
N8 7- 26 534

PROGRAMMING A HILLSLOPE WATER MOVEMENT MODEL ON THE MPP

J. E. Devaney, A. R. Irving
Science Applications Research

Lanham, Maryland

P. J. Camillo, R. J. Gurney
NASA Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

We have developed a physically based
numerical model of heat and moisture

flow within a hillslope on a parallel
architecture computer, as a precursor
to a model of a complete catchment.
Moisture flow within a catchment
includes evaporation, overland flow,
flow in unsaturated soil, and flow in
saturated soil. Because of the

empirical evidence that moisture flow
in unsaturated soil is mainly in the
vertical direction, flow in the
unsaturated zone can be modelled as
a series of one-dimensional columns.
This initial version of the hillslope
model includes evaporation and a single
column of one-dimensional unsaturated

zone flow. This case has already been
solved on an IBM 3081 computer and is
now being applied to the MPP architec-
ture so as to make the extension to
the one-dimensional case easier and to
check the problems and benefits of
using a parallel-architecture machine.

Keywords: Hydrology, Hillslopes,
Parallel Processing, Unsaturated Flow,
Evaporation.

INTRODUCTION

One important part of the global
hydrological system is a catchment,
which separates rainfall into three
parts: evaporation, overland flow,
which goes directly to a stream, and
infiltration, which flows at a much
slower rate vertically through the
soil to a saturated zone, where the

water then flows horizontally and

merges into the stream or is stored

as groundwater. This involves four

components: evaporation, overland

flow, flow in unsaturated soil and
flow in saturated soil. If we are to

understand the way in which spatial

variations of hydrological parameters
affect the water balance of a catch-

ment, including evaporation, runoff,

erosion and transport of minerals,
we have to model the flow over and

within a hillside explicitly.

Several workers have written hillslope

models (Ref. 6). All of these have

had limitations mainly because they
could not be executed in a reasonable

amount of time. This computer limita-

tion is much reduced if a parallel

processor is used, as it is possible

to write the model in such a way that

it can be solved in parallel at many

points at one time.

The first stage of the work is to

verify that such a model may be

efficiently executed on a parallel

processor. To this end we have coded

and tested a model which already exists

(Ref. 2) on a serial computer, an

IBM 308], and which contains two of

the four previously identified

components, namely evaporation and
unsaturated flow. We have transferred

an existing model to the MPP so that
we may verify the accuracy of the

parallel computations. We also plan
to estimate the computational

efficiency of the full catchment model

in a parallel machine over the

equivalent model on a serial machine,

PREGF_ADING PAGE BLANK NOr FILMtl) !O

https://ntrs.nasa.gov/search.jsp?R=19870017101 2020-03-20T09:48:14+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42835754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

if such a serial model were to be
successfully created.

In this paper we discuss the physics
of the one dimensional model, the
method of solution, and its adapt-
ability to the parallel architecture.

Model Description

The complete soil mode] is described

in Ref. 2. The soil moisture profile
in the unsaturated zone is the solution

of the continuity equation

@e @qm

@t @z
(i)

where O(z,t) is the volumetric soil

moisture (water volume/soil volume)

at depth z at time t, and qm is the
vertical soil moisture flux, modelled

by (Ref. 8)

2e

qm : K - De (....) (2)
az

K is the hydraulic conductivity, and

De is the moisture diffusion
coefficient, which depends on soil

moisture 0, the soil matric poten-

tial _ and other physical constants.

K and _ are estimated with the para-

meterization (Ref. 3)

K(O) = Ks(e/Os)2b+3 (3a)

_(e) = ¢s(eles)-b (3b)

in which Os, Ks, and Os are moisture

content, conductivity, and potential

at saturation. The value of b depends
on soil texture.

