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ABSTRACT

A new two-dimensional model of water flow in a

hillslope has been implemented on the Massively

Parallel Processor at GSFC. Flow in the soil both

in the saturated and unsaturated zones, evaporation

and overland flow are all modelled, and the

rainfall rates are allowed to vary spatially.

Previous models of this type had always been very

limited computationally. This model takes less

than a minute to model all the components of the

hillslope water flow for a day. The model can now

be used in sensitivity studies to specify which

measurements should be taken and how accurate they
should be to describe such flows for environmental

studies.

INTRODUCTION

One important part of the global hydrological

system is a catchment, which separates rainfall

into evaporation, overland flow, and infiltration.

For a heavy rain, infiltration excess reaches the

stream first as overland flow. Part of the

infiltrated water may then flow rapidly below the

surface to re-emerge downslope or enter the stream.

This is usually referred to as saturated subsurface
flow. The rest reaches the unsaturated zone. The

flow there is vertical and horizontal, and the

latter component may eventually contribute to the

stream flow. Another component which can

contribute to the stream flow is horizontal flow in

a perched water table above the bedrock.

The primary output of catchment models is the

hydrograph, in which the rainfall and fluxes to

the stream from each of the above processes are

plotted as a function of time. The rainfall

rate and the sum of all the output fluxes are the

usual data from a catchment, and a primary goal of

catchment modelling is to understand the

sensitivity of the output to the physical

characteristics of the catchment , such as

topography, cover type, soil characteristics, and

antecedent moisture.

of the catchment. The third class contains

deterministic models based on the laws of

conservation of energy, mass, and momentum, usually

expressed as time and space dependent differential

equations. As these almost always contain non-

measurable parameters which must be calibrated,

deterministic models are partly parametric.

There are many deterministic catchment models, but

none of them includes all of the processes in the

hydrological cycle. In part this is because we

don't even know what they all are, due to the

extreme complexity and variability of natural

catchments. However, no existing model even

includes all the processes previously

described, because no serial computer can model

them with a reasonable amount of computer time for

a spatially variable catchment and for a long

enough time period (Ref. 1,7,8,13.15).

The concept of partial (or contributing) areas is

one basis of our understanding of how catchments

distribute rainfall (Ref. 17). Due to the spatial

variability of catchment characteristics (soils,

cover, topography), different areas handle the rain

in different ways. For example, if the rain rate

exceeds the infiltration capacity for a particular

area, then the excess rain becomes overland flow.

Once the soil is saturated, the water can flow

rapidly below the surface and parallel to it. This

process is referred to as saturated subsurface

flow. The water will re-emerge somewhere

downslope, adding to overland flow. The areas

change over time, so the saturated partial area

which contributes to overland flow varies in time

as well as in space.

We have tried to overcome the computing limitations

by developing a model on the Massively Parallel

Processor (MPP). The model consists of a set of

partial differential equations, solved in parallel,

and so adapts naturally to a parallel architec-

ture. The MPP hillslope model includes the

following components :

-- Surface retention

Ref. 13 define catchment models as being of three

basic types, but with overlapping characteristics

so they may be considered a continuum. The first

is stochastic. These models are statistical, in

which time series of measured hydrographs (output)

are correlated to rainfall (input) using classical

time series analysis techniques. This leads quite

naturally to parametric models, their second class,

in which the parameters of the stochastic models

are related empirically to the physical properties
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-- A complete surface energy balance (tempera-

ture and moisture) with separate evaporation

rates from the soil, plants (with water

extraction from the unsaturated zone), and

surface retention

-- Overland flow

-- Saturated subsurface flow parallel to the
surface
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-- Horizontal and vertical flow in the unsatur-

ated zone

-- Horizontal flow in an unconfined aquifer

Our model is a vertical slice of a hillslope, so it

is basically a two-dimensional model. It may be

considered three-dimensional only if the gradients

are all downslope, not across the slope. It is

based on a catchment model of Ref. II, which is

simply a series of uncoupled oneldimensional soil

columns placed side by side. We have improved

their design by allowing for horizontal flow in the

unsaturated zone between the columns, and including

the soil and surface temperatures.

We decided at the beginning of this research effort

to create one-, two-, and then three-dimensional

models in succession. The one-dimensional model

(Ref. 6) was compared to a similar one which runs

on a serial machine (Ref. 5,10) to make sure the

equations are solved correctly on the MPP, and as a

timing benchmark. After the two-dimenslonal model

is completely tested, we plan to develop a three-

dimensional version.

Our use of a parallel processor significantly

reduces the execution time. Typically a 24 hour

period may be modeled in about one CPU minute.

Ref. ii state that their model does not use

excessive computer time on a serial machine, but

they only present results from 6 hour simulations.

