0,0,0,0,1,0,0,0,0,0,0)

10/01/64

-

. -.

•

.

•

•

CONSER

10/01/64

LCCATICNS OF NAMES IN TRANSFER VECTOR

0C 1	00000					Loc	005555	C0622	11100	01053	01241	1307	01425	01473	01606	64710
DEC	5					IFN	145	158	183	203	223	235	258	268	284	906
	(FIL)			(13H)	LOCATIONS	EFN	1002	1058	201	23	916	802	811	821	A 3C	300
0C1	6 COCO6	1 00001		(STH)	ND DCTAL	LCC	1 00534	5 00613	0 00164	7 01037	0 01231	4 01302	5 C1420	4 C1447	2 01577	5 01735
DEC	Ĩ		ARY		RS AI	IFN	14	15(18(61	22(23	25	26	28	30(
	TABLE	(1SH)	FRCM LIBR	(RTN)	NULA NUMBE	EFN	1000	1008	310	22	31	801	810	820	631	856
170	00010	00004	ICT CUTPUT	(FPT)	ERNAL FUR	LOC	0401	00406	25100	01020	01213	01275	01414	01445	01570	01646
DEC	9	4	VES N		INT S	IFN	130	154	178	190	217	231	254	263	280	296
	RUNGE	(STH)	IC SUBROUTIN	(F11)	CRUSPONDING	EFN	400	1006	106	21	30	900	101	818	861	655
001	00001	COUCZ	POINTS 1	TABLE	S WITH CO	LCC	00315	00575	00705	C1014	01204	01271	01326	01436	01564	01622
DEC	~	2	ENTRY		MBER	IFN	113	151	173	189	214	230	240	261	279	287
	EXP(3	(R1N)	-	RUNGE	FORMULA N	EFN	005	1005	301	710	1999	661	915	815	860	058
LC I	00003	00000		LXP(3	EXTERNAL	LCC	00021	C0566	C0646	01007	01120	01251	41610	26910	00510	01616
DEC	.,	J				I FN	2¢	148	163	188	201	225	236	255	269	286
	COS	(FPT)		CC S		EFN	11	1003	1099	20	1100	116	100	812 8	822	349

· ·

.

.

.

-.'

-

.*

• --

.

STCRAGE NET USED BY PROGRAM

CONSER

DEC DCT 32468 77324 DEC UCT 17467 42073

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

001	11354	17437	
DEC	DLCSSA 32492	Y 32543	1
DEC CCT	C2 32559 77457	X 32558 77456	
DEC OCT	CI 32560 77460	TIME 32528 77420	
DEC CCT	CO 32561 77461	SIG 32480 77340	
DEC UCT	ALGSSA 52504 71310	PREL 32516 77404	

STCRAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

DEC CCT EMAX 17394 41762 FL5 6594 14702
DEC DCT ELCSS 17451 42053 ETMIN 16794 40632
CEC CC1 Ej 11594 26512 ETMAX 17194 41452
DE 17465 42001 DE 17465 42001 E 17466 42072 T5 16554 40322
DEC UCT CELUSS 17424 42020 EMIN 16994 41142 R 17436 42034

STATEMENT TVALCACC 50 20 D T N C N C T C N ž CONN 1 2 001 TACOL ۲. ۲.

	CCT 03066	03061	03054	03047	03042	03035	03030	03023	03016	03011	03004	02777	02772	02765			LOC	02734	02234	02301			00.1	02114	CC311	00/00	01413	
	DEC 1590	1585	1580	1575	1570	1565	1560	1555	1550	1545	1540	1535	1530	1525			EFN	700	823	005			DEC	1100	201	451	179	
THICKEN	4 H A	ALATC	AVSIG	0H]	B	DEDX	10	ENI	FLPRI	ICYCLE	IES1	dN	ICK	TPRI				BILS	8) P.N	8)54				()	D)2C3	E)C	E)1G	
I VALENUE	CCT C3067	03062	c3@55	C3C5C	C3C43	C3C36	03031	C3C24	C3017	03012	C30C5	03000	02773	02766		l S	rcc	02344	C2740	C2215	C2257	NN N	00.1	<i><i><i>TTTT</i></i></i>	02761	CC62C	C1230	
	DEC 1591	1586	1581	1576	1571	1566	1561	1556	1551	1546	1541	1536	1531	1526		I E M E N I	F F N	302	120	862	1011	RDGR	DEC	32767	1521	400	664	
ILLENSICN [®] OF	АНО	AL2	AVR	BHO	912	CCECX	012	ENG	EPR2	ICY5	IEPR	NPRINT	11	IMAX		FCRMAT STA		3)9E	8) M (8	R) CU	e112C	IN SCURCE		4)	C) G3	Ē)L	E)15	
IN LUFFUN, L	DEC 011	1587 03063	1582 03056	1577 03051	1572 03044	1567 03037	1562 03032	1557 03025	1552 03020	1547 03013	1542 03006	1537 03001	1532 02774	1527 02767	1522 02762	URCE PROGRAM	EFN LOC	3 02144	705 02464	857 02153	1001 02546	ict Appearing	0 EC 0CT	1007 01757	1520 02760	200 00310	642 01202	
	ζ.Φ	ALI	AVPRL	e 2	811	CSLAT4	C11	ΕL	EPRI	ICSUBO	IEEND	N 5	SUMS16	TES12	TSUEO	ICNS FOR SC		813	8141	8)(B	6109	R SYNBCLS N		3)	C167	D)6C3	Ĺ)13	
VAKIABLES NUI	DEC DCT 1553 C3C71	1568 03C64	1583 03057	1578 C3C52	1573 03045	1568 03040	1563 C3C33	1558 03026	1553 03021	1548 03614	1543 03007	1538 C3U02	1533 02775	1528 0277C	1523 02763	DLS AND LCCAT	EFN LCC	2 62146	762 02554	832 C2173	916 02253	ICNS FOR CTHE	CEC CCT	1000 01750	1519 02757	988 01734	21110 165	
ALLUNS FUR	IV	ALO	ALCSS	81	BLC	CONVR	DENS	ELEL	EN	FLUX	IEDEL	Σ	SUMR	TESTI	Ť	SYMHI	-	812	8110	00(8	8) SK	LOCAT	_	2)	C)66	D)220	E112	
STURAGE LUC	DEC UCT	1589 03065	1584 03060	1579 03053	1574 03646	1569 03641	1564 03034	1559 63027	1554 03022	1549 03015	1544 03010	1535 03003	1534 02776	1529 02771	1524 02164		EFN LCC	1 02750	701 02726	824 02160	902 CZ272		060 001	1513 02751	1518 02/56	909 CI615	56010 196	203 00313
]	AH2	ALAT	90	BH2	CONVM	UEN	EANS	ENER 1	FLPR2 1	ICYMI	TEST3 1	RATIC	TEND	1992			811	8)LT	81PO	8)S6		_	1	C)64	C)21T	É)10	E)503

.

.

- ' .

•

1

.

RUNGE

ى

SUBROLTINE FCR RUNGE KLITA TECHNIGUE SUBROLTINE ALKGETO,YO,H.GELY,TA,YA) SUBROLTINE ALKGETO,YO,H.GELY,TA,YA) COMPCN CO.CI.C2,X,YTIME.PKEL,ALOSSA,DLCSSA,SIG CALL DLALVICC,VO.ECR) CONT = DK+H TI = TU+H/2 TI = TU+H/2 TI = TU+H/2 CONTSUER CONTIL ELAIVIII.YI.CER) CALL DERIVITI.YI.CER) CONTSUER+H TI = YO+CONT2/2 CALL DERIVITI.YI.CER) CONTSUER+H TI=YO+H TI=YO+CONT3 CONTSUER+H TI=YO+CONT3 CONTSUENT3 STCRAGE NCT USED BY PROGRAM

	CCT 17451 17455		CC T 001 70		CC T		001		
	DEC 82553 7 82557 7		DEC 120 C		DEC		DEC		
	DLCSSA 3	STATEMENT	LER						
, COMMON STATEMENTS	DEC GCT C2 32559 77457 X 32558 77456	ENSION, OR EQUIVALENCE	DEC 0C1 CCN14 121 C0171	N SCURGE PROGRAM	DEC OCT	ectcr	DEC OCT	FROM LIBRARY	
K VARIA6LES APPEANING IN	DEC GC1 CL 32960 77450 TIME 32556 77454	APPEARING IN CCMMCN, DIM	DEC CCF CUNT3 122 00172	SYMBOLS NOT APPEARING I	DEC CUT 6) 110 00156	S GF NAMES IN TRAWSFER V	DEC OUT	SUBRULTINES NOT CUTPUT	
06C 00T 32551 17447 STURAGE LOCATIONS FC	DEC CLT CC 32561 77461 ST6 32552 77450	TONS FOR VARIABLES NOT	DEC DUT CC-1T2 123 00173 Y1 118 00166	LCCATIONS FOR CIHER	DEC OCT 3) 108 C0154	LECATION	UEC OUT	ENTRY POINTS TO	
0.0 LCT 125 CC175	046 461 -0554 52954 71452 Part 22545 71453	STERASE LCCAT	000 001 2011 124 00174 11 115 00187		DEC LCT 1) 116 CU164		BEC UCT EALV 0 CCCCO		RIV

152

.

.

· •

۰<u>-</u>

."

. .

.

+0'0'+

.

CERIV

٠.