The temperature profile in the soil
may be modelled with Fourier's

equations and is one option in the

serial version. However, we have

chosen to implement the computational ly
simpler yet physically adequate

force-restore equations (Ref. 7). The

20

surface_ and deep soil temperatures Ts
and T are modelled by

aTs 2G 2#

- -........ (Ts - T")
at a T

(4a)

m

aT G
B

at a J365 #
(4b)

a : J _CT/# (4C)

where G is the soil surface heat flux,

and c are respectively the soil

thermal conductivity and heat capacity,
and T is the length of the day. T is

the temperature at the depth where
fluctuations are seasonal rather than

diurnal. For most soils this depth is
about 2 meters. The conductivity and

heat capacity are modelled as functions

of soil moisture and soil type with
the model of Ref. 4.

To solve_ these equations for 0, Ts,
and T, boundary conditions must be

supplied for moisture and temperature
both at the air/soil interface and in

the bottom layer of the profile. In

principle, either the fluxes qe and
G or the variables 0 and T could be

specified. In the model, surface heat

and moisture fluxes are computed to
model the effects of the environment

(i.e., rainfall, evapotranspiration,

radiation, etc.) on the profile
evolution. At the bottom of the

moisture profile a choice of flux

or moisture boundary condition is

used. One can specify constant
moisture, a downward moisture flux

equal to the hydraulic constant of the

bottom layer, or any constant value.

The energy balance equation provides
the surface fluxes:

G = R + LE + H (5)

All fluxes are positive downward. G is

the heat absorbed by the soil, R is

the net radiation flux, LE is the
evapotranspiration energy flux, and
H is the sensible heat. After finding
the solution, the surface moisture
flux qe is set equal to E and G is
used in the force-restore equations.

The net radiation R is divided into
average short- and long-wavelength
components:

R = Rshort + Rlong (6)

Either or both components may be
either estimated or measured. All

four options are allowable within the

computer program, standard models such

as the Brunt model for long-wave

radiation being available as options

to estimate either or both components.

A standard model for the latent heat

flux under neutral atmospheric stability
is (Ref. 5)

LE = - pcpk2U--a

Y in2(Z/Zo) (es - ea) (7)

where p isothe density of air (I.15 x

lO-° g cm-°), cn the air specific heat,

k the von Karma_ constant (0.--4),zo the
surface roughness parameter, Ua the
wind velocity (centimeters per second)

at height z averaged over a suitable

time period (~ l hour), ea the vapor

pressure at height z, es the vapor
pressure at the soil surface, and y

the psychrometric constant (0.61808 mbar
K-I).

This may be expressed as

LE = -Cl_a(e s - ea) (8a)

pCpk 2
where Cl = (8b)

y In2(z/z o)

Input to the program includes the

constant Cl and both Ua and ea as
functions of time.

The sensible heat flux H in the con-

tinuity equation (21) is calculated by

H : -YCIU-a(Ts - Ta) (9)

The terms of heat balance equations are

functions of the known surface tempera-
ture_T s and the meteorological variables

ea, Ua, and Ta .

METHOD OF SOLUTION

The continuity equations (I and 4) are
solved by expressing the spatial deriva-
tives of the moisture fluxes as finite

differences, and then using a fourth order

predictor-corrector for the time integra-
tion.

TL.,_ _-*

,,,_soil is divided into N layers of

varying thicknesses AZ i, where N and
AZ i are input variables. At a parti-
cular time the moisture fluxes at the

N-I interior boundaries are calculated

by evaluating Eq. 2. The surface and

bottom fluxes are computed by evaluating

the boundary condition equations at
the top and bottom boundaries. This

gives the flux at the N+I layer boundar-

ies, and the derivative with respect
to depth is approximated for the ith

layer by

qmi+1 - qmi

(qm) I o)
az Az i

The continuity equations (I and 4) are
of the form

ay + +

..... f (t,y)

at
(11)

where the state vector y has N+2

elements, soil moisture ei in each

of N layers, Ts and T. The first N
+

elements of f are Eq. lO, and fn+l

21

and fn+2 are the right hand sides of
the force restore equations, 4a and 4b.