THE TWO-DIMENSIONAL MODEL

The specifications for each of the components of

the model given in the first section are described

here as flux and continuity partial differential

equations. The method of solution is also briefly

described.

Unsaturated Zone

Moisture flow is modeled as described in Ref. 5,

except we now have a horizontal component in the

soil moisture flux. The surface temperature is

modeled by the force-restore method.

Boundary value fluxes must be specified for

moisture at the top and bottom of the hillside

(vertical direction) and at the hillslope divide

and surfaces (horizontal direction). The top

boundary flux is the infiltration or evaporation

rate, computed from the surface energy balance.

The horizontal flux into the hillslope at the

divide is zero. The horizontal flux at the

hillslope surface depends on whether that cell is

saturated. If it is and the sum of the vertical

fluxes plus the horizontal flux into the cell from

the interior of the hillslope would cause soil

moisture to exceed saturation, then the flux onto

the surface is set to whatever value is needed to

keep moisture just as saturation. Otherwise, it is

zero. This is the mechanism which allows

subsurface return flow.

Saturated Zone

The water table height in each column is HB. The

horizontal flux is QB, and the vertical flux is QZ.

The fluxes and vertical boundary conditions are

calculated by the one dimensional Boussinesq

equation (Ref. 14). The flux into the water table

from the unsaturated zone is modelled as the

vertical hydraulic conductivity of the layer, and

the bottom boundary condition is an input parameter

representing an impervious layer or upward or

downward seepage.

The flux at the catchment divide is set to zero.

At the seepage face the height HB is a fixed input

parameter. Therefore the time derivation of HB is

zero for the last column, and the discretized form

of this derivative may be solved for the horizontal

flux at the seepage face. This is the saturated

zone flux which contributes to the hydrograph.

Overland Flow

If the surface water height is larger than a

critical value, the overland flow flux is

determined by Manning's equation (Ref. 7).

The infiltration rate is basically the Green-Ampt

model (Ref. 9), with the usual modification which

replaces the depth of the wetting front with the

cumulative infiltration:

l(t) - a + bfftl(t ') dt' (I)
U--

Surface Energy Balance

The energy balance equation provides the surface

fluxes:

G _ R + LE + LH (2)

All fluxes are positive downward. G is the heat

absorbed by the soil, R is the net radiation flux,

LE is the evapotranspiration energy flux, and H is

the sensible heat. After finding the solution, the

surface moisture flux q. is set equal to the soil

evaporation rate, a_d G is used in the force-

restore model. The surface temperature needed to

evaluate the fluxes is known from the forcelrestore

equation. The latent and sensible heat fluxes are

the usual resistance formulations. We imagine the

soil and vegetation as one surface with the

temperature T . We also allow for some surface
s

water storage. This affects the evaporation rates,

because the surface resistance is zero for the

fraction of the evaporation which comes from the

stored water.

Method of Solution

The soil moisture and temperature continuity

equations are solved by calculating the spatial

derivatives of the moisture fluxes and then

computing the time integral using numerical models.

The soil is divided into cells by creating a grid

of N layers and M columns of varying widths Az. and

Ax i respectively, which are input parameters, iAt a

specified time the fluxes at the interior
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boundaries are calculated. The surface energy

balance equations are evaluated and all boundary

conditions applied. The continuity equations are

of the form:

dy _

..... f (t,y)

dt

(3)

The vector y represents the state of the system in

the unsaturated zone and _(t,y) represents the

model equations. This is solved with an Adams-

Bashforth predictor-corrector method (Ref. 3,16).

This solution is described in detail in Ref. 5.

Since double precision is not available on the MPP,

the form of the predlctor-correction equations with

the calculations done with the derivatives instead

of the backward differences was used. New values

of the state vector, _(p)(t+At) are predicted in

terms of the previous derivatives. The derivatives

are recalculated from the model equations, and then

_he corrected value of the state vector,

y(c)(t+_t), is obtained.

The difference between y(p) and y(c) is a reliable

estimate of the discretization error, and the

software determines if each element of this

difference lies within a user-specified window. If

all differences are smaller than this window, the

integration step size (At) is doubled, leading to

increased computational efficiency and reduced

roundoff errors. If any difference is too large,

the step size is halved. Doubling of the time step

was accomplished by saving the previously

calculated derivatives and using them. Thus,

maximum accuracy could be retained. Where the time

step could be doubled because the errors are small

enough but there were insufficient back

derivatives, doubling was postponed until there

were sufficient back data. When the error window

checks required that the time step be halved, three

of the required derivatives for the predictor-

corrector were available, and two were missing.

The Runge-Kutta method was used to calculate these

needed derivatives. The continuity equations for

surface and saturated flow are solved using a

Runge-Kutta method throughout.

