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A Model-Based Approach for Requirements
Engineering for Systems of Systems
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Abstract—Model-based systems engineering (MBSE) is a disci-
pline of systems engineering in which the model forms the heart
of all the systems engineering activities and is the basis of many
of the project artefacts. Systems modeling is no longer viewed as
simply a “good idea” but is becoming an increasingly important
part of any systems engineering project. The application of MBSE
is becoming well understood at the systems level; however, there
is a lack of research and subsequent industrial application at the
system of systems (SoS) level. This paper presents a model-based
approach to requirements engineering for SoSs. The approach
is derived from an MBSE approach to requirements engineering
and therefore represents current best practice in SoSs in terms of
established standards and research. This paper builds upon and
is an evolution of the initial foundations for model-based require-
ments engineering for systems of systems that were published in
an earlier paper.

Index Terms—Model-based systems engineering (MBSE), re-
quirements engineering, systems modeling, systems of systems
(SoSs).

I. INTRODUCTION

MODEL-BASED systems engineering (MBSE) describes
an approach to systems engineering where the model

forms the heart of all the systems engineering activities and
is the basis of many of the engineering artefacts [2]. The
benefits that can be realized when applying a model-based
approach compared with a more document-centric approach are
well known and include reduced development time, enhanced
analysis capability, and increased potential for reuse.

In order to realize these benefits, however, there are a number
of areas that must be addressed [3].

1) People: There must be properly educated, trained, and
experienced people available who hold the appropriate
competence for their roles.

2) Process: In order to realize MBSE capability, there must
be an effective set of processes in place, which is properly
deployed and available to all people.

3) Tools: “Sharp” tools are required, particularly for au-
tomation, but not just in the form of computer-aided sys-
tem engineering tools. Other tools will include notations,
architectural frameworks, and so on.
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In the world of system engineering, there are an increasing
number of approaches that address these three areas and are
being widely applied in the industry [4]. In the world of systems
of systems (SoSs) engineering, however, there is a dearth of
well-developed approaches available. One example of this is the
area of model-based requirements engineering (MBRE), where
there are established approaches for MBRE at the systems level
[3] and an acknowledged lack of approaches at the SoS level
[5]. This paper addresses that need by providing a process-
based approach to MBRE for SoSs.

A. SoS-Specific Requirements on Engineering Approaches

There is a wide range of possible SoSs, and any approach to
MBRE for SoSs must be applicable to each. This range includes
the following four types of SoS [6].

1) Virtual SoSs, which lack a central management authority
and a centrally agreed upon purpose for the SoS.

2) Collaborative SoSs, in which constituent systems interact
more or less voluntarily to fulfill agreed upon central
purposes.

3) Acknowledged SoSs, which have recognized objectives, a
designated manager, and resources for the SoS; however,
the constituent systems retain their independent owner-
ship, objectives, funding, and development and sustain-
ment approaches.

4) Directed SoSs, which is an integrated system of systems
built and managed to fulfill specific purposes. It is cen-
trally managed during long-term operation to continue to
fulfill those purposes, as well as any new ones the system
owners might wish to address.

Researchers have proposed various characterizations of SoSs.
A widely known characterization is given in [7] and includes
the following:

1) operational independence of elements, where constituent
systems have the ability to operate independently;

2) managerial independence of elements, where constituent
systems do operate independently;

3) evolutionary development, where the function and pur-
pose of the SoSs evolve over time;

4) emergent behavior, where behaviors exhibited in the SoS
do not exist in any constituent system;

5) geographic distribution, where the geographic extent of
the SoS is large.

The operational and managerial independence of constituent
systems means that the management of requirements exists in
different constituent systems and at the SoS level, potentially
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leading to competing and conflicting requirements, which must
be controlled in some way. Therefore, as well as all the consid-
erations present in MBRE for systems, there are features unique
to engineering for SoSs, which must be addressed [5].

1) The perspectives of the SoS and the constituent systems
must be addressed. This includes the identification of
capabilities for the SoS and the needs of each individ-
ual constituent system. The goals and requirements of
individual constituent systems may duplicate or conflict
with the goals and requirements among other constituent
systems.

2) The current and future needs of the SoS must be consid-
ered against the capabilities of the individual constituent
systems. This includes understanding how best to engi-
neer individual constituent systems, understanding how
the capabilities provided by these constituent systems can
be combined to meet the goals of the SoS and under-
standing the needs on the SoS’s environment. Over time,
it is likely that unplanned emergent behaviors—which
can be desirable or undesirable—appear in the SoS. The
requirements for the overall SoS need to evolve and adapt
to cope with this.

3) The lifecycle methodologies of constituent systems are
likely to be different since, by definition, the constituent
systems in an SoS are independent. They are also likely
to be different stages in their lifecycles, with some con-
stituent systems relatively young and some well into their
maintenance phase.

It is therefore vital that any approach to MBRE can manage
requirements at both the constituent systems level and the SoS
level. SoS requirements management also requires a long-term
management strategy for handling SoS evolution and emergent
behaviors.

This paper defines a process-based approach to MBRE at the
SoS level, which allows requirements engineering at both the
constituent level and the SoS level. We present a case study
to demonstrate the application of this process, demonstrating
how to model a holistic view of the SoS requirements view
and requirements of constituent systems. Our case study does
not demonstrate long-term management of requirements in an
SoS with explicit handling of emergent features and continuous
evolution. Long-term requirements management for SoSs is
considered as future work.

B. MBRE for SoSs

It is essential that any new approach builds on existing
best practice and does not seek to “reinvent the wheel.” This
paper takes as its start point the approach to context-based
requirements engineering (ACRE) [3]. ACRE has been applied
very successfully at the systems level but has not yet been
applied at the SoS level.

Existing best practice (for systems engineering) is found in
best practice guides, such as the capability maturity model inte-
gration [8]–[10] and the U.S. Department of Defense “Systems
Engineering Guide for Systems of Systems—Essentials” [11].
ISO standards, the most significant of which in this work is

ISO 15288 [12], are also important, as are best practice MBSE
approaches such as [13].

While none of these best practice sources individually con-
tain enough information for the research, when the relevant
sections of each had been identified, it was possible to create
a more complete set of requirements for this work.

Based on all of these source requirements, a number of use
cases were drawn up that could be traced back to the source
requirements. The use cases were used to put the source require-
ments into the context of this research. The proposed approach
for MBRE for SoSs could be demonstrated to satisfy the use
cases. Then, through traceability views, it is also possible to
show which context they meet.

The diagram in Fig. 1 shows that the main use case for
MBRE for SoSs is to “Provide SoS requirements approach”
that must be applicable to different types of SoS (the constraint
“Apply to different types of SoS”) and across the whole life
cycle (the constraint “Apply across life cycle”).

There is one main use case that helps to realize this, which is
“Provide SoS requirement engineering processes.” While there
is only a single include relationship shown here, this leaves
room for future expansion, for example, to define processes
for requirements management. This has three main inclusions,
which are as follows:

1) “Understand context,” which applies to both the SoS level
(“Understand SoS context”) and the constituent system
level (“Understand CS context”);

2) “Understand relations between CS and SoS,” which pro-
vides the understanding of the interfaces and interactions
between the constituent systems and their SoS;

3) “Define verification & validation criteria,” which ensures
that the SoS both works and satisfies its original needs.

All of this is constrained by the need to meet current best
practice (“Comply with best practice”).

The approach that was to be developed would consist of the
following: an ontology, a set of processes, and a framework;
each of these will be expanded upon in the subsequent sections
in this paper. Section II introduces the best practice ACRE
approach for MBRE. In Section III, we detail the modifica-
tions made to ACRE to make the approach suitable for SoSs.
Section IV provides an SoS case study with which we verify
the approach defined in this paper. Conclusions are drawn in
Section V.

II. ACRE

As a start point for developing an approach for MBRE for
SoSs, a number of approaches for requirements engineering
were considered [13]. The approach that was decided upon was
the ACRE approach, for the following reasons.

1) It follows a true MBSE approach. ACRE describes a
requirements ontology that is then used as a basis for a
number of views that can be used to visualize a complete
set of requirements.

2) The ACRE approach does not dictate any specific process,
and hence, it may be used with any process of methodology.

3) The ACRE approach may be also used at different levels
of project in terms of scale (from a small one-week
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Fig. 1. Requirements modeling: SoSs context.

project to a large multiyear project) and in terms of rigor
(from noncritical to mission-critical systems).

4) The ACRE approach may be also visualized using any
notation or combination of appropriate notations.

The flexibility of the approach, therefore, was the primary
reason for selecting ACRE as the starting point for an SoS
MBRE approach. This section introduces in more detail the
ACRE approach: the ontology is presented in Section II-A, and
the framework is detailed in Section II-B.

A. ACRE Ontology

In order to capture and describe the concepts and termi-
nology, an ontology was introduced. An ontology provides a
visualization of all the key concepts, the terminology used to
describe them, and the interrelationships between said con-
cepts. The ontology, however, is much more than just a data
dictionary and plays a pivotal role in the definition and use of
any rigorous framework.

The use of ontologies for defining frameworks for architec-
tures, such as enterprise architectures, process architectures,
and system architectures, is one that is well established and
extensively used throughout the industry. For examples of the
use of ontologies, see [4], [14], and [15]. Whenever any frame-
work is defined in terms of a set of views, then an ontology is
essential. It is the ontology that enforces the consistency and
rigor demanded by such frameworks.

The ontology introduced here will cover all of the concepts
pertinent to MBRE, and a number of views will be defined
based on this ontology. Each view will focus on, and expand
upon, a subset of the ontology and instantiate, or realize,
specific concepts in the context of a real system or project.

Based on the results of a survey of modeling techniques,
SysML was decided upon for the modeling notation for this
work [16]. The choice of SysML was due to a number of

reasons, including its widespread use in the industry, extensive
tool support, and flexibility of use. The ACRE ontology is defined
using a SysML block definition diagram, as shown in Fig. 2.

The ontology in Fig. 2 shows that there is an abstract concept
of a “Need” that has three types: “Requirement,” “Capability,”
and “Goal.” One or more Need is elicited from one or more
“Source Element.” One or more “Rule” constrains one or
more Need.

One or more “Use Case” elements describe the context of
each Need via the “Context.” There are two types of context
shown here, namely, the “System Context” and the “Stake-
holder Context,” although this list is incomplete. Note that
the original ACRE approach is aimed at the system (or con-
stituent system) level, and therefore, there is no reference to an
SoS here.

One or more “Scenario” validate one or more Use Case, and
there are two types of Scenario: the “Semi-formal Scenario”
and the “Formal Scenario.”

B. ACRE Framework

The ACRE approach consists of a number of predefined
views that are based on the ACRE ontology. Fig. 3 shows the
set of views in the ACRE framework.

These views are described as follows.

1) The Source Element View contains all relevant source
information that is required to specify the system require-
ments. It is essential that the origin of all requirements
is known, and this is what this view records. This view
is primarily used as a mechanism to establish traceability
and provide links between the requirements and any other
aspect of the system.

2) The Requirement Description View contains structured
descriptions of each of the needs, including requirements,
goals, and capabilities. The main purpose of this view
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Fig. 2. ACRE ontology.

Fig. 3. ACRE framework.

is to describe each individual requirement according to
a predefined set of attributes. The attributes will vary
depending on a number of factors. This view is primarily
used for managing the requirements of a system and is
the basis of implementation for many current commer-
cial requirements management tools. Each requirement
description provides a noncontextual description of the
requirement.

3) The Rule Set Definition View contains rules that may
have to be applied to each requirement definition. For
example, these may be complexity rules in the form of
equations of more general text-based rules.

