58 research outputs found

    Investigating magnetic activity in very stable stellar magnetic fields: long-term photometric and spectroscopic study of the fully convective M4 dwarf V374 Peg

    Get PDF
    The ultrafast-rotating (Prot0.44dP_\mathrm{rot}\approx0.44 d) fully convective single M4 dwarf V374 Peg is a well-known laboratory for studying intense stellar activity in a stable magnetic topology. As an observable proxy for the stellar magnetic field, we study the stability of the light curve, and thus the spot configuration. We also measure the occurrence rate of flares and coronal mass ejections (CMEs). We analyse spectroscopic observations, BV(RI)CBV(RI)_C photometry covering 5 years, and additional RCR_C photometry that expands the temporal base over 16 years. The light curve suggests an almost rigid-body rotation, and a spot configuration that is stable over about 16 years, confirming the previous indications of a very stable magnetic field. We observed small changes on a nightly timescale, and frequent flaring, including a possible sympathetic flare. The strongest flares seem to be more concentrated around the phase where the light curve indicates a smaller active region. Spectral data suggest a complex CME with falling-back and re-ejected material, with a maximal projected velocity of \approx675km/s. We observed a CME rate much lower than expected from extrapolations of the solar flare-CME relation to active stars.Comment: 15 figures, 4 tables, accepted for publication in A&

    Main-Belt Asteroids in the K2 Engineering Field of View

    Get PDF
    Unlike NASA's original Kepler Discovery Mission, the renewed K2 Mission will stare at the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large number of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effect of apparent minor planet encounters. Here we investigate the effects of asteroid encounters on photometric precision using a sub-sample of the K2 Engineering data taken in February, 2014. We show examples of asteroid contamination to facilitate their recognition and distinguish these events from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission, that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO.Comment: accepted for publication in AJ, 6 page

    RR Lyrae stars in the southern globular cluster NGC 362

    Get PDF
    NGC 362 is a bright southern globular cluster for which no extensive variability survey has ever been done. Time-series CCD photometric observations have been obtained. Light curves have been derived with both profile fitting photometry and image subtraction. We developed a simple method to convert flux phase curves to magnitudes, which allows the use of empirical light curve shape vs. physical parameters calibrations. Using the RR Lyrae metallicity and luminosity calibrations, we have determined the relative iron abundances and absolute magnitudes of the stars. The color-magnitude diagram has been fitted with Yale-Yonsei isochrones to determine reddening and distance independently. For five RR Lyrae stars we obtained radial velocity measurements from optical spectra. We found 45 RR Lyr stars, of which the majority are new discoveries. About half of the RR Lyraes exhibit light curve changes (Blazhko effect). The RR Lyrae-based metallicity of the cluster is [Fe/H]=-1.16 +/- 0.25, the mean absolute magnitude of the RR Lyrae stars is M_V=0.82 +/- 0.04 mag implying a distance of 7.9 +/- 0.6 kpc. The mean period of RRab stars is 0.585 +/- 0.081 days. These properties place NGC 362 among the Oosterhoff type I globular clusters. The isochrone fit implies a slightly larger distance of 9.2 +/- 0.5 kpc and an age of 11 +/- 1 Gyr. We also found 11 eclipsing binaries, 14 pulsating stars of other types, including classical Cepheids in the SMC and 15 variable stars with no firm classification

    The Peculiar Type Ia Supernova 1999by: Spectroscopy at Early Epochs

    Full text link
    We present medium resolution (lambda/Delta lambda = 2500) optical spectroscopy of SN 1999by in NGC 2841 made around its light maximum. The depth ratio of the two Si II features at 5800 AA and 6150 AA being R(SiII) approx. 0.63 at maximum indicates that this SN belongs to the peculiar, sub-luminous SNe Ia. Radial velocities inferred from the minimum of the 6150 AA trough reveal a steeper decline of the velocity curve than expected for ``normal'' SNe Ia, consistent with the behavior of published VRI light curves. A revised absolute magnitude of SN 1999by and distance to its host galaxy NGC 2841 is estimated based on the Multi-Color Light Curve Shape (MLCS) method, resulting in M_V(max)=-18.06+/- 0.1 mag and d = 17.1+/-1.2 Mpc, respectively. An approximative linear dependence of the luminosity parameter Delta on R(SiII) is presented.Comment: accepted for publication in Astron. Journal (2001 June

    Nova Cygni 2001/2 = V2275 Cyg

    Full text link
    We present an analysis of low- and medium resolution spectra of the very fast nova, Nova Cygni 2001/2 (V2275 Cyg) obtained at nine epochs in August, September and October, 2001. The expansion velocity from hydrogen Balmer lines is found to be 2100 km/s, although early H-alpha profile showed a weak feature at -3500 km/s, too. The overall appearance of the optical spectrum is dominated by broad lines of H, He and N, therefore, the star belongs to the ``He/N'' subclass of novae defined by Williams (1992). Interstellar lines and bands, as well as BV photometry taken from the literature yielded to a fairly high reddening of E(B-V)=1.0+/-0.1 mag. The visual light curve was used to deduce M_V by the maximum magnitude versus rate of decline relationship. The resulting parameters are: t_0=2452141.4(+0.1)(-0.5), t_2=2.9+/-0.5 days, t_3=7+/-1 days, M_V=-9.7+/-0.7 mag. Adopting these parameters, the star lies between 3 kpc and 8 kpc from the Sun.Comment: 5 pages, 5 figures, accepted for publication in A&

    The Mass-Radius Relationship for Very Low Mass Stars: Four New Discoveries from the HATSouth Survey

    Get PDF
    We report the discovery of four transiting F-M binary systems with companions between 0.1-0.2 Msun in mass by the HATSouth survey. These systems have been characterised via a global analysis of the HATSouth discovery data, combined with high-resolution radial velocities and accurate transit photometry observations. We determined the masses and radii of the component stars using a combination of two methods: isochrone fitting of spectroscopic primary star parameters, and equating spectroscopic primary star rotation velocity with spin-orbit synchronisation. These new very low mass companions are HATS550-016B (0.110 -0.006/+0.005 Msun, 0.147 -0.004/+0.003 Rsun), HATS551-019B (0.17 -0.01/+0.01 Msun, 0.18 -0.01/+0.01 Rsun), HATS551-021B (0.132 -0.005/+0.014 Msun, 0.154 -0.008/+0.006 Rsun), HATS553-001B (0.20 -0.02/+0.01 Msun, 0.22 -0.01/+0.01 Rsun). We examine our sample in the context of the radius anomaly for fully-convective low mass stars. Combining our sample with the 13 other well-studied very low mass stars, we find a tentative 5% systematic deviation between the measured radii and theoretical isochrone models.Comment: 17 pages, 8 figures, accepted for publication in MNRA

    HATS-5b: A Transiting hot-Saturn from the HATSouth Survey

    Get PDF
    We report the discovery of HATS-5b, a transiting hot-Saturn orbiting a G type star, by the HAT-South survey. HATS-5b has a mass of Mp=0.24 Mj, radius of Rp=0.91 Rj, and transits its host star with a period of P=4.7634d. The radius of HATS-5b is consistent with both theoretical and empirical models. The host star has a V band magnitude of 12.6, mass of 0.94 Msun, and radius of 0.87 Rsun. The relatively high scale height of HATS-5b, and the bright, photometrically quiet host star, make this planet a favourable target for future transmission spectroscopy follow-up observations. We reexamine the correlations in radius, equilibrium temperature, and metallicity of the close-in gas-giants, and find hot Jupiter-mass planets to exhibit the strongest dependence between radius and equilibrium temperature. We find no significant dependence in radius and metallicity for the close-in gas-giant population.Comment: 10 pages, submitted to A

    HATS-6b: A Warm Saturn Transiting an Early M Dwarf Star, and a Set of Empirical Relations for Characterizing K and M Dwarf Planet Hosts

    Full text link
    We report the discovery by the HATSouth survey of HATS-6b, an extrasolar planet transiting a V=15.2 mag, i=13.7 mag M1V star with a mass of 0.57 Msun and a radius of 0.57 Rsun. HATS-6b has a period of P = 3.3253 d, mass of Mp=0.32 Mjup, radius of Rp=1.00 Rjup, and zero-albedo equilibrium temperature of Teq=712.8+-5.1 K. HATS-6 is one of the lowest mass stars known to host a close-in gas giant planet, and its transits are among the deepest of any known transiting planet system. We discuss the follow-up opportunities afforded by this system, noting that despite the faintness of the host star, it is expected to have the highest K-band S/N transmission spectrum among known gas giant planets with Teq < 750 K. In order to characterize the star we present a new set of empirical relations between the density, radius, mass, bolometric magnitude, and V, J, H and K-band bolometric corrections for main sequence stars with M < 0.80 Msun, or spectral types later than K5. These relations are calibrated using eclipsing binary components as well as members of resolved binary systems. We account for intrinsic scatter in the relations in a self-consistent manner. We show that from the transit-based stellar density alone it is possible to measure the mass and radius of a ~0.6 Msun star to ~7% and ~2% precision, respectively. Incorporating additional information, such as the V-K color, or an absolute magnitude, allows the precision to be improved by up to a factor of two.Comment: 21 pages, 11 figures, 10 tables. Submitted to AJ. Data available at http://hatsouth.org Code implementing empirical model available at http://www.astro.princeton.edu/~jhartman/kmdwarfparam.htm

    HATS-3b: An inflated hot Jupiter transiting an F-type star

    Full text link
    We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V=12.4 F-dwarf star. HATS-3b has a period of P = 3.5479d, mass of Mp = 1.07MJ, and radius of Rp = 1.38RJ. Given the radius of the planet, the brightness of the host star, and the stellar rotational velocity (vsini = 9.0km/s), this system will make an interesting target for future observations to measure the Rossiter-McLaughlin effect and determine its spin-orbit alignment. We detail the low/medium-resolution reconnaissance spectroscopy that we are now using to deal with large numbers of transiting planet candidates produced by the HATSouth survey. We show that this important step in discovering planets produces logg and Teff parameters at a precision suitable for efficient candidate vetting, as well as efficiently identifying stellar mass eclipsing binaries with radial velocity semi-amplitudes as low as 1 km/s.Comment: 11 pages, 10 figures, submitted to A

    The multimode pulsation of the delta Scuti star V784 Cassiopeae

    Full text link
    We present an analysis of new Johnson and Stromgren photometric and medium-resolution spectroscopic observations of the delta Scuti type variable star V784 Cassiopeae. The data were obtained in three consecutive years between 1999 and 2001. The period analysis of the light curve resulted in the detection of four frequencies ranging from 9.15 c/d to 15.90 c/d, while there is a suggestion for more, unresolved frequency components, too. The mean Stromgren indices and Hipparcos parallax were combined to calculate the following physical parameters: =7100+-100 K, log g=3.8+-0.1, M_bol=1.50+-0.15 mag. The position of the star in the HR diagram was used to derive evolutionary mass and age yielding to a consistent picture of an evolved delta Scuti star with a mixture of radial plus non-radial modes.Comment: 11 pages, 9 figures, accepted for publication in A&
    corecore