
Decreasing Time Consumption of Microscopy Image
Segmentation through Parallel Processing on the GPU

Joris Roels1,2, Jonas De Vylder1, Yvan Saeys2, Bart Goossens1, and Wilfried Philips1

1 Ghent University, Department of Telecommunications and Information Processing,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium,

Joris.Roels@telin.ugent.be
2 Flanders Institute for Biotechnology, Inflammation Research Center,

Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium

Abstract. The computational performance of graphical processing units (GPUs)
has improved significantly. Achieving speedup factors of more than 50x com-
pared to single-threaded CPU execution are not uncommon due to parallel pro-
cessing. This makes their use for high throughput microscopy image analysis very
appealing. Unfortunately, GPU programming is not straightforward and requires
a lot of programming skills and effort. Additionally, the attainable speedup fac-
tor is hard to predict, since it depends on the type of algorithm, input data and
the way in which the algorithm is implemented. In this paper, we identify the
characteristic algorithm and data-dependent properties that significantly relate to
the achievable GPU speedup. We find that the overall GPU speedup depends on
three major factors: 1) the coarse-grained parallelism of the algorithm, 2) the size
of the data and 3) the computation/memory transfer ratio. This is illustrated on
two types of well-known segmentation methods that are extensively used in mi-
croscopy image analysis: SLIC superpixels and high-level geometric active con-
tours. In particular, we find that our used geometric active contour segmentation
algorithm is very suitable for parallel processing, resulting in acceleration factors
of 50x for 0.1 megapixel images and 100x for 10 megapixel images.

Keywords:

1 Introduction

High throughput and resolution microscopy imaging has gained a lot of interest due to
advanced acquisition development. Consequently, image analysis algorithms should be
able to keep up with the increasing data stream. In practice, this seems to be a stumbling
block, especially in the case of microscopy image segmentation: higher complexity al-
gorithms typically perform better, but because of the increasing amount of data, they
become less usable. A second issue results from the increasing interest in more com-
plex (ultra)structural content. This requires more advanced segmentation algorithms
that incorporate prior knowledge such as shape and texture characteristics, typically
resulting into higher computational complexity. In some cases, inaccurate automated
segmentation algorithms or challenging data sets force researchers to perform segmen-
tation completely manual. For example, in [8], a team of 224 people annotated 950 thin

2

neuron structures in a 1 million µm3 electron microscopy (EM) dataset at nanometer
resolution, leading to more than 20000 annotator hours.

On the one hand, it is possible to use computationally cheap segmentation algo-
rithms, typically requiring a substantial amount of manual post-processing. On the
other hand, higher quality algorithms exist that typically require more computational
resources. The latter is a common reason why some segmentation algorithms are not
used in practice, even if they guarantee high-quality results. A popular approach to mit-
igate this, is the use of hardware accelerators such as graphical processing units (GPUs).
These devices allow us to exploit massive parallelism resulting in significant speedup
factors of more than 50x and even real-time performance in microscopy applications [5,
17].

However, GPU acceleration is not straightforward: it requires extreme care and pro-
gramming expertise and the achievable speedup depends on the granularity and memory
requirements of the algorithm, input data dimensions, hardware characteristics, etc. In
this paper, we discuss how microscopy image segmentation algorithms can be acceler-
ated through GPU processing and how the algorithm properties and input data influence
the achievable speedup. We point out that the algorithm needs to exhibit coarse-grained
parallelism, the processed data size needs to be sufficiently large to benefit from GPU
parallelization and the computation/transfer ratio needs to sufficiently large so that the
computational cost outweigh the memory transfer cost. In Section 2 we will discuss the
conceptual idea of GPU processing compared to traditional CPU processing. Two dif-
ferent segmentation algorithms are described in Section 3: basic superpixel segmenta-
tion and high-level active contours. Next, we identify the key properties of the algorithm
and input data in order to attain a higher speedup in Section 4. The paper is concluded
in Section 5.