UTILIZING THE MPP ARCHITECTURE FOR SPEED

Since identical calculations were needed at each

soil cell, the mapping of the two dimensional model

of the hillslope was accomplished by assigning an

individual processing element to each soil cell

(see Fig. i). Thus, the local memory of each

processor contains the values which belong to that

cell, i.e. moisture, position, thickness, depth,

conductivities, etc. Surface temperature, deep

soil temperature, cumulative infiltration, overland

flow, and saturated flow were all stored as vectors

in the same array as the moisture values since they

were part of the state vector.

The first step in the solution required calculation

of the fluxes at the interior boundaries of the

UNUSED __

PROCESSOR8

Hill Top

Battom Leye_

Figure I. One processing element is assigned

to one soil cell

soil cells. These calculations involved only array

arithmetic and nearest neighbor (in one direction

for horizontal fluxes and in the other direction

for vertical fluxes) calculations. Since the

interconnect- scheme of the MPP is a nearest

neighbor network, all of the array arithmetic and

nearest neighbor calculations could be done in

parallel. The next step in the solution required

the surface energy balance equations be evaluated

and the boundary conditions applied. These all

involved vector calculations. Numerous input

vectors were required to do these calculations over

the course of a model run. Some were time

dependent vectors such as the air temperature

across the surface of the hillslope throughout the

day and some were static throughout the model run,

such as surface slope, surface roughness, and

surface vegetation properties. These vectors were

packed into array columns. To get the vector data

to a convenient place to do calculations, the row

and column broadcast capability of the MPP was

used. This allows fast broadcast of one element

from each row (column) to the other processor

memories in the same row (column) (see Fig. 2).

It is not necessary that the broadcast row (column)

be composed only of elements in a horizontal

(vertical) direction but merely that one element

per column (row) be selected. The MPP's capability

to select arbitrary areas of an array for

calculation via boolean masks allowed the completed

vector calculation results to be placed for example

into the processor memories of only the surface of

the hillslope. This combination of data movement

via broadcast and boolean selection enabled the

vector calculations to be done simply. In

addition, since many of the vector calculations

were similar, it was possible to do more than one

set at a time.

Once the derivatives were calculated, the

predictor-corrector equations were used and the

differences between them found. The tests on the
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Figure 2. The row and column broadcasting

feature of the MPP allows quick

movement of data for vector

calculations

halving (doubling) converted to a hardware

instruction on the MPP and could thus be done in

parallel. This global testing ability of the MPP

was also used to decide if whole blocks of code

needed to be executed or could be skipped. This

occurred for example with the infiltration

calculations under surface saturation. If no part

of the surface was saturated, then these

calculations could be skipped entirely. This also

contributed to the overall speed of execution.

In summary, the program's speed was achieved

through array arithmetic (masked and unmasked),

parallel data movement through nearest neighbor

communication and row and column broadcasting, and

global testing of conditions using 'any' or 'all'

for the purpose of choice in the next set of

calculations. All of these fitted naturally with

the MPP architecture and the computational

requirements of the model. A comparison of the

times (see Table l) for the model as it has evolved

from a 14 layer, one-dimensional limited flow model

to the current two dimensional model shows that a

single day of data run through the model requires

only about a minute of CPU time.

Table i. Timing measurements comparing MPP and

a serial processor for 24 hours of data

processed.

One Dimensional Model

(14 soil layers, no rain, vertical flows only)

IBM (Full processing capability): 4 sec

MPP (14/16384 processors)_ i0 sec

Two Dimensional Model

(102 soil layers, 102 soil columns, horizontal

and vertical unsaturated flows, saturated flow,

overland flow, one hour of rain)

MPP: 57 sec

MODEL OUTPUT

We have not yet completed unit testing of all the

processes in the model. Here we present the

results of one test, which includes the surface

energy balance of and infiltration into an

initially very dry sandy loam soil.

The hillslope is divided into 102 columns of width

.5 meters each. The first column has I00 soil

layers of thickness .i m and the bottom two layers

.5 meters. The last column has only the bottom two

layers. The slope is a line drawn from the top of

the first column to the top of the last, so the

area modeled is a right triangle with height Ii

meters and base 60 meters. These soil cells plus

the additional cells for temperature, infiltration,

overland flow and saturated flow use approximately

one-third of the Array Unit Processor capacity.

The initial volumet_Ic_oisture in the unsaturated

zone is set to .05 m m everywhere. To model a

sandy loam we have set the parameters in the

hydraulic conductivity and matr_c pg_ential models

to 8 s - .375 K - 2.8 x I0 m_ _ - -.43 m
and 5 - 5. These values were derived from fits to

the characteristic curves measured during an

experiment near Phoenix in 1972 (Ref. 12). They

were reused for each of the 6 days modeled here.