C Sudfuilief IC EVALUATE (DA/DT) FOR A GIVEN T AND EN SUB SOLING DERIVITENCER) DEVENDIGN TIPETI2)-PRULIT21-ALDSSAT12).X(15).X(1

STCRAGE NET USED BY PROGRAM

		DEC ECT DEC ECT 77354 77437 7437	TEMENT	DEC CCT SIGMA 109 CO155		DEC CCT		DEC CCT		
	COMMON STATEMENTS	DEC CCT C2 32559 77457 X 32558 77456	ENSIGN, GR EQUIVALENCE STA	DEC DCT P 11C C0156	N SCURCE PROGRAM	DEC DCT	ECTCR	DEC OCT	FROM LIBRARY	
	VARIABLES APPEARING IN	DEC CCT C1 32560 77460 T1ME 32528 77420	PPEARING IN COMMUN, DIM	DEC CCT Exx 111 CO157	SYMBOLS NOT APPEARING I	DEC DCT 6) 96 00142	OF NAMES IN TRANSFER V	DEC - 001	SUERGLIINES NOT CUTPUT	
UEC ULI 32468 77324	SICRAGE LOCATIONS FOR	u≐C OCT CO 325€1 77461 SIG 32480 77340	ICNS FOR VARIABLES NOT A	vEC CC1 Ex 112 00160	LUCATIONS FOR UTHER	UEC 0CT 2) 55 CO137	LUCATIONS	UEC OCT	ENTRY POINTS TC	
DFC CCT 114 CC162		066 661 32564 77370 32516 77464	STURAGE LCCAT	DEC CCT 113 CC161 104 CU154		DEC UCT 104 06150		DEC CCT 0 CCOCO		
		PKGL PKGL		ANS		2		l AUL É		этау.

EFN IFN LGC 5 28 CC076 EXIERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FURMULA NUMBERS AND OCTAL LCCATIONS EFN IFN LCC 4 22 CCO63 EFN IFN LGC 3 16.00050 EFN IFN LCC 2 IO CCC35 EFN FN LOC 1 7 CC030

154

-,

•

÷

•

.

CEXIV

•

• ·

٢.

- - -

~

TAULE

ں

EAUT1,1,0,0,0,0,0,1,0,0,0,0,0,0,0)

1

STCRAGE NUT USED BY PRUGNAM

0£C CUT CUT CCC OUT 32523 77413

	DEC CCT 32525 77415 32543 77437		DEC CCT 105 C0151		DEC CCT 75 CC113		DEC CCT		
	CLCSSA	STATEMENT	٦		D)4CA				
COMPON STATEMENTS	DEC 0CT C2 32559 77457 X 32558 77456	VENSION. CR EQUIVALENCE	DEC CCT H1 106 C0152	IN SCURCE PROGRAM	DEC DCT C)G1 102 C0146	VECTCR	DEC OCT	FRCM LIBRARY	
R VARIABLES APPEARING IN	5560 77460 CL 32560 77460 TLME 32558 77420	APPEARING IN COMMCN. CIN	CEC CCT +0 1C7 00153	SYMECLS NOT APPEARING	DEC DCT 6) 93 00135	S CF NAMES IN TRANSFER	DEC OUT	SUBRGLIINES NOT CUTPUT	
STCRAGE LOCATIONS FCH	uCC CUT CO 32561 /1461 SIG 32524 77414	TICNS FOR VARIABLES NCT A	ыЕС ВСТ А ICS C0154 YI IC3 C0147	LOCALIONS FOR UTHER	UEC 0UT 2) 52 00134 E1C 82 00122	LCCATION	DEC CC1 LCG 0 CCCCC	ENTRY PCINTS TC	
	06C uit 32526 77416 32527 77417	STURAGÉ LOCA	000 LCT 100 CUI55 104 CC150		DFC CC1 99 CU143 44 CCC60		UFC LCT 1 60001		L C G
	ALCSSA 3 Prel 3		SNE		() ()		L X P		ЧX

156

J ÎN L **CCKKESPUNUING** EXIERNAL FERMULA NUMBERS

FN LEC 14 CCO61 25 CO130
EFN I 22 23
EFN IFN LCC 21 12 CC053 42 24 CC123
EFN IFN LCC 11 16 00045 41 22 00117
EFN IFN LCC 1C 9 CCC43 50 21 00114
IFN LCC 6 CC31 20 CU11
EFN 12 20

-.

• •

·`

: •

Iaolí

Ì

F. Restrictions

- (1) $132/(NPRINT \times DT1)$ must be less than 5000 in order that T5, E5 and FL5 subscripts do not exceed their dimension specifications.
- (2) IEEND cannot exceed 15 since the table of energy levels contains only 15 values (see energy level table below)

G. Input

Input to this program consists of five data cards and four control cards for every B-L line considered. The data cards are those output by the preceeding program. The control cards are those that handle the selection of the many available calculations in this program. The first control card contains the initial density (END) and the initial time (TSUBO) for integration. The second card contains the integration interval for the first cycle (DT1), the integration interval for all other cycles (DT2) and the end limit of integration (TEND). Setting DT1 equal to zero will give a time averaged steady state solution of the equation. The next control card defines the energy level(s) to be used. It gives the initial energy level subscript (IEST), the increment in energy level subscripts (IEDEL) and the final energy level subscript (IEEND). Energy levels are as follows:

E(1) =10 MevE(6) =125 MevE(11) =350 Mev.E(2) =25 MevE(8) =150 MevE(12) =400 Mev.E(3) =50 MevE(8) =200 MevE(13) =500 Mev.E(4) =75 MevE(9) =250 MevE(14) =600 Mev.E(5) =100 MevE(10) =300 MevE(15) =700 Mev.

Note that IEST, IEEND and IEDEL must be greater than zero and that IEND cannot be greater than 15. The fourth control card contains three numbers (1) IEPR is the subscript of that energy level whose time history is to be printed on tape 5. If IEPR = 0 then no time history will be printed. (2) NPRINT tells the computer how often to print density, flux and time values on tape 5 if IEPR $\neq 0$. Values will be given for every NPRINT increments in time. However, if $132/(NPRINT \times DT1)$ is greater than 5000 the computer will print an error message and go on to the next case. This is done in order to prevent time, energy and flux subscripts from exceeding their dimension statement capacities. (3) ICSUBO is the cycle number at initial density (ENO) and initial time (TSUBO). ICSUBO is always greater than or equal to 1. All input occurs on tape 2.

1. Input Card Description

	Columns	Mode	Quantity	Units	Description
Card 1	1-8	\mathbf{F}	ALAT	degrees	latitude
	9-16	F	EL	earth radii	magnetic field line
	1 7- 24	\mathbf{F}	В	gauss	magnetic induction
Card 2	1-10	Е	R(1)	-	scale factor R for TIME(1)
	11-20	E	R(2)	-	scale factor R for TIME(2)
	21-30	Ε	R(3)	-	scale factor R for TIME(3)
	31-40	E	R(4)	-	scale factor R for TIME(4)
	41-50	Е	R(5)	-	scale factor R for TIME(5)
	51-60	Ε	R(6)	-	scale factor R for TIME(6)
Card 3	1-10	Ε	R(7)	-	scale factor R for TIME(7)
	11-20	E	R(8)	-	scale factor R for TIME(8)
	21-30	E	R(9)	-	scale factor R for TIME(9)
	31-40	\mathbf{E}	R(10)	-	scale factor R for TIME(10)
	41-50	Ε	R(11)	-	scale factor R for TIME(11)
	51-60	Ε	R(12)	-	scale factor R for TIME(12)
Card 4	1-10	Ε	SI G(1)	atoms/cm	atmospheric loss parameter Σ for TIME(1)
	11-20	Ε	SIG(2)	atoms/cm	atmospheric loss parameter Σ for TIME(2)
	21-30	Е	SIG(3)	atoms/cm	atmospheric loss parameter Σ for TIME(3)
	31-40	Е	SIG(4)	atoms/cm	atmospheric loss parameter Σ for TIME(4)
	41-50	Е	SIG(5)	atoms/cm	atmospheric loss parameter Σ for TIME(5)
	51-60	Ε	SIG(6)	atoms/cm	atmospheric loss parameter Σ for TIME(6)

۰.

	Columns	<u>Mode</u>	Quantity	Units	Description
Card 5	1-10	Е	SIG(7)	atoms/cm	atmospheric loss parameter Σ for TIME(7)
	11-20	Ε	SIG(8)	atoms/cm	atmospheric loss parameter Σ for TIME(8)
	21-30	E	SIG(9)	atoms/cm	atmospheric loss parameter Σ for TIME(9)
	31-40	Е	SIG(10)	atoms/cm	atmospheric loss parameter Σ for TIME(10)
	41-50	Е	SIG(11)	atoms/cm	atmospheric loss parameter Σ for TIME(11)
	51-60	Е	SIG(12)	atoms/cm	atmospheric loss parameter Σ . for TIME(12)
Card 6	1-10	Ε	ENO	# protons/ cm ³	initial proton density
	11-20	Ε	TSUBO	months	initial time
<u>Card 7</u>	1-8	F	DT1	months	first cycle integration interval
	9-16	F	D T 2	months	remaining cycle integration interval
	17-24	F	TEND	months	limit of integration
Card 8	1-3	I	IEST	-	initial energy level subscript*
	4-6	Ι	IEDEL	-	energy level subscript incre- ment*
	7-9	I	IEEND	-	final energy level subscript*
Card 9	1-5	Ι	IEPR	-	subscript of energy level to be printed on tape 5
	6-10	I	NPRINT	-	print on tape 5 after so many increments in time
	11-15	Ι	ICSUBO		cycle corresponding to ENO and TSUBO

^{*} see table of energy levels in INPUT.