4) The Requirement Context View contextualizes require-
ments, giving them meaning by looking at them from
a specific point of view. This is known as putting the
requirements into context and forms the basis of the
approach presented in ACRE. Without a context, require-
ment descriptions may be interpreted in different ways
depending on the viewpoint of the reader. It is essential,
then, that each requirement be looked at from different
points of view, or in different contexts. When a require-
ment is put into context, it is known as a “use case,”
and by considering these use cases and the relationships
between them and other use cases or stakeholders, it
is possible to generate a complete point of view, or

context. These contexts may be based on a number of
elements, such as stakeholders or levels of hierarchy in a
system.

5) The Context Definition View identifies the points of view
that are explored in the Requirement Context View. These
points of view, or contexts, may take many forms, includ-
ing stakeholders and levels of hierarchy in a system.

6) The Validation View provides the basis for demonstrating
that the requirements can be met or complied with in
some way. These views can be informal scenarios, such
as those based on sequence diagrams at various levels of
abstraction, or they may be formal, such as mathematical-
based scenarios.

7) The Traceability View. A key part of any requirements en-
gineering endeavor is to provide traceability both to and
from the original requirements. Traceability relationships
may be “implicit” and “explicit.” Implicit relationships
are inherent in the modeling language itself. Explicit
relationships are not inherent in the modeling notation but
are dependent on the application of the modeling. These
relationships can be directly identified from the ontology
and the framework. It is often necessary, therefore, to
exactly define where the traceability relationships exist.
Indeed, it is possible to trace between almost any system
element and any element in the framework.
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Fig. 4. COMPASS ontology.

III. APPLYING ACRE TO SoSs

The next step in the research was to define a set of processes
that could be used to describe the approach. It was decided to
use the ACRE ontology and framework as a start point and to
define processes based around them. This would enable the first
draft of the processes to be defined and then applied to a test
model in order to assess the suitability of the process.

A. Defining the Processes

The processes were defined using a best practice model-
based approach known as the “seven views” approach [14].
The processes were identified based on the use cases and then
defined according to the approach.

These processes were then applied to a test model in order
to assess their suitability for SoSs. This test model is an SoS
that represents emergency service providers [19] and will be
discussed later in this paper. Based on the experience of apply-
ing these processes, it was then possible to refine the processes
based on the lessons learned and to revisit the original ACRE
ontology and framework.

One of the features of ACRE is that it is based on a context-
based approach to requirements engineering. This context-based
approach for systems engineering is particularly interesting from
the point of view of SoSs, bearing in mind the following points.

1) A context represents a system from a specific point of view.

2) An SoS may be thought of as a different higher level point
of view of a set of systems. Therefore, a context exists at
both the system level and the SoS level [18].

Bearing these points in mind, it was anticipated that most of the
knowledge and experience of applying ACRE at a system level
could be reused, to a certain extent, at the SoS level as exactly
the same modeling techniques could be applied.

B. SoS-ACRE Approach

The new approach for MBRE for SoSs, which is known as
SoS-ACRE, consists of the following elements:

1) the ontology, where all the key concepts and terminology
are defined;

2) the framework, where all the necessary views are defined;
3) the process set, where all the processes necessary to

generate the views in the framework were defined.
Each of these is expanded upon on the following sections:
Section III-B1 defines the SoS-ACRE ontology, the framework
is defined in Section III-B2, and the processes are given in
Section III-B3.

1) SoS-ACRE Ontology: The SoS-ACRE ontology was
based on the ACRE ontology and is shown in Fig. 4.

The first point to notice here is that the ontology here is
very similar to the original ACRE ontology. The area where
the ontology has changed is in the definition of the systems that
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Fig. 5. SoS-ACRE framework.

Fig. 6. SoS-ACRE requirements processes.

relate to the context. In the updated ontology, it can be seen that
the “System Context” represents the need of two types of “Sys-
tem”: the “Constituent System” and the “System of System”
(that itself is made up of a number of Constituent System).

2) SoS-ACRE Framework: The SoS-ACRE framework took
as its starting point the ACRE framework. The SoS-ACRE
framework for SoSs is shown in the diagram in Fig. 5.