2 CPU-GPU parallel processing

Traditionally, algorithm implementations are serially executed on the central processing
unit (CPU). Using the GPU it is possible to exploit massive parallelism in algorithms
resulting in significant speedups. However, there are several caveats linked to GPU
processing:

– GPU programming in low-level programming approaches like CUDA/OpenCL re-
quires specific knowledge on the GPU hardware architecture. One has to be aware
of memory allocation, memory transfer between the CPU and GPU, memory type
(local, global, shared, texture), thread synchronization, choosing GPU block sizes,
etc. To alleviate these problems, recently several high-level libraries have been de-
veloped (e.g. Thrust, HSA-Bolt, Vector, etc.) to be used from, e.g. C/C++. Alter-
natively, the GPU can be accessed from high-level languages like Python/Matlab.
However, the program then needs to be specifically designed to run on (or take ad-
vantage of) a GPU, by using existing library functions that have been accelerated
on the GPU. In many of these approaches, the programmer is still required to revert
to low-level GPU programming for functionality that does not exist within these
libraries.

3

– The GPU contains a large number of processing cores (called streaming proces-
sors) that are designed and optimized for parallel numerical computations. To take
advantage of the processing abilities and memory architecture of the GPU, a rela-
tively large number of cores (typically more than 256) needs to perform the same
operation in parallel.

– The type of algorithm influences the achievable speedup using the GPU as well.
Algorithms with the property that a large number of numerical operations can be
performed independently, with limited dynamic control flow and limited recursion
are more likely to have higher speedup factors. Memory accesses either need to be
optimized for locality (shared/texture memory) or coalescing (global memory).

– Additionally, the type of data to process influences the achievable speedup using the
GPU. Copying data from CPU to GPU memory and back requires time and intro-
duces an overhead. For small data dimensions, the GPU will be scarcely occupied
and acceleration due to parallel processing may not be as high as was hoped for. In
these cases, parallel processing using the CPU might be more efficient (assuming
the CPU is multi-core).

Recent programming languages such as Halide [15], Rust [9] and Quasar [6] (which we
have used for our experiments) address the first issue by allowing the algorithm to be
specified on a high level, automatic memory transfer, load balancing, scheduling, etc.
The remaining points are more related to the algorithmic and data-depending influence
on the attainable speedup. This is addressed in more detail in the following sections.

3 Microscopy Image Segmentation

One of the most fundamental and challenging image processing problems in micro-
scopic imaging is segmentation. Typically, one defines this as isolating objects of in-
terest in a given input image. In the next sections, we will describe two popular mi-
croscopy image segmentation approaches that are distinctive in terms of computational
complexity and coarse-grained parallelism. We note that it is not within the scope of
this manuscript to provide a detailed discussion of the techniques, for this we refer to
the respective references.

3.1 Notations

We will describe a gray scale image as a function f : Ω 7→ R, such that f(x) corre-
sponds with the pixel intensity of the image at spatial position x ∈ Ω. A multichannel
image is represented by a vector function f : Ω 7→ RC that consists of C gray scale
images, one for each channel, e.g. f(x) = [fR(x), fG(x), fB(x)] for an RGB image.

A segmentation result involving K classes is defined by a classification function
u : Ω 7→ {0, 1, . . . ,K − 1} such that u(x) = i if the pixel located at position x ∈ Ω
belongs to segment class i. In the case of binary segmentation, this means that u(x) will
be a binary function evaluating to 1 if the pixel positioned at x belongs to the foreground
segment and 0 otherwise. For the matter of readability, in the following, we will discard
the spatial information unless this could lead to confusing expressions.

4

Algorithm 1 SLIC superpixels
1: Input: an image f(x), compactness parameter m, preferred superpixel size S, number of

iterations niter
2: Output: a labeled image u(x) where pixels with the same label belong to the same superpixel
3: Lines starting with ‘#’ indicate comments
4:
5: # Initialize seeds
6: ck = cluster centers across a regular grid
7: pixelDistances(x) = +∞
8: for i = 0 . . . niter − 1 do
9: # Reassign pixels

10: for all ck do
11: for all x in a 2S × 2S region around ck do
12: dist = d([f(x),x], ck)
13: if dist < pixelDistances(x) then
14: pixelDistances(x) = dist
15: u(x) = k
16: end if
17: end for
18: end for
19: # Recompute cluster centers
20: for all sk do
21: Ck = {x ∈ Ω|u(x) = k}
22: ck = 1

|Ck|
∑

x∈Ck

[f(x),x]

23: end for
24: end for
25: # Enforce connectivity
26: for all disjoint clusters Ck of connected pixels do
27: Cl = largest neighbouring cluster of Ck
28: u(x) = l for all x ∈ Ck
29: end for

3.2 Superpixel segmentation

Superpixel segmentation methods are essentially segmentation algorithms applied in
over-segmentation mode. The obtained segments (or superpixels) should be connected
regions of pixels with similar (intensity and/or texture) characteristics. Typically, they
are used as a pre-processing step for complex image processing algorithms that are
impractical on large data sets. As a result, superpixel techniques should require minimal
computation time in order to avoid overhead. Superpixels have been applied intensively
in electron microscopy applications because of its typical large-scale data sets [11, 13,
18].