This is readily solved by an Adams-
Bashforth predictor-corrector algorithm
(Ref. 1,9). Wefirst introduce the
backward difference operator V such
that

vf(t) = f(t) - f(t - Vt)

Higher order backward differences are
evaluated by successive applications

of the operator;

v2f(t) = v(vf(t)) = f(t) -

2f(t-At) - f(t-2At)

v3f(t) = f(t) -3f(t-at) +

3f(t-2At) -f(t-3At)

v4f(t) = f(t) -4f(t-At) +

6f(t-2At) -4f(t-3At) + f(t-4At)

Using only the state vector y and the

physical model f , at time t, an
estimate (called the predictor) at
time t+At is

÷ (p) ÷ l
y (t+At) = y(t) + At[l + --- V +

2

5 3 251 ÷
.... V2 + --- V3 + V4]f(t)
12 8 720

÷ (p)
Then, using y (t+At) to evaluate

the model f(t+At) at the t+At,
one may compute another estimate of the
state vector called the corrector;

22

÷(c)
Y

+ 251 +

(t+At) : y(t) + At f(t+At)
720

+

At

720

÷

..... [469 + 109 V + 49 V2 +19 v3]f(t)

(13)

The physical model equations are

evaluated only once each time step

to calculate f(t+At). The difference
between

÷ (p) ÷ (c)
y and y is a reliable estimate

of the error, and the software deter-
mines if each element of this
difference lies within a user specified
window. If all differences are smaller
than this window, the integration step
size (At) is doubled, leading to
increased computational efficiency.
If any difference is too large, the
step size is halved. This halving and
doubling requires no re-evaluation of
the model equations. The values of the
four backward differences for the new
integrator time (whether for halving,

doubling, integration) are calculated
as linear combinations of the four

back values for the old integrator

time. The fact that the same calcu-

lations are done on many pieces of
data at the same time as well as the

boolean nature of the error window

checks make the Hillslope Model an

ideal application for a Single

Instruction Multiple Data (SIMD)

Massively Parallel Processor (MPP).

Mapping the Hillslope Model to the
MPP Architecture

The initial mapping the Hillslope
model to the MPP involved three

phases:

I. Determination of scalar and paral-

lel components of the calculations
2. Data initialization on the MPP

3. Data output to the VAX

Both calculations within the layers

of the hillslope and at the boundaries
are required at each time step of the
model integrations. The calculations
within the hillslope are exactly the
sameat each layer, so they were set
up so that they could be done in unison
by meansof parallel arrays in the MPP
Array Unit. These parallel values
consisted of the soil moisture, temp-
erature, depth, layer thicknesses,
fluxes, derivatives, backward differ-
ences, as well as predicted and
corrected values. Becausethe model
was set up with a view to extension
to a two dimensional model, each row
in the Array Unit was to represent
one vertical column in the hillslope,
with the componentsof the row repre-
senting the layers in it. This initial
version of the model was set up with
!4 layers in the soil column to match
the serial calculations. Thus in this
one-dimensional rendition, only part
of the first row of the Array Unit
was used for each parallel array of
data. In addition, since the tempera-
ture and moisture values constitute

the state vector (y) and thus require
the sametype of computations, they
were placed together in the first
row of the array unit. While this is
initially wasteful in terms of the
computational power of the MPP, it
allows an easy extension to a two
dimensional model which will use the
other rows and hence the full cap-
abilities of the MPP.

The boundary conditions involve only

single values at the top and bottom
of the soil column modified with

scalar input data, and so they may
be more efficiently done serially with

the Main Control Unit (MCU). Thus,

implementing the model on the MPP

involved scalar and parallel compo-
nents as well as communication between

the scalar and parallel components
for boundary condition values. The

MPP architecture is very efficient

at passing scalar values back and
forth between the MCU and the Array

Unit as it has a register designed

for this purpose. Two special purpose

assembly routines were written to take

advantage of this. One took a user

specified row and column in a parallel

array and placed a given scalar value
there. Another took a user specified

row and column in a parallel array and
retrieved a value into a scalar in

the MCU. These were used in the

boundary condition calculations.

Data intialization on the MPP therefore

involved initialization of parallel

arrays as well as scalar data. These

arrays were initialized in FORTRAN

arrays and scalars on the VAX and
transferred over to the MPP scalars

and arrays via the DR780 and DRllb

buffers. The capability of the stager

to permute the data bits between the

VAX and the Array Unit was used to

change the format of the floating point
data from the VAX format to the MPP

format while the data was being trans-
ferred between the VAX and the MPP.

Because of this, parallel data trans-
mission between the VAX and the MPP

appeared transparent. Explicit bit

swapping of scalar integer data between
the VAX and MCU to accomodate the two

separate integer formats was still

necessary, however, as these values
were transmitted across the DRIIb

which has no data permuting capa-

bility.

Special purpose routines were written

to enable data output to the VAX of

the information in the parallel arrays.

These routines passed parallel arrays

into predefined VAX FORTRAN arrays.
MPP Pascal callable VAX FORTRAN

routines were written which could write

out the data in these arrays for user
examination of intermediate and final

results. In addition, some high level

I/O equivalent to Pascal 'writeln'

was written to speed the debugging

process by bypassing the CAD debugger
entirely.

The next step in mapping the Hillslope
model to the MPP architecture involved

implementing the physical model

23

equations in MPP Pascal.

The predicted and corrected state
vector values (soil moisture and

temperature) involve a calculation

of the type (see Eqs. 12 and 13)

y = y + At Z W * tp
n+l n I i i

where

W are the backward differences

i for each layer

tp are the constant scalar coeffi-
i cients in the predictor equation

By assigning the backward differences to

individual parallel arrays so that order
ith backward differences for each layer

are stored in the first row of the ith

parallel array, the above calculation
can be solved for each layer with a

series of parallel operations.
W * (tp * At) involves only multi-
i i

plication of a parallel array by a
scalar as the coefficients of the

predictor equation would be the same
for each layer with the same order

backward differences. The remaining

sums can be done for each layer in

parallel. Once the predicted and
corrected values of each layer are

available, their differences can be

simultaneously calculated. Compari-

sons with user input error windows
can be done all at once with simple

boolean tests on the parallel arrays.
Recalculation of the backward

differences for each layer can be done
in unison with the backward difference

arrays.

There are additional calculations

needed at each layer and each time

step in order to include the depend-
encies of the heat and moisture

fluxes on the moisture and tempera-

ture profiles through the column.

These involve the matric potential,

the hydraulic conductivity, the
moisture fluxes as well as the deriva-

tives of the moisture fluxes and

temperatures. Special calculations
must be done at the boundaries in

order to include the effects of the

air/soil interface at the top as well
as the effects of saturated soil at

the bottom of the column.

The matric potential and hydraulic

conductivity calculations involve only

parallel computations. They both

depend on the calculation of the type:

result := a * Ab

where 'a' and 'b' are scalars and 'A'

is a parallel array (which is the same
for both). A parallel version of this
was calculated by:

temp := In(A)
result := a * exp(b * temp)

where 'temp' is a temporary variable.

The savings in time by only calculat-

ing the natural logarithm once and

doing the calculations in parallel
will be considerable as the model is

extended to more dimensions. The

derivatives are also easily available

through parallel operations as the

change between layers can be obtained
easily through the 'shift' operator

and the thickness of each layer is

stored in a parallel array. The same

is true of the fluxes. Computation of

thermal parameters involved mixing some
scalar values with information from

various points in parallel arrays and

storing the results back in the paral-
lel arrays. Here is where the special

purpose routines were used. Simple

'get' and 'put' routines were written

to get/put a value out of/into a user

specified row and column in a parallel

array. This could be done quickly

using the special capabilities of the

MPP architecture. Moreover, as the

needed scalar computations were being

done, parallel operations could be

24

performed concurrently in the Array
Unit.