The new framework is again very similar to the original
ACRE framework. It was found that the basic ACRE approach
could be applied at both the system and SoS levels. However,
this still left some gaps as, although a context could be defined
at both the constituent system and SoS levels, there was a need
to understand the relationships between them. This resulted
in the need to define two new views that are necessary when
modeling requirements for SoSs.

1) The “Context Interaction View.” A context can be defined
at both the constituent system and SoS levels, but these
contexts need to be related together. For example, the
capabilities of an SoS need to be mapped to the require-
ments of the underlying constituent system that realizes
them. The purpose of this view, therefore, is to allow the

interactions between the SoS context and its constituent
system contexts to be visualized. The Context Interaction
View expands upon the SoS context and combines a
number of constituent system contexts.

2) The “Validation Interaction View.” It is possible to gener-
ate a number of scenarios for any context that can be used
for validation purposes. Therefore, if a set of validation
views exists at the SoS level and a set also exists for each
constituent system, then there must be some relationship
between them. The Validation Interaction View satisfies
the SoS context by combining the set of constituent
system validation views.

By enhancing the original ACRE framework with these new
views, it was now possible to use this framework as a basis for
the SoS-ACRE processes.

3) SoS-ACRE Processes: The SoS-ACRE processes de-
scribe the approach taken to generate the views in the frame-
work, according to the ontology. The processes were defined
using the seven views approach to process modeling, which
resulted in a set of eight processes being defined, as shown in
the diagram in Fig. 6.
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The diagram here shows the library of processes (known as
the “process content view” in the seven views approach) that
were defined for SoS requirements. The “SoS Requirements
Engineering Process” has four processes defined that are briefly
described as follows:

1) “SoS Requirements Engineering,” which is the overarch-
ing process that controls the requirements engineering;

2) “Requirements Elicitation Process,” which is the process
where the initial requirements are elicited from the rele-
vant parts of the source elements;

3) “Context Process,” which is the process that defines a
context at either the constituent system level or the SoS
level.

4) “Verification and Validation Definition Process,” which
is the process that defines the verification and validation
criteria for the SoS.

In Section I-A, we suggested that SoS requirements engineering
needs to account for dual views of the requirements, as well as a
particularly challenging management process (due to emergent
features, mismatched constituent lifecycles, and continuous
evolution). Here, we briefly describe the “SoS Requirements
Management Process,” which has the following five processes
defined:

1) “Requirements Change Process,” which controls changes
to the constituent system or SoS requirements;

2) “CS Process Analysis,” which allows the management
processes of a constituent system to be understood;

3) “Requirement Control Process,” which ensures that all
requirement changes are agreed to and commitment is
obtained;

4) “Requirements Monitor Process,” which allows changes
in requirements at both the constituent system and SoS
levels to be identified;

5) “Traceability Process,” which allows traceability views to
be set up.

A low-level description of these processes using the other six
of the seven views is not within the scope of this paper. The
processes are defined in full in [20].

These processes were executed in different sequences to
satisfy the project use cases.

IV. TESTING THE APPROACH

This section discusses how the SoS-ACRE approach was
tested. This consisted of both verification and validation of the
processes before moving on to industrial trials.

Due to the nature of the test model, the focus was on verify-
ing the engineering processes; verifying management processes
is the object of current research.

A. Verifying the Processes: The LESLP Case Study

Here, we illustrate the requirements engineering processes
developed in this paper. We use an SoS case study based on a
collection of emergency services collaborating in response to a
major incident. In Section IV-A1, we provide a background to

Fig. 7. Source Element View for LESLP case study.

the case study, and in Section IV-A2, we enact the requirements
engineering processes.

1) Case Study Background: We base this work on the Major
Incident Procedure Manual developed by the London Emer-
gency Services Liaison Panel (LESLP) [19]. As described
in [21] and [22], the system formed by the collaboration of
emergency services may be considered an SoS in the terms of
Maier [7] and characterized as an acknowledged SoS [6].