A popular superpixel segmentation technique is the Simple Linear Iterative Clus-
tering (SLIC) algorithm [1]. SLIC superpixels are generated by applying the K-nearest
neighboring algorithm on a multidimensional space incorporating intensity and spa-
tial information (where K is the desired number of superpixels). Originally, it was de-
scribed for color images. The multidimensional space would then correspond to the

5

Fig. 1. SLIC superpixels computed on an electron microscopy image.

span of the CIELAB color space (because of its perceptual meaningfulness) and the 2D
spatial domain (i.e. a 5-dimensional space). However, for general multichannel images,
any kind of intensity space can be used. The distance d between two points of the joint
(C + 2)-dimensional space [f(x),x] and [f(x′),x′], corresponding to spatial positions
x and x′, is then defined as a linear combination of the Euclidean color distance and
spatial distance:

d = ‖f(x)− f(x′)‖2 +
m

S
‖x− x′‖2 , (1)

where ‖·‖2 denotes the Euclidean norm andm is a regularization parameter that allows
a trade-off between the intensity and normalized spatial distance. Note that we have
discarded vector dependencies for notational simplicity. To enforce connectivity, all
disjoint clusters are reassigned to their largest neighboring cluster at then end of the
algorithm. The pseudocode of this technique is shown in Algorithm 1 and Figure 1
shows the result of SLIC superpixels computed on an electron micrograph.

As superpixels are typically generated on large-scale data sets and their computing
time should be minimized to avoid overhead, GPU acceleration would be helpful.

3.3 Active contour segmentation

Model-based approaches such as active contours isolate objects of interest by using
stronger prior knowledge, i.e. by modeling motion, appearance, shape characteristics,
etc. A specific energy function is minimized by moving and deforming an initial con-
tour. This energy function should be minimal when the contour is delineating the ob-
ject of interest. Active contours have been applied extensively in a broad range of mi-
croscopy applications such as phase contrast [10], confocal [14] and EM [12] due to the
possibility of designing very application-specific energy functions.

A popular class of active contours, so-called geometric active contours, that benefits
from a convex optimization problem represents the contour implicitly using a charac-
teristic function u : Ω 7→ [0, 1]. This evaluates to 0 if the pixel does not belong to the
segment, 1 elsewhere. We will focus on the segmentation method proposed in [4] where
the contour is assumed to be smooth and forced to an intensity-based data-fit:

r(x) = (µ1 − f(x))2 − (µ2 − f(x))2 (2)

6

Algorithm 2 Geometric active contours
1: Input: a grayscale image f(x), expected foreground and background intensities µ1 and µ2,

regularization parameters λ and β, iteration limits niter0 and niter1
2: Output: a binary image u(x) representing the segmentation
3: Lines starting with ‘#’ indicate comments
4:
5: # Initialization
6: u(x) = 0, v(x) = 0
7: r(x) = (µ1 − f(x))2 − (µ2 − f(x))2
8: for k = 0 . . . niter0 − 1 do
9: # Estimate p

10: p(x) = 0
11: for l = 0 . . . niter1 − 1 do
12: divp(x) = ∇ · p(x)
13: grad(x) = ∇(divp(x)− λv(x))

14: p(x) =
p(x) + δt grad(x)

1 + δt |grad(x)|
15: end for
16: # Update u
17: u(x) = v(x)− 1

λ
divp(x)

18: # Update v
19: v(x) = b

(
u(x)− β

λ
r(x)

)
20: end for
21: # Binarization
22: u(x) = u(x) > 0.5

where µ1 (respectively, µ2) is the expected intensity inside (respectively, outside) of the
contour. A gradient-based smoothness constraint suggests the following energy function
that should be minimized:

E[u] = |∇u|+ β〈u, r〉+ b(u), (3)

where∇ is the gradient operator, |(w1, w2)| =
√∑

x w1(x)2 + w2(x)2 for images wi,
β a weighting parameter used to tune the influence of the data-fit term in relation to
the total variation regularization and