• •

۰,

2. Sample

GENERAL PURPOSE DATA SHEET

Praklan																		[
	=		片	NSEA	۲. N	S	E E	E	s	Z	5	AII.	z					1						ľ												
Sponsor	Ľ	APE	5													S	MPL	щ							ŝ						.					
1 2 3 4	5 6 7	6	=	2 13	5 5		8	R	8	19 19	N N	ମ ମ	8 16	第	將將	第位	- 1 8	4 4	4	- 4	- 4	8	91 12	5, 55, 00	16 18		89	29	25	S 88 67	8	R	2	19	2 1 2	79 60
E			-														E																			
28.	9 0 5	0	-	60	00			2 2	0 8														 													
0.16	7 9 E	-	50.	2 0	7 8	ر س	15		1 6	28	ц П	1 4		1 6	7 4	Ш	1 3	•	2 3	7 0	I W	1 3	-	4	0 7 E	-	e					_		_		
0.70	4 6 E	-	40	22	67	л Ш	1 4		7 1	16	н Ш	15	. 0	39	3 8	Ē	15	. 0	2 0	7 8	I U	15	•	9 1	7 9 E	-	2									
0.72	0 8 E	- 2	10	83	60		2 1	•	3 5	1 1	і ш	2 0	0	2 5	1 8	Ē	1 9	. 0	3 4	7 9	I W	19		2 1 4	‡ 2 E	-	6			_						
0.11	5 9 E	-	9 0.	4 5	8	л Ш	2 0	•	19	15	ا س	2 0	0	1 2	7 3	E –	2 0	. 0	83	6 0	ц Ш	2 1		7 2 (8	7	-									
	•	ш 0	0		0	- -	е 0 Ш																_													
	1 0 0	0	- -	5 0	000	1 3	2 0	00	0																											
2	2	1 4																																		
	0		0		-					_	<u> </u>		ļ																							
15.	945	0	-	2 5	0 0		0	2 2	4 0																											
0.35	2 9 E		2 0	38	80	л Ш	12	•	92	39	і ш	12		2 2	89	E		0	26	17	<u>-</u> і ш	=		2 1 /	+ -	-	-		-				•			
0.16	39E	=	0	0	5 4	л Ш		.0	66	53	н Ш	1 2	0	51	5 5	ا س	12	•	38	8	<u> </u> ш	1 2	0	3 5	2 9 E	-	2									
0 . 4 9	0 2 E		. 0 8	5 4	10	Г Ш	1 8	•	13	11	Ξ	1 7	0	3 2	9 9	ц Ш	1 7		37	08	I W	1 7	0	3 0 4	8 2 E	-	2				_					
0.23	5 0 E	-	7 0 .	1 4	66	і Ш	17	• 0	93	7 7	н Ш	18		7 2	2 4	і ш	1 8		5 4	0	۱ س	1 8		4 9 1	0 2 E	-	80									
	•	Ш 0	0		0	0	о Ш						-															_								
0	0 1 0	0	0	0	0 0	-	3 2	00	0																				_							
2	2	1 4																				_	_							_					_	
	4	=	0																							_										
																										-										
			 	 	<u> </u>																											_				
			-																																	
		E						E																												

GSFC FORM 541-1 (July - 60)

•

5

۰.

H. Output

Output from this program exists in several forms. First of all there is the output from the transient steady-state solution. In this solution there are two pages of printout for each case (each B-L line considered). The first page merely lists the input with explanatory headings. The second page lists each energy level and the cycle number at which steady-state was reached for that energy level. It also gives the maximum and minimum density and flux for that cycle with the times at which they appear within the cycle. Finally it lists the ratio of the maximum to the minimum flux. If, for any energy level, the absolute value of the minimum flux becomes greater than 50,000 protons/cm² sec. mev. then the program will ask that a smaller integration interval be used and go on to the next case. On the other hand, if the ratio of the maximum to the minimum flux becomes less than 1.09 for any energy level the program will neglect all higher energy levels and pass on to the next case since there will be no solar cycle variations in higher energy levels. This output occurs on tape 3.

The time-averaged steady-state solution has the same output with the exception that on the second page for a given B-L line $\overline{\Phi}$, $\overline{\Sigma}$, dE/dx and d/dE (dE/dx) are printed along with the flux and density for each energy level.

Time histories for energy levels are printed on tape 5 if requested during the steady-state solution. Here time, flux and density are printed for each cycle at the intervals indicated by NPRINT. See figure 13 for an idea of the results to be expected from the transient steady-state solution. Figure 15 shows output from several time history runs.

1. Transient Steady-State Sample

INDICATES ENERGY LEVEL AT MHICH TIME HISTORY OF DENSITY AND FLUX WILL BE PRINTED ON TAPE A5. Zerg indicates nu time history on tape A-5. IC DELTA T. PRINTING CN TAPE A-5 AFTER EVERY -0 ENERGY LEVEL TIME HISTORY = CYCLE AT T SUB ZERU ***** = SIG(1) SIG(1) C.5401E-18 C.5401E-18 C.1311E-17 C.1318E-17 C.3250E-17 C.3250E-17 C.3250E-17 U.1499E-17 U. #**** PRUGRAM INPUT ***** ENERGY LEVEL START = 2 DELTA UNERGY LEVEL = 2 ENERGY LEVEL ENU = 14 NP SUB 0 = 0. T SUB 0 = 0. CELTA T = 0. CELTA T = 0.1000 T ENC + = 13200.0 LATO *** = 15.9450 L ****** = 1.2500 B ****** = 0.2240 NP SUB 0 = 0. C.35296-12 C.38804-12 C.328396-12 C.228396-12 C.22846-12 C.22836-12 C.10546-11 C.10546-11 C.10546-12 C.31556-12 C.31546-12 C.31546-12 C.35246-12 C.35246-12 C.35246-12 R(I)

,

۰.

-.

• • •

TIME AVERAGE STEADY STATE SULUTION FCK LATG = 15.9450 + L = 1.2500 + B = 0.2240

••

•••

.

.

. .

- ·

C (CE/DX) / DE	9.6523E-16	1.2295E-16	4.8304E-17	1.9541E-17	8.6384E-18	4.87436-18	2.0336E-18
(DE/GX)	2.85766-14	1.19435-14	8.1699E-15	5.9342E-15	4.6547E-15	4.0121E-15	3.3845e-15
SIG BAR	1.5868E-18	1.5868E-18	1.58686-18	l.5868t-18	1.5868E-18	1.5868E-18	1.5868E-18
Phi BAK	1.1462E 00	1.1462E 00	1.1462E CO	1.1462E CO	1.1462E 00	1.1462E CC	1.1462E GU
PRLION- Censity	1.5521E-11	4.4027E-12	2.6373E-12	1.5639E-12	9.7436E-13	6.6527E-13	3.6709E-13
PRDIGN- Flux	1.0457E-01	5.0094E-02	3.72916-02	2.59942-02	1.8619E-U2	l•4035e-62	8.9035E-U3
ENERCY (MEV)	25.00	75.00	125.00	200.00	300.00	400-00	600.00

2. Tape 5 Time History Sample

***** PROGRAS I∿PUT ****

TUDICATES ENERGY LEVEL AT WHICH TIME HISTORY OF DENSITY AND FLUX WILL BE PRINTED ON TAPE A5. Zerd indicates no time history on tape a-5. J DELIA I. PRINTING ON TAPE A-5 VETER EVERY ſ ENERGY LEVEL TIME HISFORY = 516(1) 6.72385-21 0.83996-21 0.85185-25 0.25185-19 0.21426-19 # # # | | ↓ \0 \0 ENERGY LEVEL START = DELTA ENERGY LEVCL = ENERGY LEVEL = 1 = 1 LATD *** = 20.9750 L ***** = 1.5799 B **** = 1.5799 NP 5U8 % = 0.2298 NP 5U8 % = 0.2209 DELTA TI = 0.1000 DELTA TI = 0.5700 T END ** =1327936 .

•

•

....

· · .

.

TRANSIENE STEADY STATE SOLUTION FOR LATD = 28.9950 + L = 1.6070 + H = 3.2238

۳.

• • :

.

,

.

.

- `

FLUX RATIJ (MAX/MIN)	17.7515	2.8521	1.5435	1.2922	1.1585	1.1394	1.3595	
PROTON- 1 DENSITY 1	1.3332E-39	1.3238E-39 1	5.8914E-13 1	3.2624E-13 1	1.7883E-13	1.1841E-13	6.3054E-11 1	•
PROTON- Flux	87.7855	15.3626	8.3303	1060.3	3.4172	2.4980	1.5293	
(CN) 3011 - NUWIXAN TIME (N)	22.5733	28.3300	29.5337	COCC*SE	30,000	30.0003	6000-06	
PR010V- 1 0EVS11Y 1	7.3402E-10 1	4-6253E-10 1	3.5847E-19 1	2.3700E-10	1.5436E-19 1	1.0673E-10	5.89546-11 1 1	-
P.40TUN- FLUX	4.9453	5.2627	5.3683	3.9392	2.9495	2.2517	1.4293	
MINIMUM TIME (MA)	54.2403	68.5103	12.5000	74.9000	. 74.5003	74.5000	15.0003	
CVCL2 1 ND.	2	و	11	19	31	4	265	
ENERGY (MEV)	25.00	75.00	125.07	200.03	300.00	400-00	600+00	

3. Time Averaged Steady State Sample

***** PR06RAM IVPUT *****

LAIO *** = 28.9050 L ***** = 1.6000 NP SUH 0 = 0.2208 T SUB 0 = 0. T SUB 0 = 0.000 DELTA 1 = 0.1000 DELTA 1 = 13200.0	
EN.RGY LEVEL START = 3 Delta ënergy level ≈ 8 En∵rgy level €n0 = 8	
ENERGY LEVEL TIME HISTORY = 8	INDICATES ENERGY LEVEL AT WHICH TIME HISTORY OF DENSITY AND FLUX WILL BE PRINTED ON TAPE A5. Zerd indicates no time history on Laps A-5.
CYCLE AT I SUB 2±80 #**#* = 1	
PRINTING ON TAPÉ A-5 AFTER EVERY	50 DELIA T.
R(I) S16(I) 0.1679F-15 0.7208F-21	
0.20736-15 0.8309E-21	
0.1628E-14 0.551EE-20 0.1674E-13 0.2518E-19	
0.2370E-13 0.3479E-19	
0.1401c-13 0.1159E-19 0.7046E-14 0.1159E-19	
0.2267C-14 0.4581E-20	
0.71166-15 0.19156-20	
0.3938E-I5 U.IZ/SE-ZU 0.2078E-I5 0.8309E-21	
0.1679E-15 0.7208E-21	