Minimizing the Program Execution Time
by Using the Capabilities of the MPP
Through MPPPascal

The multiprocessing capabilities of
the MPPare easily available through
MPPPascal. Scalar calculations are
performed in the Main Control Unit.
This is a special purpose microcoded
16-bit processor which has a 16 bit
hardware multiplier. Parallel calcu-
ations are performed in the Array Unit
with 16384specially designed pro-
cessors. The scalar Main Control Unit
calculations and the parallel Array
Unit calculations are done simul-
taneously except whenthe Main Control
unit is expecting a scalar result from
the Array Unit. This would be the
case, for example, when doing a maximum,
minimumor sumoperation on a parallel
array. MPPPascal produces a code
which runs in the Main Control Unit
and makescalls to library and special
purpose routines which run in the
Array Unit. There is also a call queue
which enables the Main Control Unit
to stack its calls (including register
transfer data) to the Array Unit. These
calls may be stacked up to 15 deep.
Thus a parallel operation, such as an
assign, in MPPPascal translates to a
single call by the Main Control Unit
to the Array Unit to begin its process-
ing with its own processors. The Main
Control Unit is then free to do either
scalar calculations or send another
parallel operation request to the
Array Unit. By recognizing that the
Main Control Unit is a serial processor
it becomesapparent that sending
requests to the Array Unit to perform
parallel operations and then doing
scalar operations in the Main Control
Unit allows the scalar and parallel
calculations to be done at the same
ti me.

This feature of the MPPwas used
extensively in the boundary condition
calculations to reduce program

execution time. It proved to be the
single most important tool for reduc-
tion of program running time. Other
techniques involved setting up masks
at initialization time and reusing
them instead of regenerating them with
'WHERE'statements, and also the use
of temporary stores for the results of
natural logarithm and exponent functions
which were to be used in more than one
calculation.

A 24 hour simulation on the MPPwith
14 layers used 30 seconds of computer
time, whereas the identical simulation
on the IBM3081 serial machine used 4
seconds. Adding more layers to the MPP
model would use virtually the same
amount of time, whereas the execution
time on the serial machine is
approximately linear with the numberof
layers. Weexpect, then, that the
break even point is approximately 115
layers. Modelling an entire catchment
could easily require ten times this
number, so we expect that the parallel
architecture of the MPPwill provide
significant savings in computer time
over a similar model on a serial
machine.

CONCLUSION

Wehave coded a one-dimensional
hydrological model of the surface
energy and moisture balance and
moisture flow in the unsaturated
zone, as a precursor to a complete
catchment model.

By comparing to an identical model
on an IBM 3081 serial machine, we
have shownthat it is feasible to use
the MPPfor numerical models such as
this one, and that the parallel arch-
itecture makessuch calculations more
efficient when the physical model
includes modelling the sameprocesses
at manydifferent points in space.

25

ACKNOWLEDGEMENT

Two of the authors, J. E. Devaney
and A. Ro Irving, were partially
supported by NASA contract
NAS5-28200.

REFERENCES

I. Booth, A.D., Numerical Methods,

Academic Press, New York, 1957.

. Camil]o, P.J., R.J. Gurney and
T.J. Schmugge, A Soil and
Atmospheric Boundary Layer Model
for Evapotranspiration and Soil
Moisture Studies, Water Resour.
Res., 1983, 19, pp. 371-380.

. Clapp, R.B. and G.M. Hornberger,
Empirical Equations for Some
Soil Hydraulic Properties, Water
Resour. Res., 1978, 14, pp. 601-604.

o de Vries, D.A., Heat Transfer in

Soils, Heat and Mass Transfer in the

Biosphere, Scripa, Washington, D.C.,
1975.

5. Eagles.n, P.S., Dynamic Hydrology,
McGraw-Hill, New York, 1970o

. Freeze, R.A., Three-Dimensional,

Transient, Saturated-Unsaturated

Flow in a Groundwater Basin, Water

Resour. Res., 1971, 7, pp. 929-941.

.

.

.

Lin, J.D., On the Force-Restore
Method for Prediction of Ground

Surface Temperature, J. Geophys.

Res., 1980, 85, pp. 3251-3254.

Philip, J.R. and D.A. de Vries,
Moisture Movement Porous Materials

Under Temperature Gradients, EOS

Trans. AGU, 1957, 38, pp. 222-228.

Teddington, A., Modern Computing

Methods, Philosophical Library,
NY, 1958.

26