〈
w,w′

〉
=
∑

x w(x)w
′(x) for an image w. The

function b is a convex potential function in order to constrain the minimal solution of
Eq. 3 to the interval [0, 1]. In our experiments, we used:

b(x) = min (max (x, 0) , 1) . (4)

The energy function in Eq. 3 can be efficiently minimized by introducing an addi-
tional variable v and computing the following iteration scheme [3]:

u(k+1) = v(k) − 1

λ
∇ · p (5)

v(k+1) = min

(
max

(
u(k+1) − β

λ
r, 0

)
, 1

)
, (6)

7

Fig. 2. Active contour segmentation result on the blue channel of a fluorescence micrograph.

where ∇· denotes the divergence operator, p(x) can be efficiently calculated using the
following fixed point algorithm [2]:

p(0) = (0, 0) (7)

p(l+1) =
p(l) + δt∇(∇ · p(l) − λv(k))
1 + δt

∣∣∇(∇ · p(l) − λv(k))∣∣ , (8)

where δt is the step size. The pseudocode of this technique is shown in Algorithm 2
and Figure 2 shows the result of geometric active contours applied on a fluorescence
microscopy image.

Active contours are a more complex segmentation method and, due to the iterative
implementation, significantly more computationally intensive. However, because of the
high amount of pixel-wise image operations, parallel computing seems computationally
interesting.

4 Accelerating programs using the GPU

Accelerating SLIC superpixel segmentation and active contour algorithms using the
GPU has been studied in literature [16, 7]. We stress that, in this paper, it is our goal to
identify the general algorithmic and data-dependent properties that give rise to a higher
potential speedup, such that GPU porting can be performed whenever it is likely to
escribe. Firstly, it is worth noticing we can distinguish between two types of programs
that have different acceleration properties as more computing resources are provided to
the system: strongly and weakly scaled programs.

4.1 Strong and weak scaling

Intuitively, more computing resources result in faster computation, for programs as-
suming the workload remains constant (the program will not benefit in performance
by increasing the workload). This type of programs is typically called strongly scaled,
e.g. matrix operations such as addition, multiplication, etc. More specifically, the the-
oretically achievable speedup s by providing n times more computing resources to a

8

10
2

10
4

10
6

Input size (pixels)

0

0.2

0.4

0.6

0.8

1

W
o

rk
lo

a
d

 f
ra

c
ti
o

n

Initialize seeds

Reassign pixels

Recompute cluster centers

Enforce connectivity

(a) SLIC superpixels

10
2

10
4

10
6

Input size (pixels)

0

0.2

0.4

0.6

0.8

1

W
o

rk
lo

a
d

 f
ra

c
ti
o

n

Initialization

Estimate p

Update u

Update v

Binarization

(b) Geometric active contours

Fig. 3. Execution time percentage of parts of the (a) SLIC superpixel and (b) active contour
algorithm for variable input sizes (note that this axis is logarithmically scaled). The indicated
subprograms are shown in comment in their corresponding pseudocode (Algorithm 1 and 2, re-
spectively).

subprogram that is responsible for a fraction q of the total (original) execution time is
then given by Amdahl’s law:

s =
1

1− q + q
n

. (9)

As n→ +∞, the achievable speedup will be maximized to 1
1−q . However, even in this

case, a subprogram that requires a relatively small fraction of computing time (q → 0)
will still result in an insignificant global speedup. Clearly, in order to guarantee a high
potential speedup, it is important to initially detect the subprograms that are responsible
for the largest fraction q of computing time and focus on these parts of the program for
parallelization.

Alternatively, increasing the workload may benefit the performance of an algorithm.
This type of programs is also called weakly scaled, e.g. training-based algorithms. The
fixed workload assumption is invalid and the theoretically achievable speedup s by
providing n times more computing resources to a subprogram that is responsible for a
fraction q of the total (original) execution time is then given by Gustafson’s law:

s = 1 + (n− 1)q. (10)

In this case, the achievable speedup is linearly related to the amount of computing
resources and subprogram execution time fraction.

In general a program neither exhibits strong nor weak scalability, but rather a com-
bination of both. The key message in the context of GPU processing is to parallelize the
subprograms that are responsible for the largest fraction of computing time.

Algorithms 1 and 2 show the pseudocode of the discussed SLIC superpixel and
geometric active contour algorithm, respectively. We have separated the algorithms in
subprograms, indicated by the commented lines. