334 research outputs found

    New EUV Fe IX emission line identifications from Hinode/EIS

    Full text link
    Four Fe IX transitions in the wavelength range 188--198 A are identified for the first time in spectra from the EUV Imaging Spectrometer on board the Hinode satellite. In particular the emission line at 197.86 A is unblended and close to the peak of the EIS sensitivity curve, making it a valuable diagnostic of plasma at around 800,000 K - a critical temperature for studying the interface between the corona and transition region. Theoretical ratios amongst the four lines predicted from the CHIANTI database reveal weak sensitivity to density and temperature with observed values consistent with theory. The ratio of 197.86 relative to the 171.07 resonance line of Fe IX is found to be an excellent temperature diagnostic, independent of density, and the derived temperature in the analysed data set is log T=5.95, close to the predicted temperature of maximum ionization of Fe IX.Comment: 10 pages, 3 figures, 2 tables, submitted to ApJ Letter

    CHIANTI - An atomic database for emission lines. XI. EUV emission lines of Fe VII, Fe VIII and Fe IX observed by Hinode/EIS

    Full text link
    A detailed study of emission lines from Fe VII, Fe VIII and Fe IX observed by the EUV Imaging Spectrometer on board the Hinode satellite is presented. Spectra in the ranges 170-212 A and 246-292 A show strongly enhanced lines from the upper solar transition region (temperatures 5.4 <= log T <= 5.9) allowing a number of new line identifications to be made. Comparisons of Fe VII lines with predictions from a new atomic model reveal new plasma diagnostics, however there are a number of disagreements between theory and observation for emission line ratios insensitive to density and temperature, suggesting improved atomic data are required. Line ratios for Fe VIII also show discrepancies with theory, with the strong 185.21 and 186.60 lines under-estimated by 60-80 % compared to lines between 192 and 198 A. A newly-identified multiplet between 253.9 and 255.8 A offers excellent temperature diagnostic opportunities relative to the lines between 185-198 A, however the atomic model under-estimates the strength of these lines by factors 3-6. Two new line identifications are made for Fe IX at wavelengths 176.959 A and 177.594 A, while seven other lines between 186 and 200 A are suggested to be due to Fe IX but for which transition identifications can not be made. The new atomic data for Fe VII and Fe IX are demonstrated to significantly modify models for the response function of the TRACE 195 A imaging channel, affecting temperature determinations from this channel. The data will also affect the response functions for other solar EUV imaging instruments such as SOHO/EIT, STEREO/EUVI and the upcoming AIA instrument on the Solar Dynamics Observatory.Comment: 51 pages, submitted to Ap

    Common Representation of Information Flows for Dynamic Coalitions

    Full text link
    We propose a formal foundation for reasoning about access control policies within a Dynamic Coalition, defining an abstraction over existing access control models and providing mechanisms for translation of those models into information-flow domain. The abstracted information-flow domain model, called a Common Representation, can then be used for defining a way to control the evolution of Dynamic Coalitions with respect to information flow

    A Model-Based Approach for Requirements Engineering for Systems of Systems

    Get PDF

    On the nature of spectral line broadening in solar coronal dimmings

    Full text link
    We analyze the profiles of iron emission lines observed in solar coronal dimmings associated with coronal mass ejections, using the EUV Imaging Spectrometer on board Hinode. We quantify line profile distortions with empirical coefficients (asymmetry and peakedness) that compare the fitted Gaussian to the data. We find that the apparent line broadenings reported in previous studies are likely to be caused by inhomogeneities of flow velocities along the line of sight, or at scales smaller than the resolution scale, or by velocity fluctuations during the exposure time. The increase in the amplitude of Alfv\'en waves cannot, alone, explain the observed features. A double-Gaussian fit of the line profiles shows that, both for dimmings and active region loops, one component is nearly at rest while the second component presents a larger Doppler shift than that derived from a single-Gaussian fit.Comment: 16 pages, 11 figures - Accepted for publication in Ap

    Process of Producing Equine Viral Arteritis Vaccine and Product Thereof

    Get PDF
    A process is disclosed for producing an avirulent attenuated live virus vaccine for use in immunizing horses against equine viral arteritis and for simultaneously obviating the transmission of the disease from a vaccinated horse to a non-vaccinated horse. The invention also includes the product derived from practice of the process and typical examples of the efficacy of the product are disclosed

    EUV spectral line formation and the temperature structure of active region fan loops: observations with Hinode/EIS and SDO/AIA