The LESLP manual defines procedures that are required from
the different emergency services upon the formation of a major
incident response. It is this document that forms the main basis
for eliciting requirements for the case study.

2) Requirements Engineering for the LESLP Case Study:
As aforementioned, we enact only the requirements engineer-
ing processes on the LESLP case study. The reason for this
limitation is due to the nature of the study and of the man-
agement processes themselves. The SoS requirements manage-
ment processes described in this paper require knowledge of
the management structure of the individual constituent sys-
tems, which are not available to us in this work. We feel
that, while we could derive some of this information from
the procedure manual, it would not be reflective of the ac-
tual use of the processes and not be a valid verification of
the processes. Therefore, this element will form a piece of
future work.

We begin requirements modeling using the “SoS Require-
ments Engineering” process, in which the source elements are
initially identified. The “Source Element View” (SEV) in Fig. 7
shows that there are three sources for deriving requirements:
the seventh edition of the LESLP Major Incident Procedure
Manual, a technical report, and a conference paper. A note
is added to state that procedure manuals for the individual
constituent systems may be also source elements for further
iterations of the process.

Given the source elements, the next step of the process is to
identify the constituent systems and the stakeholders of the SoS.
These are captured in “Context Definition View” (CDV), where
each entity is considered as a context for the requirements
elicited later. Fig. 8 presents a CDV for the SoS constituents,
and Fig. 9 presents the CDV of the stakeholders of the SoS. In
Fig. 8, the SoS is composed of multiple constituent systems,
which may be an emergency service (Police, Fire, Coastguard,
or Ambulance), a communication system, the armed forces, or
the local authority. Fig. 9, identifies three top-level stakeholder
types, namely, Customer, External, and Supplier. We identify
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Fig. 8. Context Definition View for LESLP constituent systems.

Fig. 9. Context Definition View for LESLP stakeholders.

subtypes for each, for example, Customer may include Ca-
sualty, Bystander, and Media. The diagram shows that each
type is incomplete and may require further effort to ascertain
additional stakeholders.

The next stage of the process is to signal the start of the
Requirements Elicitation Process, where initial requirements
are elicited from the relevant parts of the source elements. This
process results in the definition of a “Requirement Definition
View” (RDV), as shown in Fig. 10. The RDV shows the top-
level requirement to “Respond to Major Incident,” which is
broken into subrequirements that must be fulfilled. We trace
back to the LESLP Procedure Manual source element (although
this could conceivably form a separate diagram) to ensure that
there is adequate traceability of requirements. A comment is
provided to state that further effort is required for this case study
to elicit additional requirements.

For this case study, this is the end of the Requirements Elic-
itation Process. In a larger study, there should be a process of
identifying needs and requirements, involving multiple source
elements.

The completion of the Requirements Elicitation Process re-
sults in starting the Context Process first for the SoS and sub-
sequently for each individual constituent system. We therefore
begin with defining the “Requirement Context View” (RCV)
for the SoS, as presented in Fig. 11. The RCV places the
requirements in context, which is defined as use cases. Each use
case should be traceable from the requirements identified in the
RDV. For each use case, we identify the stakeholders of the SoS
who also have some involvement or interest. For example, in
Fig. 11, the “Assist Public” use case has some involvement with
the Casualty stakeholder and is a part of the “Take Action” use
case, which, in turn, extends the high-level use case Respond to
Major Incident.

The Context Process continues with internal reviews to
ensure completeness and consistency. The completion of this
check results in the initiation of the Verification and Validation
Definition Process for the given context. In this case, we enact
the process for the SoS context.

In the Verification and Validation Definition Process, we de-
fine scenarios for each use case for a given context. We partially
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Fig. 10. Requirement Definition View for LESLP case study.

Fig. 11. Requirement Context View for LESLP SoS.

demonstrate this process for the SoS context by considering
two possible scenarios for the Assist Public use case identified
above. For the basis of this work, we define two semiformal
scenarios in the form of “Validation View” (VV), as shown
in Figs. 12 and 13. In these two VVs, we consider possible
interactions between the two entities (Casualty stakeholders and
the SoS), which are involved in the Assist Public use case.
These VVs do not consider how the SoS performs the internal
actions—these will follow when considering the individual
constituent system contexts. As such, they are used at a later
stage to ensure there is some consistency in the way in which
each entity relates to a given requirement.