166

•

1.52/36-11 2.97/346-11 3.43816-11 3.43816-11 5.34366-11 6.41066-11 7.4726-11 7.4726-11 1.03716-10 1.15785-10
1.31635-10
1.26825-10
1.17775-10
1.17775-10
1.303956-10
1.30386-10
1.43495-10
1.57455-10
1.57455-10
1.69235-10 1.8416E-10 1.9596E-10 1.8568E-10 1.8568E-10 1.6460E-10 1.6337E-10 1.7225E-10 1.9490E-10 1.9490E-10 2.1062E-10 2.1062E-10 2.2546E-10 2.3660E-10 2.1798E-10 1.9418E-10 1.9418E-10 1.952E-10 1.952E-10 2.1134E-10 2.1134E-10 2.3576E-10 2.3576E-10 2.3576E-10 2.5156E-10 2.6227E-10 2.4027E-10 2.1287E-10 2.1261E-10 2.01561E-10 2.01561E-10 2.5328E-10 2.5328E-10 2.5328E-10 2.68046-10 2.73496-10 2.94366-10 2.246486-10 2.15516-10 2.15516-10 2.35476-10 2.35416-10 2.5208(10) DENSITY 0.2539 0.4951 0.6379 0.8700 0.8700 1.0555 1.2910 1.5264 1.7238 L.9742 2.1674 2.1679 1.9574 1.9574 2.0010 2.1671 2.1671 2.8128 2.8128 4.1411 4.3593 3.9936 3.9936 3.95382 3.4518 3.7884 4.0161 4.2098 .0609 3.2571 3.0564 2.1358 2.1154 2.8030 3.3059 3.3059 3.7475 3.9326 3.6230 3.6230 3.2276 3.2276 3.2276 3.3127 3.3127 3.5126 3.7412 3.9353 4.4551 4.6589 4.2277 3.7344 3.7558 3.9519 3.9558 3.9626 4.1898 4.3832 FLUX 15,000 30,000 45,000 60,000 75,000 90,000 105,000 15.000 30.000 65.000 75.000 90.000 90.000 122.000 15.000 30.000 45.000 60.000 75.000 90.000 1120.000 15,000 30,000 45,000 60,000 75,000 90,000 105,000 122,000 0.2208 7 I ME ų æ - -1.02006-11 2.51916-11 3.61345-11 4.1517F-11 4.9784-11 5.99784-11 7.9726-11 7.9726-11 1.01705-10 1.7922E-10 1.930')E-10 1.930')E-10 1.6842E-10 1.6842E-10 1.6862E-10 1.6662E-10 1.9418C-10 .13795-10 1.28095-10 1.30415-10 1.19295-10 1.19295-10 1.19255-10 1.39005-10 1.39005-10 1.52705-10 2.20566-10 2.34166-10 1.994366-10 1.994366-10 1.994366-10 1.99416-10 1.99216-10 1.95216-10 1.95216-10 2.203966-10 2.20396-10 2.34766-10 2.63176-10 2.76486-10 2.31446-10 2.31446-10 2.18686-10 2.31466-10 2.317406-10 2.47406-10 2.47406-10 2.51736-10 2.51736-10 2.4667E-10 2.6010F-10 2.5107E-10 2.1906E-10 2.0762E-10 2.1209E-10 2.2358E-10 2.3694E-10 2.3694E-10 2.5130E-10 . DENSITY 1.6000 11 ب 4.3742 4.5954 4.4220 3.8468 3.8468 3.8000 3.8906 4.1120 4.1120 0.1695 0.4187 0.6042 0.6042 0.6902 0.69157 0.8157 0.8157 1.2145 1.4466 1.4466 1.6703 1.8912 2.1290 2.1679 2.1679 1.9827 1.9827 1.9700 2.1032 2.3103 2.5380 2.5380 2.7795 2.9789 3.2094 3.1551 2.1992 2.6992 2.6992 3.2275 3.2275 3.2275 3.6659 3.7789 3.7789 3.151 3.1598 3.6691 3.6691 3.9029 4.1000 4.1730 4.1730 3.6410 3.6508 3.5237 3.7161 4.1769 • FLUX 28.9050 L0-000 25-000 55-000 70-000 85-000 115-000 1115-000 1115-000 1000000 55-000 55-000 100-000 100-000 100-000 100-000 100-000 1112-000 100-000 1112-000 u LATO TIME • 200.0 1.7424E-10 1.8887E-10 1.9339F-10 1.7448E-10 1.6270E-10 1.6558E-10 1.8558E-10 1.8552E-10 1.8957E-10 2.0372E-10 2.1560E-10 2.3411C-10 2.3495E-10 2.0742E-10 1.9120E-10 1.9238E-10 2.0269E-10 2.1580E-10 2.1580E-10 2.15808E-10 -----200000000 000000000 000000000 DENSITY 1.0876F-1 1.2361E-1 1.3277E-1 1.3277E-1 1.3277E-1 1.2758E-1 1.3458E-1 1.3458E-1 1.4605E-1 1.6229E-1 1.6229E-1 5.1058E-1 2.0286E-1 3.9845E-1 3.9814E-1 5.5916E-1 6.8516E-1 8.2313E-1 9.6723E-1 2.4173E-1 2.5515E-1 2.5994E-1 2.5994E-1 2.0920E-1 2.0936E-1 2.934E-1 2.4641E-1 2.4641E-1 2.98246-1 2.75426-1 2.75726-1 2.41376-1 2.41376-1 2.20586-1 2.29866-1 2.56866-1 2.56866-1 11 CNERGY 0.0849 0.3572 0.5592 0.6617 0.7672 0.9306 1.13681 1.3681 1.6076 1.8077 22.0545 22.2058 22.0335 22.0335 1.9543 22.0469 22.2369 22.5469 22.5469 22.5469 22.6975 2.8960 3.1393 3.2476 2.9001 2.7521 2.7521 2.7521 2.7521 2.7521 3.1509 3.3860 3.5835 3.85835 3.9051 3.9051 3.4476 3.1476 3.1476 3.1476 3.1476 3.889 3.8869 3.8869 3.8869 4.0178 4.25778 4.3204 3.4772 3.4772 3.47772 4.0223 4.0223 4.2922 4.5310 4.5310 3.6662 3.6662 3.6668 4.0369 4.2693 FUR FLUX FLUX ANU 5,000 20,000 50,000 65,000 86,000 86,000 110,000 1125,000 5.000 20.000 50.000 65.000 80.000 80.000 80.000 80.000 5-000 20-000 50-000 65-000 80-000 80-000 95-000 5.000 20.000 50.000 65.000 80.000 80.000 25.000 25.000 5.000 20.000 35.000 65.000 85.000 85.000 85.000 110.000 5.000 20.000 35.000 56.000 665.000 95.000 95.000 25.000 TIME DENSITY ő \sim ŝ 4 s Ś 2 HI STURY н п NO. **N**0. n. -22 ۲Ū. NU. ŋ, CYCLE щ CYCLE CYCLE CYCLE CYCLE CYULE I ME Ľ,

I. Running Time

Transient steady-state solutions where DT1 = .5 and DT2 = 1.0 will cover eleven cycles per minute. See figure 14 for an idea of how many cycles are necessary to reach steady-state for various B's at an L of 1.25 earth radii.

Runs requesting a time history print on tape 5 take about twice as long.

Time averaged steady state solutions take about a quarter of a minute for each B-L line.

VIII. STEADY-STATE CALCULATION

A. Introduction

This program evaluates the solar maximum and solar minimum steady state conditions of the conservation equation. That is, with dN_p/dt set equal to zero, the flux and density are studied at solar minimum (time = 0.0 years, see Figure 1) and solar maximum (time = 4.0 years). The mean lifetimes of the protons are also calculated as well as dE/dx, d/dE(dE/dx), the three coefficients of the conservation equation C_0 , C_1 and C_2 and the source and loss terms. This is all printed together with the appropriate Σ for a given B, L, λ and energy level. All 15 energy levels of the preceeding program are evaluated for each B and L.

B. Equations

The equations used in this program are listed below:

SOURCE = XX =
$$A_0 \Phi/L^2 E^{B_0} \cos^4 \lambda_0$$

LOSS = YY = $\frac{A_1 N_p}{E^{B_1}} \left(\frac{dE}{dX}\right) + A_2 N_p E^{B_2} \frac{d}{dE} \left(\frac{dE}{dX}\right) + A_2 N_p E^{B_2} \Sigma$
MEAN LIFETIME = TAU = N_p/XX
FLUX = FLUXP = $N_p(EXT)E^{B_2}C = N_p\beta C = N_pv$
DENSITY = EN1 = $\frac{A_0 \Phi}{L^2 E^{B_0} \cos^4 \lambda_0 \left[\frac{A_1}{E^{B_1}} \left(\frac{dE}{dX}\right) + A_2 E^{B_2} \left(\frac{dE}{dE} \left(\frac{dE}{dX}\right) + \Sigma\right)\right]}$

where C = speed of light

 Φ = PREL = relative neutron source strength

 $\Sigma = SIG = atmospheric loss parameter$

 A_0, \ldots, A_2 = high or low energy conservation equation coefficients depending upon whether E > 80 Mev. or $E \le 80$ Mev respectively

 B_0, \ldots, B_2 = high or low energy conservation equation coefficients depending upon whether E > 80 Mev. or E \leq 80 Mev. respectively

 λ_0 = Mirror latitude

 N_p = proton number density

v = neutron velocity

 $\beta = \mathbf{v}/\mathbf{C}$

 $EXT = \beta / E^{B_2}$

C. Mnemonics

Quantity	Description	Units		
TIME(J)	abscissa of time in increments of years for 12 years			years
ELOSS(J)	dE/dX corresponding to E(J) (see Figure 11)			Mev./cm.
E(J)	energy corre (see Figure 1	esponding to E [1]	LOSS(J)	Mev
ALO	A_0 for $E \leq 8$	80 Mev. (see p	receeding page)	# protons cm. sec. Mev.
AL1	A ₁ ''	"	11	cm/sec
AL2	A ₂ "	11	"	$cm./Mev^2 sec.$
AH0	A_0 for $E > 8$	0 Mev. (see p	receeding page)	# protons cm. sec. Mev.
AH1	A ₁ ''	**	**	cm. sec.
AH2	A ₂ ''	ff	**	cm/Mev^{2} sec.