Ref. 4 show how these data were fitted to the

surface energy balance model. The rainfall rate
was 1.6 cm h for the first 3 hours.

Perhaps the most important result is that the

simulations took approximately I minute of CPU time

per 24 hour period, or 6 minutes for the entire 6

day run. In numerical simulations on earth science

problems, computer runs of an hour or more are not

uncommon. In such a time, it is feasible to

simulate 2 months or more of model time on the MPP.

This will allow for simulations of many storms and

inter-storm periods.

Figure 3a and 3b show the force restore solutions

to the surface and deep soll temperatures as

functions of time and column number. Time zero is

the start of the simulation, which here is

midnight. Column 1 is at the hillslope divide

and column 102 is at the seepage face. It is

difficult from these plots to project the daily

maximum value onto the time axis, but for each day

this occurs at 2 p.m. The temperatures range from

22 to 40 (°C), increasing as the soil surface

dries. The temperatures in the last three columns

show some problems, which we are examining.

Figure 4a shows soil moisture in the top soil layer

as a function of time and position. The rapid rise

as the initially dry soil absorbs all the rain and

the subsequent decline over the next 5 days are

physically realistic.

Figure 4b shows the soil moisture profile in column

50 (halfway down the hillslope) as a function of

time. This shows that the moisture never

penetrates deeper than the top 5 layers, or . 5

meters. It also shows that after 2 days the

surface exhibits small oscillations about a value

of .05 (same as in Fig. 4a), increases to a value
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Figure 3a. Force-restore solution for the surface

temperature as a function of time and

position on the hillslope

Figure 4a. Surface soil moisture as a function

of time and position on the hillslope
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Figure 3b. Force-restore solution for the deep

soil temperature as a function of

time and position on the hillslope

of about .12 at about .3 meters then decreases to

an unchanging value of .05 below .5 meters. Thus,

the dynamic zone seems to be the top .5 meters.

Figure 4c shows the variation of the top cell soil

moisture as a function of time. The effects of

infiltration and evaporation, as well as of

capillary action, can be seen.

Figure 4b. Soil moisture profile for column 50 as

a function of time

Figure 5a shows the infiltration rate as a function

of time and4Posit_n. The maximum rate shown here

(4T4 x I0 cm s ) equals the rain rate, 1.6 cm

h'-. Figure 5b shows the cumulative evaporation

everywhere as 4,8 cm, exactly equal to the

cumulative rainfall. For this simulation, then,

all the rain immediately infiltrated into the soil

surface. Figure 5b also shows that the cumulative

infiltration calculation is correct. There is no

surface retention,
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radiation, a rather large value. The problem is

not in the values for thermal conductivity and heat

capacity, as may be seen in Figure 7. These vary
with soil moisture as they should.

Figure 4c. Surface moisture for column 50 as a

function of time

Figure 5b.

5oO

_00

300

200

100

Cumulative infiltration as a function

of position and time

Figure 5a. Infiltration rate as a function of

position and time

The surface energy balance fluxes are plotted in

Figs. 6a-6d. The net radiation (Fig. 6a) is the

data used to drive the energy balance model. These

are the same very day, as we simply reused the 24

hour data set each day. The latent heat flux (Fig.

6b) decreases each day as the soil dries out. The

sensible heat flux (Fig. 6c) exhibits peculiar

behavior, being predominantly positive (towards the

soil in the sign convention of Eq. 2) for the first

4 days and negative thereafter. Finally, Figure 6d

shows the soil heat flux. It is positive during

the day as it should be for a soil surface which is

getting warmer every day, but it is also 50_ of net

Figure 6a. Surface net radiation as a function of

time and position

These peculiarities in the surface fluxes are most

likely due to the use of the same net radiation

every day, which cannot be representative of all

the surface conditions modeled here. This is being

checked out by using modeled instead of measured
radiation.
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Figure 6b. Latent heat flux as a function of

time and position

Figure 6c. Sensible heat flux as a function of

time and position

SUMMARY

We have presented a new model of the hydrological

response of a hillslope to rain. It runs on a SIMD

parallel architecture computer, the Massively

Parallel Processor, at Coddard Space Flight Center.

Its major advantage over other models of its type

is its much reduced execution times (due to the

parallel architecture of the MPP) from what one

gets on a serial machine. This allows the model to

include more of the hydrological processes than any

other model has been able to, including saturated

subsurface flow and a sophisticated surface energy

balance.

Figure 6d. Soil heat flux as a function of

time and position

Figure 7a. Thermal conductivity of the top soil

layer as a function of time and

position
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Figure 7b. Heat capacity of the top soil layer

as a function of time and position
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