96 research outputs found

    Earth's Inner Core dynamics induced by the Lorentz force

    Get PDF
    Seismic studies indicate that the Earth's inner core has a complex structure and exhibits a strong elastic anisotropy with a cylindrical symmetry. Among the various models which have been proposed to explain this anisotropy, one class of models considers the effect of the Lorentz force associated with the magnetic field diffused within the inner core. In this paper we extend previous studies and use analytical calculations and numerical simulations to predict the geometry and strength of the flow induced by the poloidal component of the Lorentz force in a neutrally or stably stratified growing inner core, exploring also the effect of different types of boundary conditions at the inner core boundary (ICB). Unlike previous studies, we show that the boundary condition that is most likely to produce a significant deformation and seismic anisotropy is impermeable, with negligible radial flow through the boundary. Exact analytical solutions are found in the case of a negligible effect of buoyancy forces in the inner core (neutral stratification), while numerical simulations are used to investigate the case of stable stratification. In this situation, the flow induced by the Lorentz force is found to be localized in a shear layer below the ICB, which thickness depends on the strength of the stratification, but not on the magnetic field strength. We obtain scaling laws for the thickness of this layer, as well as for the flow velocity and strain rate in this shear layer as a function of the control parameters, which include the magnitude of the magnetic field, the strength of the density stratification, the viscosity of the inner core, and the growth rate of the inner core. We find that the resulting strain rate is probably too small to produce significant texturing unless the inner core viscosity is smaller than about 101210^{12} Pa.s.Comment: submitted to Geophysical Journal Internationa

    Multiscale model of global inner-core anisotropy induced by hcp-alloy plasticity

    Get PDF
    ∙\bullet Multiscale model of inner-core anisotropy produced by hcp alloy deformation∙\bullet 5 to 20% single-crystal elastic anisotropy and plastic deformation by pyramidal slip ∙\bullet Low-degree inner-core formation model with faster crystallization at the equatorThe Earth's solid inner-core exhibits a global seismic anisotropy of several percents. It results from a coherent alignment of anisotropic Fe-alloy crystals through the inner-core history that can be sampled by present-day seismic observations. By combining self-consistent polycrystal plasticity, inner-core formation models, Monte-Carlo search for elastic moduli, and simulations of seismic measurements, we introduce a multiscale model that can reproduce a global seismic anisotropy of several percents aligned with the Earth's rotation axis. Conditions for a successful model are an hexagonal-close-packed structure for the inner-core Fe-alloy, plastic deformation by pyramidal \textless{}c+a\textgreater{} slip, and large-scale flow induced by a low-degree inner-core formation model. For global anisotropies ranging between 1 and 3%, the elastic anisotropy in the single crystal ranges from 5 to 20% with larger velocities along the c-axis

    Seismic response and anisotropy of a model hcp iron inner core

    Get PDF
    International audienceWe present a framework for simulating the measurement of seismic anisotropy in a model inner core by computing travel time residuals of synthetic seismic rays propagated through the model. The method is first tested on simple inner core structural models consisting of layers with distinct anisotropy, as often proposed in the literature. Those models are not consistent with geodynamics. Hence, we extend the method to a numerically grown inner core composed of Δ-Fe with flow generated from an excess of crystallization in the equatorial belt, inducing polycrystalline textures. The global inner core anisotropy is 7 times smaller than that of the single crystal. Compositional stratification amplifies the global anisotropy by 15% while the addition of solidification textures reduces it by a factor of 2. As such, and within the tested geodynamical models, no published elastic model of Δ-Fe at inner core conditions allows for reproducing the 3% cylindrical anisotropy reported in seismology publications. In addition, our models demonstrate that additional information such as the depth dependence and the spread of the observed anisotropy is a key for revealing the dynamics and history of the inner core