Quantity	Description			Units
BLO	B_0 for E \ge 80 Mev. (see preceeding page)			-
BL1	B ₁ ''	,,		-
BL2	B ₂ ''	11		-
BH0	$B_0 \text{ for } E > 80$	-		
BH1	B ₁ ''	11	"	-
BH2	B ₂ ''	**	"	-
DELOSS(J)	d(dE/dX)/dE (see Figure 1	cm. ⁻¹		
DE(J)	energy corresponding to DELOSS(J) (see Figure 12)			Mev.
PREL(J)	Φ for TIME(J) (see Figure 11 and page 167)			-
CONVR	conversion factor – degrees to radians			-
ALAT	mirror latitude λ_0			degrees
EL	magnetic field line L			earth radii
В	magnetic induction B			gauss
R(J)	atmospheric scale factor R for TIME(J)			-
SIG(J)	atmospheric loss parameter Σ for TIME(J)			atoms/cm
ALATO	ALAT in radians			radians
SVPR	temporary storage of PREL(1)			-
SVSG	temporary storage of SIG(1)			atoms/cm
t	time			years

Quantity	Description	<u>Units</u>
М	energy level subscript	-
ENER	energy level E(M)	Mev.
ALOSS	dE/dX for E(M)	Mev/cm
X(k)	temporary storage of DE(k)	Mev.
Y(k)	temporary storage of DELOSS(k)	cm ⁻¹
EANS	d(dE/dX)/dE for E(M)	cm ⁻¹
ALOSSA(J)	(dE/dX) X R(J) for $E(M)$	Mev/cm
DLOSSA(J)	(d(dE/dX)/dE) X R(J) for E(M)	cm ⁻¹
A0	temporary storage of AL0 or AH0	# protons cm. sec. Mev.
A1	temporary storage of AL1 or AH1	cm./sec.
A2	temporary storage of AL2 or AH2	cm/Mev^2 sec.
В0	temporary storage of BL0 or BH0	-
B1	temporary storage of BL1 or BH1	-
B2	temporary storage of BL2 or BH2	-
EXT	(see page 168)	-
C0	conservation equation coefficient $c_0^{}$ where $C_0^{}$ = $A_0^{}/L^2E^{B_0}\cos^4\lambda_0^{}$	# protons cm ² sec. Mev.
C1	conservation equation coefficient C_1 where $C = A_1 / E^{B_1}$	cm/sec. Mev.
C2	conservation equation coefficient $C^{}_2$ where $C^{}_2 = A^{}_2 E^{B_2}$	cm/sec. Mev.

Quantity	Description	Units
КСК	counter to determine if solar maximum or solar minimum is being evaluated	-
T1	particular time under consideration	years
EN1	proton density	<u># protons</u> Mev. cm
FLUXP	proton flux	$\frac{\text{\# protons}}{\text{cm}^2 \text{ sec. Mev.}}$
TAU	mean proton lifetime	sec
XX	conservation equation source term (see page 167)	# protons cm ² sec.
YY	conservation equation loss term (see page 167)	$\frac{\# \text{ protons}}{\text{cm}^2 \text{sec.}}$

D. Flow Charts

1. Main Program

174

è

.. .

.

.

•

٠.

E. Fortran Listing

STLACY

J

- STEACY STATE DIMENSION E(15),FLCSS(15),11PE(12),K(12),UELCSS(15),UL(15),PKEL(5) 1,ALUSSA(12),CLOSSA(12),X(15),Y(15),SIG(12)
 - CUMMUN X+Y

- FURMAT(ATA) FURMAT(ATA) FURMAT(ATA) FURMAT(ATA) FURMAT(FL5.3)LC2(4)F20.5)E20.5) FURMAT(IL1.2x,FHLATO=F8L2,3HEV) FURMAT(IL1.2x,FHLATO=F8L2,3HEV) FURMAT(IDX,7FENERCY=F8L2,3HEV) FURMAT(5X,3HCCEE12,5)X,3HCLEE12,5) FURMAT(5X,3HCCEE12,5)X,7HDLC5SA=E12.5,3X,4HS1G=E12.5) FURMAT(5X,3HCCEE12,5)X,7HSOUNCLEE12.5,3X,4HS1G=E12.5) FURMAT(5X,3HCCEE12,5)X,7HSOUNCLEE12.5,3X,5HLC5S=E12.5) FURMAT(3X,5HN(E)=F12.5,1X,7HSOUNCLEE12.5,3X,5HLC5S=E12.5) FURMAT(3X,5HLC5) FURMAT(3X,5HLC5) FURMAT(3X,5HLC5) FURMAT(5X,5HCC) FURMAT(5X,5HCC) FURMAT(5X,5HC) FURMAT(5X,5H
- 11 CONTINUE
- ELOSS(1)=5.3585E-2

 - ELOSS(2)=2.5732E-2 ELOSS(3)=1.4755E-2
- ELOSS(4)=1.0754E-2

176

- ELOSS(5)=E.6553E-7 ELOSS(5)=E.6553E-7 ELOSS(5)=7.3567E-3 ELOSS(6)=5.3435E-3 ELOSS(7)=5.4436F-3 ELOSS(10)=4.1514E-3 ELOSS(10)=4.1514E-3 ELOSS(110)=4.6127E-3 ELOSS(110)=3.6127E-3 ELOSS(110)=3.6476E-3 ELOSS(110)=2.8542E-3 ELOSS(110)=2.8542E-3 ELOSS(110)=2.8542E-3 ELOSS(110)=2.8542E-3 E(10)=100.

- E(6)=125.
- E(1)=15C. E(8)=2uC. E(9)=250.

.

- E(10)=3CU.
 - E (11)=350. E (12)=400.
- - E[14)=oCC. E[15)=/CC. E(13)=500.
- 10-C-80 MEV ں
- 2.564F-13 AL0= ALI=
 - 3.463E+8 7.255e+6 810=2.909 AL2=
 - 86-5-100 MEV 861=.523
 - J

10/01/64

.
10/01/64

ں ں

20 GGWTINUE NUM FAVL (UE/CXIATMUS AND (G(SE/DA)/DE)ATMUS AS FLNUTIONS NUM FAVL (UE/CXIATMUS AND L UF TTAL (CK A GUYEN FARGY AND L UF(ENGR-00+) 21+21; ENLECUPEREL(1)/(C1*ALGSSA(1)+U2*BLCSSA(1)+C2*SIG(1)) FLUXP=CN1*CXT#ENER****2597961C TAUEENL/(C5*PREL(1)*2.59260) MATTE UUPUT TAPE 3.371L.A.1FLUXP.TAU MATTE UUPUT TAPE 3.371L.A.1FLUXP.TAU MATTE UUPUT TAPE 3.7CG.C1.C2 MATTE UUPUT TAPE 3.7CG.C1.C2 MATTE UUPUT TAPE 3.8*ALGSSA(1)+BLCSSA(1)+SIG(1) Y=C1*ALUSSA(1)+C2*CLUSSA(1)+GLCSSA(1)+SIG(1) MATTE UUPUT TAPE 3.5.ENL,*XYY EXT=.0096 CU=AO/(cL**2.*ENG**BO*CCSF(ALATU)**4) L1A1/(EN=C**E1) C2=AZ*LNEN**#2 KCK=0 FND(1,C,C,O,C,C,C,C,C,C,C,C,C,C,C) Y(K)=t_t_L_3(K) CCNTINC CALL TABL((NLA,FANS,15) CALL TABL((NLA,FANS,15) DC 70 J=t,12 ALOSS#(J)=K(J)#ALCSS BLOSS#(J)=x(J)#EAAS ALOSSA(1)=ALCSSA(2) ALOSSA(1)=ULCSSA(5) DLOSSA(1)=PLCSSA(5) PKEL(1)=P?EL(5) SIG(1)=SIG(5) KCK=1 WRITE GUTPUT TAPE 3,6 IFLKCK) 301.31.301 GU TO 30 PREL(1)=SVPR SIG(1)=SVSG à≥≡∧L2 30≑∺LC 81=8L1 82=8L2 EXT=•0484 6U TC 23 60 TO 500 CONFINUE T1=T+4. A2=AH2 B0=6H0 $\Delta O = AHO$ AUFALC 112=11 I H A = I AB1=6H1 82=9H2 1=1 5 T., ADY 301 21 22 23 300 2 C T 15 0 E

STEAUY

10/01/64

•

.

. • -

٠.