When each use case has been validated for the SoS, the
Verification and Validation Definition Process is completed, and
we return to the Context Process, where additional reviews are
performed. This completes the Context Process for the SoS,
returning to the SoS Requirements Engineering Process, and,

Fig. 12. Validation View 1 for Assist Public use case.

Fig. 13. Validation View 2 for Assist Public use case.

subsequently, starting the Context Process for each constituent
system. We omit the remainder of the RCVs and VVs for space
reasons; however, they are available in [20].

The final stage of the SoS Requirements Engineering Process
is to ensure consistency in interactions between the stakehold-
ers and the constituent systems, as mentioned earlier.

B. Validating the Processes: Satisfying the
Original Requirements

The previous section looked at the verification of the
MBRE for SoS processes and considered whether the processes
worked. This is in line with the definitions of verification and
validation of Boehm [23], where verification asks, “are we
building the system right?” By this, we ensure we are building a
system (in this case, the MBRE for SoS processes) in the right
way so that it works. Here, we briefly consider the validation
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of the processes, or, as stated by Boehm, “are we building the
right system?” That is, are the processes fit for the purpose?
This is done by ensuring that the processes trace back to the
requirements in context that were shown in Fig. 1 and through
the original requirements and their sources.

As previously stated, the approach taken to define the pro-
cesses was based on the ACRE approach. A single model was
produced that contained the requirements for SoS-ACRE and
the process definitions (based on the seven views approach).
As both the ACRE and seven views approaches are true MBSE
approaches, then it is a simple matter to combine the artefacts
of both into a single SysML model. The model was also fully
traceable as follows.

1) The SoS-ACRE processes were executed in sequences
as scenarios. These scenarios were then traced back to
the project use cases. (Validation View to Requirement
Context View).

2) The use cases represent the original requirements in the
context of the project’s constituent systems. For traceabil-
ity, these use cases were traced back to the original re-
quirements (Requirement Context View to Requirement
Description View).

3) The original requirements were derived from a number
of requirements sources, such as standards, best practice
guides, and project documentation. (Requirement De-
scription View to Requirement Source View).

This traceability was built into the model, and thus, traceability
views corresponding to the relationships between the views
detailed above can be now automatically produced.

By establishing this traceability, the processes were vali-
dated, being shown to meet their use cases (requirements in
context), which, in turn, were traced to their original require-
ments and from there to their sources.

C. Industrial Trials

This work has been carried out as part of the EU FP7 project
COMPASS [17], part of which has been concerned with the
provision of case studies that may be used to verify the SoS-
ACRE approach.

Now that the SoS-ACRE processes have been verified and
validated, it was possible to perform another iteration of the
development process in order to refine the processes before
moving on to full industrial trials. The industrial trials consist of
two full case studies. The first study constitutes a home audio–
video ecosystem where networked systems such as TV, home
cinema, and DVD deliver digital content from internal or ex-
ternal sources to multiple users. In this domain, a major area
of concern is the digital rights management contracts on the
content. The second example is dynamic coordination of health-
care services in response to an accident (call management,
dispatching, triage, hospital management systems, etc.).

V. CONCLUSION

This paper has presented an approach to carrying out MBRE
that is suitable for SoSs.

The original requirements for this work were taken from a
number of sources, including standards, best practice guides,
papers, and project documentation. Not only did this work
result in an MBSE approach for requirements for SoSs, but
the approach taken to carry out this work was itself an MBSE
approach.

The resultant approach consists of an ontology, a framework,
and a set of processes.

The approach taken was based on the best practice ACRE
approach and defined an extra set of SoS views. The current
position of this work is that it has been applied to the LESLP
test model and will now be applied to multiple case industrial
case studies as part of the overall validation.
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