973 research outputs found

    The Eyes of the Beholder: does responsibility for the lack of quality screenplays really lie at the door of inadequately trained screenwriters?

    Get PDF
    The relative lack of success for British films in the marketplace is often cited as being rooted in the lack of quality screenplays. As the primary strategic body for film in Britain, the UK Film Council subscribes to this broad analysis and has identified training as one of the key strategies for overcoming this weakness. In this article, I question this assumption and examine to what extent the decision-makers, and the processes of decision-making, themselves are a problem in the development of talent and quality British films

    Password-based group key exchange in a constant number of rounds

    Get PDF
    Abstract. With the development of grids, distributed applications are spread across multiple computing resources and require efficient security mechanisms among the processes. Although protocols for authenticated group Diffie-Hellman key exchange protocols seem to be the natural mechanisms for supporting these applications, current solutions are either limited by the use of public key infrastructures or by their scalability, requiring a number of rounds linear in the number of group members. To overcome these shortcomings, we propose in this paper the first provably-secure password-based constant-round group key exchange protocol. It is based on the protocol of Burmester and Desmedt and is provably-secure in the random-oracle and ideal-cipher models, under the Decisional Diffie-Hellman assumption. The new protocol is very efficient and fully scalable since it only requires four rounds of communication and four multi-exponentiations per user. Moreover, the new protocol avoids intricate authentication infrastructures by relying on passwords for authentication.

    Decreasing time consumption of microscopy image segmentation through parallel processing on the GPU

    Get PDF
    The computational performance of graphical processing units (GPUs) has improved significantly. Achieving speedup factors of more than 50x compared to single-threaded CPU execution are not uncommon due to parallel processing. This makes their use for high throughput microscopy image analysis very appealing. Unfortunately, GPU programming is not straightforward and requires a lot of programming skills and effort. Additionally, the attainable speedup factor is hard to predict, since it depends on the type of algorithm, input data and the way in which the algorithm is implemented. In this paper, we identify the characteristic algorithm and data-dependent properties that significantly relate to the achievable GPU speedup. We find that the overall GPU speedup depends on three major factors: (1) the coarse-grained parallelism of the algorithm, (2) the size of the data and (3) the computation/memory transfer ratio. This is illustrated on two types of well-known segmentation methods that are extensively used in microscopy image analysis: SLIC superpixels and high-level geometric active contours. In particular, we find that our used geometric active contour segmentation algorithm is very suitable for parallel processing, resulting in acceleration factors of 50x for 0.1 megapixel images and 100x for 10 megapixel images

    Leaf segmentation and tracking using probabilistic parametric active contours

    Get PDF
    Active contours or snakes are widely used for segmentation and tracking. These techniques require the minimization of an energy function, which is generally a linear combination of a data fit term and a regularization term. This energy function can be adjusted to exploit the intrinsic object and image features. This can be done by changing the weighting parameters of the data fit and regularization term. There is, however, no rule to set these parameters optimally for a given application. This results in trial and error parameter estimation. In this paper, we propose a new active contour framework defined using probability theory. With this new technique there is no need for ad hoc parameter setting, since it uses probability distributions, which can be learned from a given training dataset

    Gene expression profile of androgen modulated genes in the murine fetal developing lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood.</p> <p>Methods</p> <p>To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens.</p> <p>Results</p> <p>Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment.</p> <p>Conclusion</p> <p>Our results show clearly that there is a real delay in lung maturation between male and female in this period, the latter pursuing already lung maturation while the proper is not yet fully engaged in the differentiation processes at GD17. In addition, this study provides a list of genes which are under the control of androgens within the lung at the moment of surge of surfactant production in murine fetal lung.</p

    The Total Filmmaker: thinking of screenwriting, directing and editing as one role

    Get PDF
    As screenwriting continues to establish itself as a discrete discipline in academia, either in alignment with creative writing departments or film and media practice departments, there is a danger that such developments may entrench a distancing of the craft from the cinematic form itself and that such a distancing may ultimately reinforce the screenplay's propensity for dramaturgy and the dramatic, rather than the sensory and experiential of the cinematic. Closely related creative stages in telling cinematic stories include directing and editing and this article seeks to argue, with reference to personal screen practice, that screenwriting, directing and editing are, in fact, three variations of the same thing. The article proposes the notion of the Total Filmmaker who embraces all three aspects of the cinematic storyteller. If the ultimate aim is to create a narrative that fully utilises the unique properties of the cinematic form in telling a story, rather than being dominated by the theatricality of dramatically driven classical narratives. How might one explore the relationship between screenwriting, directing and editing? Can an integrated approach to creating the cinematic blueprint change the way we think of pedagogy and screenwriting

    Vehicle Trajectories from Unlabeled Data through Iterative Plane Registration

    Get PDF
    One of the most complex aspects of autonomous driving concerns understanding the surrounding environment. In particular, the interest falls on detecting which agents are populating it and how they are moving. The capacity to predict how these may act in the near future would allow an autonomous vehicle to safely plan its trajectory, minimizing the risks for itself and others. In this work we propose an automatic trajectory annotation method exploiting an Iterative Plane Registration algorithm based on homographies and semantic segmentations. The output of our technique is a set of holistic trajectories (past-present-future) paired with a single image context, useful to train a predictive model
    corecore