    Full text link
    With the aim of studying AR fan loops using Hinode/EIS and SDO/AIA, we investigate a number of inconsistencies in modeling the absolute intensities of Fe VIII and Si VII lines, and address why their images look very similar despite the fact that they have significantly different formation temperatures in ionization equilibrium: log T/K = 5.6 and 5.8. These issues are important to resolve because confidence has been undermined in their use for DEM analysis, and Fe VIII is the main contributor to the AIA 131A channel at low temperatures. Furthermore, they are the best EIS lines to use for velocity studies, and for assigning the correct temperature to velocity measurements in the fans. We find that the Fe VIII 185.213A line is particularly sensitive to the slope of the DEM, leading to disproportionate changes in its effective formation temperature. If the DEM has a steep gradient in the log T/K = 5.6 to 5.8 range, or is strongly peaked, Fe VIII 185.213A and Si VII 275.368A will be formed at the same temperature. We show that this effect explains the similarity of these images in the fans. Furthermore, we show that the most recent ionization balance compilations resolve the discrepancies in absolute intensities. We then combine EIS and AIA to determine the temperature structure of a number of fan loops and find that they have peak temperatures of 0.8--1.2MK. The EIS data indicate that the temperature distribution has a finite (but narrow) width < log sigma/K = 5.5 which, in one case, is found to broaden substantially towards the loop base. AIA and EIS yield similar results on the temperature, emission measure, and thermal distribution in the fans, though sometimes the AIA data suggest a relatively larger thermal width. The result is that both the Fe VIII 185.213A and Si VII 275.368A lines are formed at log T/K ~ 5.9 in the fans, and the AIA 131A response also shifts to this temperature.Comment: To be published in ApJ. Figure 6 is reduced resolution to meet size limits. The abstract has been significantly shortened (original in PDF file

    Updated Atomic Data and Calculations for X-ray Spectroscopy

    Full text link
    We describe the latest release of AtomDB, version 2.0.2, a database of atomic data and a plasma modeling code with a focus on X-ray astronomy. This release includes several major updates to the fundamental atomic structure and process data held within AtomDB, incorporating new ionization balance data, state-selective recombination data, and updated collisional excitation data for many ions, including the iron L-shell ions from Fe+16^{+16} to Fe+23^{+23} and all of the hydrogen- and helium-like sequences. We also describe some of the effects that these changes have on calculated emission and diagnostic line ratios, such as changes in the temperature implied by the He-like G-ratios of up to a factor of 2.Comment: Submitted to ApJ, 12 pages, 9 figure

    Optimal spectral lines for measuring chromospheric magnetic fields

    Get PDF
    This paper identifies spectral lines from X-ray to infrared wavelengths which are optimally suited to measuring vector magnetic fields as high as possible in the solar atmosphere. Instrumental and Earth's atmospheric properties, as well as solar abundances, atmospheric properties and elementary atomic physics are considered without bias towards particular wavelengths or diagnostic techniques. While narrowly-focused investigations of individual lines have been reported in detail, no assessment of the comparative merits of all lines has ever been published. Although in the UV, on balance the Mg+ h and k lines near 2800 Angstroms are optimally suited to polarimetry of plasma near the base of the solar corona. This result was unanticipated, given that longer-wavelength lines offer greater sensitivity to the Zeeman effect. While these lines sample optical depths photosphere to the coronal base, we argue that cores of multiple spectral lines provide a far more discriminating probe of magnetic structure as a function of optical depth than the core and inner wings of a strong line. Thus, together with many chromospheric lines of Fe+ between 2585 and the h line at 2803 Angstrom, this UV region promises new discoveries concerning how the magnetic fields emerge, heat, and accelerate plasma as they battle to dominate the force and energy balance within the poorly-understood chromosphere.Comment: Accepted for publication in the Astrophysical Journal. 12 pages, 2 figures, and 1 tabl

    Dielectronic Recombination of Argon-Like Ions

    Full text link
    We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total and partial Maxwellian-averaged DR rate coefficients from the initial ground level of K II -- Zn XIII ions. It is expected that these new results will advance the accuracy of the ionization balance for Ar-like M-shell ions and pave the way towards a detailed modeling of astrophysically relevant X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain the accurate core-excitation thresholds in target ions and carry out multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in the independent-processes, isolated-resonance, distorted-wave (IPIRDW) approximation. Our results mediate the complete absence of direct DR calculations for certain Ar-like ions and question the reliability of the existing empirical rate formulas, often inferred from renormalized data within this isoelectronic sequence
    corecore