••-

-

STCRAGE NCT USEC BY PROGRAM

DEC DC1 DEC CCT 81/01461 3253177423 SICRAGE LOCATIONS FOR VARIABLES APPEARING IN COMPON STATEMENTS

CC 1 DEr 001 DEC DEC DCT UEC 0CT Y 32546 77442 DEC 0CT X 32561 77461

STURAGE LUCATIONS FOR VARIABLES APPEARING IN CIMENSICN AND EQUIVALENCE STATEMENTS

nr t	01441 01422 01422		CCT 01957	01252	01245	01240	01233	01226	01214		LOC	01165		CCT 01110		00000				LCC CC460 CC751
UEC	801 786		DEC	682	617	672	66.7	662	652		EFN	5		DEC 584		DEC 0				167 125 167
	ELCSS TIME	STATEMENT	441	ALATC	8	611	C2	ENER	96A6			5(B		()		(FPT)			LUCATIONS	6FN 21 3C1
ner ort	715 C1313 703 C1277	R ECUIVALENCE	DEC CCT 688 C126C	683 C1253	678 C1246	673 C1241	668 01234	663 01227 258 01227	653 C1215	TEMENTS	EFN LCC	4 01175	PRUGRAM	DEC 0CT 32767 77777		DEC CCT 4 CC004	ARY	(134)	RS AND DCTAL	1FN LUC 123 C0452 159 C0727
	DLOSSA SIG	IMENSION, O	AH0	412	18	010	C1	EN1 Svoo	XXX	FCRMAT STA		8)4 819	IN SCURCE	4]	VECTCR	(FIL)	T FRCM LIBR	(311)	RAULA NUMBE	6FN 20 31
ner ru	744 01353	IN LUNNUN. D	DEC CCT 684 01261	684 01254	679 01247	674 01242	665 01235	664 01230 668 01703	654 01216	CURCE PROGRAM	EFN LUC	3 01262 6 01137	KCT APPEARING	DEC OCT 502 00766	IN TRANSFER	DEC 0LT 5 CCCC5 1 COGC1	ES NOT OUTPU	(4 T N)	INTERNAL FU	IFN LUC 211 00435 145 00271
	9 X	T AFPEARING	47	ALI	60	812	CO	19 19 19	1	TICNS FOR SC		6(8 8(H	ER SYMUCLS N	(6	CAS CF NAMES	TAULE (15H)	TC SLBRULIN	(FPT)	CHRL SPCNEINC	EFN 201 30
	732 01334	VARIABLES NO	DEC CCT	685 01255	680 0125C	675 C1243	670 01236	665 C1231	655 01217	SULS AND LCCA	EFN LOC	2 01264 7 01147	LICNS FOR DTH	UEC CCT 496 OC760	LOCAL	DEC CUT 7 00007 3 00003	INTRY POINTS	(ETL)	CMBERS WITH C	IFN LUC 92 C0254 140 C0515
	DELUSS	CATICNS FOR	10	ALO	ALUSS	IHA	6	EANS	TAU	SYMI		812	LOCAT	2)		EXP(3 (STH)		IABLE	L FCRMULA NI	EFN 500 23
0EC 1.C1	727 01327 816 01460	STURAGE LO	DEC UCT 691 01263	680 01256	681 01251	676 01244	671 61237	660 01232 641 01232	656 01220		EFN LCC	1 01206 6 01160		DEC UCI 647 01207		DEC UCT 6 COOO6 2 GOUU2		EXP(3	EXTERNA	IFN LCC 16 CU023 133 CU477 135 CU755
	ALOSSA		A ()	AHZ	ALAT	049	ėL2	CONVR	11			6)1 816		11		COS (RTN)		ccs		EFN 11 22 300

10/01/64

TABLE

J

- C SUBRGUTINE TC INTERPOLATE A GIVEN TABLE SUBROUTINE TABLE(XARG,YANS,LL) CIMENSIGN X(15),Y(15) COMPON X,Y TF(LL)11,11,12 12 DC 10 K=1,LL A=Y(K) Y(K)=LJGF(A) 10 CONTNUE 1 DO 20 J=1,15 1 ABSY(J) Y(K)=JJGF(A) 1 DO 20 J=1,15 2 ABSY(J) 1 DO 20 J=1,15 2 ABSY(J) 1 DO 20 J=1,15 2 ABSY(J) 1 DO 20 J=1,12 2 ABSY(J) 1 DD 20 DC 2 ABSY(J) 1 DD 2 DC 2 ABSY(J) 1 DD 2 DC 2 ABSY(J) 1 DD 2 DC 2 ABSY(J)

- G TO 23 G42 YANS=EXPF(ANS) 23 RETURN END(1.0.0.0.0.0.0.0.0.0.0.0.0.0)

. .

• .

10/01/64

.

.

• • •

•,

• •

STERAGE NET USED BY PRUGRAM

SIGRAGE LOCATIONS FER VARIABLES APPEARING IN COMMON STATEMENTS

12 001 DEC STURAGE LECATIONS FOR VARIABLES NOT APPEARING IN COMMON. DIMENSION. OR EQUIVALENCE STATEMENT 00.1 DEC DEC OCT UEC OCT Y 32546 174-2 DEC UCT X 32561 77461

0CT C0151		CCT 00113		001	
0EC 105		DEC 75		DEC	
7		01464			
c oct 06 col52	GRAM	c oct 02 co146		c 0CT	
DEC	PR0(00		DEC	RARY
14	IN SCURCE	<u>ر</u> . ر	VECTCR		FREM LIB
CCT 7 00153	APPEARING	96100 e	TKANSFEH	001	NCT CUTPUT
0EC 1C	NCI	DEC 9	S IN	DEC	S E S
04	SYNUCLS	¢)	S CF NAME		SLARCLTI
001 00154 00147	FOR CTHER	66134 00134 00122	LLCATICN	061 00000	POINTS TC
LEC 1C8 1C3	LONS	DEC 92 82		UEC 0	-NTRY
4 7 1	LOCA	2) E)C		PCC	~
CCT CC155 C0150		cc1 cc143 cc66		ררן כנפסו	
DEC 109 104		DEC 99 48		ם חבר	
ANS VD		1) E)7		ЕXР	

ЕХР

LCC

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FURMULA NUMBERS AND DOTAL LOCATIONS

LOC	0000	00130
IFN	14	25
EFN	. 22	23
rcc	CC053	C0123
IFN	12	24
EFN	21	42
LCC	C 00045	7 00117
IFN	-	2
EFA	11	41
1FA LLC	5 CC043	21 CC114
ELN.	10	50
1FN - LGC	é úCCJI	20 CU111
EFN	12	50

143LE

F. Input

Input to this program occurs on logical tape 2 and consists of B, L, λ , R(1), ..., R(12) Σ (1), ..., Σ (12) for each case under consideration. As with the conservation equation calculation the B-L- λ card is followed by two R cards which are followed in turn by two Σ cards. The control cards are left out of this program since there is only one method of computation available here.

	Columns	Mode	Quantity	Units	Description
$B-L-\lambda$	1-8	\mathbf{F}	ALAT	degrees	latitude
Card	9-16	F	EL	earth radii	magnetic field line
	17 - 24	\mathbf{F}	В	gauss	magnetic induction
First					
R Card	1 - 10	\mathbf{E}	R(1)	-	scale factor R for TIME(1)
	11 - 20	\mathbf{E}	R(2)	-	scale factor R for TIME(2)
	21 - 30	Ε	R(3)	-	scale factor R for TIME(3)
	31-40	E	R(4)	-	scale factor R for TIME(4)
	41-50	Ε	R(5)	-	scale factor R for TIME(5)
	51-60	Έ	R(6)	-	scale factor R for TIME(6)
Second					
R Card	1-10	E	R(7)	-	scale factor R for TIME(7)
	11 - 20	Ε	R(8)	~	scale factor R for TIME(8)
	21 - 30	E	R(9)	-	scale factor R for TIME(9)
	31-40	\mathbf{E}	R(10)	-	scale factor R for TIME(10)
	41 - 50	\mathbf{E}	R(11)	-	scale factor R for TIME(11)
	51-60	Ε	R(12)	-	scale factor R for TIME(12)
First					
Σ Card	1-10	Ε	SIG(1)	atoms/cm	atmospheric loss parameter for TIME(1)
	11-20	Ε	SIG(2)	atoms/cm	atmospheric loss parameter for TIME(2)
	21-30	E	SIG(3)	atoms/cm	atmospheric loss parameter for TIME(3)
	31-40	E	SIG(4)	atoms/cm	atmospheric loss parameter for TIME(4)

1. Input Card Description

Σ

Σ

Σ

Σ

	Columns	Mode	Quantity	Units	Description
	41-50	Ε	SIG(5)	atoms/cm	atmospheric loss parameter Σ for TIME(5)
	51-60	E	SIG(6)	atoms/cm	atmospheric loss parameter Σ for TIME(6)
Second					
Σ Card	1-10	Ε	SIG(7)	atoms/cm	atmospheric loss parameter Σ for TIME(7)
	11-20	Ε	SIG(8)	atoms/cm	atmospheric loss parameter Σ for TIME(8)
	21-30	E	SIG(9)	atoms/cm	atmospheric loss parameter Σ for TIME(9)
	31-40	Ε	SIG(10)	atoms/cm	atmospheric loss parameter Σ for TIME(10)
	41-50	Ε	SIG(11)	atoms/cm	atmospheric loss parameter Σ for TIME(11)
	51-60	Ε	SIG(12)	atoms/cm	atmospheric loss parameter Σ for TIME(12)

-,

• •

2. Sample

GENERAL PURPOSE DATA SHEET

Proble	Ę	[NPI	15	STE	β	12	Į₹	<u>ш</u>		1				l																	ĺ													
Spons	8	-	TAP	E 2														10		~	MM	PLE									Peg							ŏ				ļ			
123	4	\$ 1		2	2 1	2	9 19	4	2	8	8	15 10	19	R	ल ही	Ŕ	9	- R	8	R	刑 約		9	1	4	9		8	8	5 5	將	16 16	Ř	50	8	3	8	6	8	۲ R	7 2	×.	19 10	19 	8
						-	<u> </u>		<u> </u>														<u> </u>			· · · ·	<u> </u>				<u> </u>						<u> </u>				<u> </u>			<u> </u>	
6	- ·	73	0		<u> </u>	4	5		-	- N 	~	6															$\left - \right $																		-
0.2	7 8	5 E	1	11	•	29	8 6	ш	-	-		56	с Э	ш	-	-	•	-	6	6 E	-	0		12	0	3 E		0		1 0	4 3	Ц		0											
0.8	57	7 E		11		6 2	10	ш		10		44	3 6	8 E		-	. 0	3 6	8	ΙE	-	-	•	29	8 6	5 E		1	•	2 7	8 5	л Ш		-											
0.3	6	4 E	I	17	. 0	4 2	7 8	ш		70	Ē	8	9	ЭE	-	7		1 5	0	9 E		9		17	9	Ш		9		1 5	2 2	ш	-	9					<u> </u>	-	-				
0.1	24	9 E		1 6 1	•	89	9 1	ц Ш		7 0		64	õ	4 T	-	7	•	5 2	6	3 E		7	- 0	4 2	7 8	Ĩ	-	7 (3 9	8 4	<u>ו</u>	-	7											
4	6	7 3	0		1.	1 4	2 0		0	. 2	-	68																																	
0.3	7 4	4 E	1	1 3		4 2	45	ı س		30		3	3	ш	-	7	•	4 9	~	7 E	-	5		0 9	- 20	щ		2 0		45	60		-	2											
0.3	0 5	9 E	1	1 2	•	16	ж Э	ш	-	20		8	-	ш	-	m	•	6	0	ш	_	3		4 2	4 5	ш		30		3 7	4 4	ш	-	3											
0.5	63	3 Е	1	6 1	. 0	6 3	3 9	ш	-	9 0		6	3	ŚΕ	-	8	•	6 9	0	7 E		8	•	8 4	0 6	Э Ш	-	8 0		6 2	60	ц Ш	-	8											
0 . 4	26	1 E		8		2 3	0 6	ш	-	8 0		12	5	Ш		80	•	9 0	3	ш 8		6		63	3.5	Ë.	-	9 6		5 6	33	<u> </u>	-	6											
2	<u>6</u>	7 3	0			14	2 0		0	. 2	_	2 1																																	
0.2	0 1	6 E	- 1	14	• •	2 3	31	Е.		4 0		9 4	4 6	ŚΕ	-	4	•	49	5	3 Е	-	3		64	с С	ш		3 0		4 3	4 5	L L	-	3		-									
0.2	6 1	9 E	- 1	13	• 0	11	8 2	ш		3 0		53	8 8	3 E	-	4	•	3 6	0	3 E		4 (2 3	3 1	ш	-	4 0		2 0	16	ц Ш	-	4											
0.7	8 7	8 E	1	2 0	. 0	8 6	9 7	-	- 2	0 0		2 3	0 4	ŧE	-	6	•	8 2	4	6 E	-	6		1 0	2 3	ш Ш	-	8 0		7 4	0 4	- 		6											
0.4	93	8 E		6	0	27	0 4	ш	-	9 0		15	4 4	ŧΕ	-	6	•	-	1	0 E	-	6		8 6	6 7	Ц.	- 7	0		7 8	7 8	ш	5												
0	<u>ہ</u>	7 3	ò			14	20		0	. 2	0	9 9																																	<u> </u>
0 5	78	9 E	1	5		6 4	50	u u	-	5 0		6 1	4	3 E	-	4		9 4	~	6 E	-	4 0		12	5 3	щ.		3 0	•	8 2	4 1	ц Ш		4									_		
0 4	1 6	5Ε		4	-	23	4	ш	-	4 0		12	:	7 E	-	4		89	5	4 E		5 0	<u> </u>	6 4	5 0	ЭE.	-	5 0	•	5 7	89		I	5											
0	9 2	Ч П	- 1	0 7	·	4 3	4	ш	2	0		-	-	ш	-	0	·	27	5	4	-	6		3 2	5	м Ч		6	· ·	25	33	<u>н</u>	-												
0.1	85	1E	Ť	6		-	5 2	ш	-	0 6		72	13	m	1	0		5 6	9	8	- 7	0		4 3	0	щ	- 2	0 0		3 9	2 7	і Ш	2 (
														_																ļ.,	-														
																																											ļ	<u> </u>	-
																																													-