    On the existence and structure of a mush at the inner core boundary of the Earth

    Get PDF
    It has been suggested about 20 years ago that the liquid close to the inner core boundary (ICB) is supercooled and that a sizable mushy layer has developed during the growth of the inner core. The morphological instability of the liquid-solid interface which usually results in the formation of a mushy zone has been intensively studied in metallurgy, but the freezing of the inner core occurs in very unusual conditions: the growth rate is very small, and the pressure gradient has a key role, the newly formed solid being hotter than the adjacent liquid. We investigate the linear stability of a solidification front under such conditions, pointing out the destabilizing role of the thermal and solutal fields, and the stabilizing role of the pressure gradient. The main consequence of the very small solidification rate is the importance of advective transport of solute in liquid, which tends to remove light solute from the vicinity of the ICB and to suppress supercooling, thus acting against the destabilization of the solidification front. For plausible phase diagrams of the core mixture, we nevertheless found that the ICB is likely to be morphologically unstable, and that a mushy zone might have developed at the ICB. The thermodynamic thickness of the resulting mushy zone can be significant, from ∌100\sim100 km to the entire inner core radius, depending on the phase diagram of the core mixture. However, such a thick mushy zone is predicted to collapse under its own weight, on a much smaller length scale (â‰Č1\lesssim 1 km). We estimate that the interdendritic spacing is probably smaller than a few tens of meter, and possibly only a few meters

    The strength of gravitational core-mantle coupling

    Get PDF
    Gravitational coupling between Earth's core and mantle has been proposed as an explanation for a 6 year variation in the length-of-day (ΔLOD) signal and plays a key role in the possible superrotation of the inner core. Explaining the observations requires that the strength of the coupling, Γ, falls within fairly restrictive bounds; however, the value of Γ is highly uncertain because it depends on the distribution of mass anomalies in the mantle. We estimate Γ from a broad range of viscous mantle flow models with density anomalies inferred from seismic tomography. Requiring models to give a correlation larger than 70% to the surface geoid and match the dynamic core-mantle boundary ellipticity inferred from Earth's nutations, we find that 3 × 10(19)<Γ<2 × 10(20) N m, too small to explain the 6 year ΔLOD signal. This new constraint on Γ has important implications for core-mantle angular momentum transfer and on the preferred mode of inner core convection

    The relationship of air pollution and surrogate markers of endothelial dysfunction in a population-based sample of children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to assess the relationship of air pollution and plasma surrogate markers of endothelial dysfunction in the pediatric age group.</p> <p>Methods</p> <p>This cross-sectional study was conducted in 2009-2010 among 125 participants aged 10-18 years. They were randomly selected from different areas of Isfahan city, the second large and air-polluted city in Iran. The association of air pollutants' levels with serum thrombomodulin (TM) and tissue factor (TF) was determined after adjustment for age, gender, anthropometric measures, dietary and physical activity habits.</p> <p>Results</p> <p>Data of 118 participants was complete and was analyzed. The mean age was 12.79 (2.35) years. The mean pollution standards index (PSI) value was at moderate level, the mean particular matter measuring up to 10 ÎŒm (PM<sub>10</sub>) was more than twice the normal level. Multiple linear regression analysis showed that TF had significant relationship with all air pollutants except than carbon monoxide, and TM had significant inverse relationship with ozone. The odds ratio of elevated TF was significantly higher in the upper vs. the lowest quartiles of PM<sub>10</sub>, ozone and PSI. The corresponding figures were in opposite direction for TM.</p> <p>Conclusions</p> <p>The relationship of air pollutants with endothelial dysfunction and pro-coagulant state can be an important factor in the development of atherosclerosis from early life. This finding should be confirmed in future longitudinal studies. Concerns about the harmful effects of air pollution on children's health should be considered a top priority for public health policy; it should be underscored in primordial and primary prevention of chronic diseases.</p

    Modelling the Effects of Population Structure on Childhood Disease: The Case of Varicella

    Get PDF
    Realistic, individual-based models based on detailed census data are increasingly used to study disease transmission. Whether the rich structure of such models improves predictions is debated. This is studied here for the spread of varicella, a childhood disease, in a realistic population of children where infection occurs in the household, at school, or in the community at large. A methodology is first presented for simulating households with births and aging. Transmission probabilities were fitted for schools and community, which reproduced the overall cumulative incidence of varicella over the age range of 0–11 years old
    • 

    corecore