GSFC FORM 541-1 (July - 60)

ì

-

•

G. Output

Output for this program occurs on tape 3. Time, density, flux, mean lifetime, dE/dX, d(dE/dX)/dE, Σ , source and loss are all printed for each energy level at a given B, L and latitude. The headings are listed below with explanations and dimensions:

TIME - time - years

N(E) - density - # protons/cm³ Mev.

 $FLUX - flux - # protons/cm^2$ sec. Mev.

MEAN LIFETIME - proton mean lifetime - sec.

 $C0 - C_0$ (see MNEMONICS) - # protons/cm³ sec. Mev.

C1 - C, (see MNEMONICS) - cm/sec. Mev.

 $C2 - C_2$ (see MNEMONICS) - cm/sec. Mev.

ALOSSA - (dE/dX) ATMOS - Mev./cm.

 $DLOSSA - (d(dE/dX)/dE) ATMOS - cm^{-1}$

SIG $-\Sigma$ - atoms/cm

SOURCE – conservation equation source term – # protons/cm³ Mev.

LOSS - conservation equation loss term - # protons/cm³ Mev.

ENERGY - energy - Mev.

LATO – latitude – degrees

L – magnetic field line – earth radii

B – magnetic induction – gauss

LATO= 12.954 L= 1.188 8= 0.2331 ENERGY= 10.00MEV N(E) TIME 0.7172E-13 0. $C_0 = 0.72115E - 15$ C1= 0.10386E 09 SS4= 0.47404E-10 DLOSSA= 0.35124E-11 1 N(F)= 0.71720E-13 SOURCE= 0.90144E-15 Lſ TIME N(E) 4.000 0.7083E-13 CO= 0.72115E-15 C1= 0.10386E 09 ALOSSA= 0.38400E-10 DLOSSA= 0.28452E-11 N(E)= 0.708316-13 SOURCE= 0.72115E-15 10 ENERGY= 25.00MEV N(E) TIME 0.2246E-13 0. C1= 0.64318E 08 CO= 0.72376E-16 ALOSSA= 0.22595E-10 DLUSSA= 0.76320E-12 N(E)= 0.22457E-13 SUURCE= 0.90470E-16 TIME N(E) 4.000 0.2218E-13 CO= 0.72376E-16 C1= 0.643185 08 ALDSSA= 0.18303E+10 DL0SSA= 0.61823E-12 N(E)= 0.22178E-13 SUURCE= 0.72376E-16 ENERGY= 50.00MEV TIME N(E)0.99818-14 0. CO = 0.12715E - 16C1= 0.44760E 08 ALOSSA= 0.12956E-10 DLUSSA= 0.21465E-12 N(E)= 0.99806E-14 SUURCE= 0.15894E-16 TIME N(E) 4.000 0.98570-14 CO = 0.12715E - 16C1= 0.44760E 08 ALOSSA= 0.10495E-10 DLUSSA= 0.17387E-12 N(E)= 0.98567E-14 SCURCE= 0.12715E-16 ENERGY= 75.00MEV TIME N(E) 0.63682-14 0. CO= 0.45973E-17 C1= 0.36207E 08 ALOSS4= 0.94431E-11 OLOSS4= 0.97214E-13 N(E) = 0.63681E-14 SUURCE= 0.57466E-17 TIME M(E) 4.000 0.6289E-14 CO= 0.45973E-17 C1= 0.36207E 08 ALOSSA= 0.76493E-11 DLOSSA= 0.78748E-13 N(E)= 0.62890E-14 SUURCE= 0.45973E-17 ENERGY= 100.00MEV TIME N(E) 0. 0.48932-14 CO= 0.21809E-17 C1= 0.22509E U8 ALOSSA= 0.76002E-11 DLOSSA= 0.57659E-13 N(E)= 0.48928E-14 SOURCE= 0.27261E-1/ TIME N(E) 4.000 0.48328-14 CO= 0.21509E-17 C1= 0.22509E 08 ALOSSA= 0.61565E-11 0LOSSA= 0.46707E-13 N(C)= 0.48320E-14 SOURCE= 0.21309E-17 ENERGY= 125.00MEV TIME -4 (E) 0. 0.38122-14 CO= 0.12348E-17 C1= 0.19444E U8 ALOSSA= 0.64599E-11 DLOSSA= 0.38193E-13 N(E)= 0.38123E-14 SOURCE= 0.15435E-17 TIME N(E) 4.000 0.37652-14

FLUX 0.00031 C2= 0.21759E 10	MEAN LIFETIME 0.30695E-04
SIG= 0.13080E-14 $LOSS= 0.12569E-01$ $FLUX$ 0.00031 $C2= 0.21759E 10$ $SIG= 0.10610z-14$	MEAN LIFETIME 0.37893E-04
EUX	MEAN LIFETIME
C2= 0.33586E 10 S1G= 0.13080E+14 LOSS= 0.40286E-02	0.95765t-04
FLUX 0.00015 C2= 0.33086E 10 SIG= 0.10010E-14 LOSS= 0.32034E-02	MCAN LIFETIME 0.11822E-03
FLUX 0.00009 C2= 0.46386E 10	MEAN LIFETIME 0.2422/E-03
SIG= 0.13080E-14 LOSS= 0.15925E-02 FLUX 0.00009 C2= 0.46886E 10	MEAN LIFETIME 0.29908E-03
SIG = 0.10810E - 14 L0SS = 0.12900E - 02	MEAN LIFETIME
0.00007 C2= 0.56691E 10 S1G= 0.13080E-14	0.42753E-03
LOSS= 0.90241E-03 FLUX 0.00007 C2= 0.56591E 10 SIG= 0.10610E-14 LOSS= 0.73100E-03	MEAN LIFETIME 0.52777E-03
FLUX 0.00006 C2= 0.65475E 10 SLG= 0.13080E=14	MEAN LIFETIME 0.69244E-03
LOSS= 0.55716E-03 FLUX 0.00006	MEAN LIFETIME 0.85460E-03
C2= 0.65475E 10 SIG= 0.10610c-14 LOSS= 0.45134E-03	
FLUX 0.00005 C2= 6.76099E 10 S1G= 0.13080E-14	MEAN LIFETIME 0.95289E-03
FLUX 0.00005	MEAN LIFETIME 0.11763E-02

186

•	

₹,

= C O =	0.12348E-17	C1= 0.19444E 08	C2= 0.70599
ALOSSA=	0.523286-11	DLOSSA= 0.30938E-13	SIG= 0,10510
N(E) =	0.37650E-14	SHURCE= 0-12348E-17	1055 0 = 2201
	EMERGY= 14	O DOMEN	
	TIME	N(E)	ELUV
	0	0.21165-14	FLUX
C._	0 77506E 14		0.00005
LU=	0.77284E-18	CI= 0.172522 08	0.2 = 0.75275
A 55A=	0.56631E-11	0L055A= 0.27029E-13	SIG = 0.13080
N(E)=	0.311485-14	SUURCL = 0.96980E - 18	LOSS = 0.31135
	TIME	N(E)	FLUX
	4.000	0.3076E-14	0.00005
C O =	0.77584E-18	C1= 0.17252E U8	C2= 0.75275
ALOSSA=	0.46035E-11	DLDSSA= 0.21895E-13	SIG = 0.10610
N(F)=	0.30/61E-14	SOURCE= 0.77584E-18	1055= 0.25222
	ENERGY = 20	DO-DOMEV	
	TIME	N(E)	ET 11X
	0.	0.22585-14	0 00004
C0-	A 37945E-10	C1- 0 16395E 09	
-00 AL 055 A.=	$0 \cdot 5120 = 10$	UI- 0.1420JE 00	$C_2 = 0.83100$
400334-	0.409210-11	010334- 0.194912-13	SIG= 0.13080
MIE)=	0.225796-14	SUURLE= 0.46582E-18	LUSS= 0.20630
	TIME	NLLI	FLUX
	4.000	0.2230E - 14	0.00004
= 0 C	U.37265E-18	C1= 0.14285E 08	C2= 0.83106
ALOSSA=	0.38008E-11	9L0SSA= 0.12516E-13	SIG= 0.10610
N(E)=	0.22298E-14	SUURCE= 0.37265E-18	LOSS= 0.16713
	ENERGY= 2:	DO.OOMEV	
	TIME	N(E)	FLUX
	0.	0.17538-14	0,00003
C.0=	U-21100E-18	$C_{1} = 0.12340E_{0}B$	(2 = 0.89736)
	0.40869E-11	01.0554 = 0.98392E - 14	SIG= 0.13080
N(E)=	0.17529E-14	SOURCE= 0 26375E-18	1055 = 0.15044
ALC/-	U+11727L-14	N/E	
	A 000	17215 14	
	4.000	0.17312-14	0.00003
C0=	0.211001-18	C1 = 0.12340E 08	C2 = 0.89736
ALOSSA=	0.33106E-11	DLOSSA= 0.79702E-14	SIG = 0.10610
N(E)=	0.17310E-14	SOURCE= 0.21100E-18	LOSS= 0.12189
	ENERGY= 30	0.00MEV	
	TIME	N(E)	FLUX
	0.	0.1404E-14	0.00003
C0=	0.13257E-18	C1= 0.10949E 08	C2= 0.95545
ALOSSA=	0.36805E-11	DLOSSA= 0.68303E-14	SIG= 0.13080
N(E)=	0.14037E-14	SOURCE= 0.16571E-18	LUSS= 0.11805
	TIME	N(E)	FLUX
	4,000	0-13866-14	0,00003
C.0=	0.132578-18	C1 = 0.10949E 08	(2= 0-95545
	0.298135-11	010554 = 0.554295 = 14	SIG = 0.10610
N(E1+	0.132616-16	COURCE - 0 132675-19	1055- 0 95647
NIL /-		300RCL- 0.13237L-10	1033 = 0.43043
	ENERGY= 3	DU-UUMEV	F1 144
	TIME	NLEI	FLUX
	0.	0.1142E - 14	0.00002
C0=	0.89495E-19	C1= 0.98958E 07	C2 = 0.10075
ALOSSA=	0.33896E-11	DLOSSA= 0.50877E-14	SIG= 0.13080
N(E)=	0.11418E-14	SUURCE= 0.11187E-18	LOSS= 0.97978
	TIME	N(E)	FLUX
	4.000	0.1127E-14	0.00002
C0=	0.89495E-19	C1= 0.98958E 07	C2 = 0.10075
ALOSSA=	0.27458E-11	$DI \cap SSA = 0.41212E - 14$	SIG = 0.10610
N(E) =	0.11274E-14	SOURCE= 0.89495E-19	1055= 0.79381
, , , , , , , , , , , , , , , , , , ,	ENERCY- A	300RCL- 0.09499L 17	2000-0.17901
	TIME 40		CI 117
	11710	NIE) 0 05415 15	FLUA 0.00000
~ ~		0.9001E+10	
LU=	U-636/6E-19	LI= 0.90559E 0/	UZ= U.10548
ALUSSA=	U-31/23E-11	DLUSSA= 0.38580E-14	516= 0.13080
N(E)=	U.95607E-15	SDURCE= 0.79596E-19	LUSS= 0.83253
	TIME	N(E)	FLUX
	4.000	0.9440E-15	0.00002

1599E IU 010E-14 7985-03 MEAN LIFETIME 0.123918-02 2755 10 080E-14 135E-03 MEAN LIFETIME 0.152962-02 275E 10 610E-14 222E-03 MEAN LIFETIME 0.18701E-02 106E 10 080E-14 630E-03 MEAN LIFETIME 0.23084E-02 106E 10 610E-14 713E-03 MEAN LIFETIME 0.25641E-02 736E 10 080E-14 046E-03 MEAN LIFETIME 0.31651E-02 736E 10 6106-14 189E-03 MEAN LIFETIME 0.32680E-02 545E 10 080E-14 805E-03 MEAN LIFETIME 0.40338E-02 545E 10 610E-14 643E-04 MEAN LIFETIME 0.39376E-02 0075E 11 080E-14 978E-04 MEAN LIFETIME 0.48601E-02 075E 11)610E-14)381E-04 MEAN LIFETIME 0.46341E-02 548E 11 080E-14 253E-04

> MEAN LIFETIME 0.57195E-02

C 0 =	0.63676E-19	C1= 0.90659E 07	C2= 0.10548E 11	
ALOSSA=	0.256978-11	DLOSSA= 0.31252E-14	SIG= 0.10510E-14	
N(E)=	0.94400E-15	SOURCE= 0.63676E-19	LOSS= 0.67454E-04	
	EVERGY= 50	00.00MEV		
	TIME	N(E)	FLUX	MEAN LIFETIME
	0.	0.69538-15	0.00002	0.59518E-02
C0=	0.360548-19	C1= 0.78313E 07	C2= 0.11390E 11	
551=	0.28715E-11	0LOSSA= 0.24088E-14	SIG= 0.13080c-14	
N(E)=	0.69526E-15	SUURCE= 0.45068E-19	LOSS= 0.64021E-04	
• • • • •	TIME	N (E)	FLUX	MEAN LIFETIME
	4.000	0.68646-15	0.00002	0.734512-02
C0=	0.360548-19	C1= 0.78313E 07	C2= 0.11390E 11	
ALOSSA=	0.23260E-11	0LOSSA= 0.19512E-14	SIG= 0.10610E-14	
N(F)=	0.686428-15	SOURCE= 0.36054E-19	LOSS= 0.52525E-04	
	EMERGY= 6	UO.OOMEV		
	TIME	$N(\pm)$	FLUX	MEAN LIFETIME
	0.	0.52482-15	0.00001	0.71499E-02
C 0 =	0.22653E-19	C1= 0.69485E 07	C2= 0.12127E 11	
ALOSSA=	U.26761E-11	0L0SSA= 0.16081E-14	SIG= 0.13080E-14	
N(C)=	0.5247/8-15	SOURCE = 0.28316F-19	LOSS= 0.53959E-04	
	TIME	N(E)	FLUX	MEAN LIFETIME
	4.000	0.51818-15	0.00001	0.88230E-02
C 0 =	0.22653E-19	C1= 0.69485E 07	C2= 0.12127E 11	
ALOSSA=	0.21678F-11	DLOSSA= 0.13026E-14	SIG= 0.10610E-14	
N(E)=	0.51305E-15	SUURCE= 0.22653E-19	LOSS= 0.43727E-04	
	ENERGY= /	UD.OOMEV		
	TIME	N(E)	FLUX	MEAN LIFETIME
	0.	0.4033E-15	0.00001	0.81399E-02
C () =	0.152926-19	C1= 0.62002E 07	C2= 0.12788E 11	
ALOSSA=	0.25414E-11	DL0SSA= 0.11503E-14	SIG= 0.13080E-14	
N(E)=	0.40331E-15	SOURCE= 0.19115E-19	LOSS= 0.47397E-04	
	TIME	N(E)	FLUX	MEAN LIFETIME
	4.000	0.3981E-15	0.00001	0.10044E-01
C () =	0.152928-19	C1= 0.62302E 07	C2= 0.12/88E 11	
ALOSSA=	0.20586E-11	DLOSSA= 0.93180E-15	SIG= 0.10510E-14	
N(E)=	0.398118-15	SOURCE= 0.15292E-19	LOSS= 0.38412E-04	

.

-

.*

•••

.

H. Running Time

ř.

٦,

This program will do eleven cases in a minute and a half.

IX. REFERENCES

- 1. Blanchard, R.C., Hess, W.N., "Solar Cycle Effects in Inner Zone Protons," NASA, GSFC Publ. X-640-64-50, March, 1964.
- 2. Harris, I., and Priester, W., "Theoretical Models for the Solar-Cycle Variation of the Upper Atmosphere," NASA, GSFC publ. X-640-62-70, June 1962.
- 3. McIlwain, C.E., "Coordinates for Mapping the Distribution of Magnetically Trapped Particles," Journal of Geophysical Research, vol. 66, (1961), pp. 3681-3691.
- 4. Jensen, D.C., and Cain, J.C., unpublished, presented at April, 1962, meeting of the American Geophysical Union, Washington, D.C.
- Ray, Ernest, C., "On the Theory of Protons Trapped in the Earth's Magnetic Field," Journal of Geophysical Research, vol. 65, no. 4, April, 1960, pp. 1125-1133.
- 6. Scarborough, J.B., <u>Numerical Mathematical Analysis</u>, 3rd Edition, Oxford University Press, copyright, 1955.
- 7. Aron, W.A., Hoffman, B.C., Williams, F.C., "Range-Energy Curves" (2nd Rev. 1949) U.S.A.E.C., Univ. of Calif. Rad. Lab.

X. ILLUSTRATIONS

Figure 1–A time history of the 10.7 cm solar flux according to the measurements of the National Research Council of Canada for the recent past. The heavy dotted line indicates the approximate yearly average.

Figure 4–B-L contours for the southern hemisphere at an L of 1.25 earth radii

WHERE:

ds - Element of Arc along the particle's helical trajectory

dl - Element of Arc along the field line

Figure 5-Schematic of a trapped particle's north-south motion

Figure 7-A time history of the atmosphere scale factor, R, as a function of B at L = 1.25 e.r.

Figure 9–A time history of the constructed mean solar cycle variation of the 10.7 cm. solar flux with reference time t_o of Jan., 1954

Figure 11-The proton energy loss spectrum for an oxygen target

Figure 12-The slope of proton energy loss versus energy for an oxygen target

'n

Figure 13–A comparison of the steady-state and transient proton flux energy spectrums for L = 1.25, B[•]= .199 at solar minimum and solar maximum

٢.

Figure 14-The time required in terms of solar cycles to build steady state conditions versus energy as a function of B

Figure 15–A time history of proton flux as a function of energy at L = 1.25, B = .209 for the first and tenth solar cycles

20Z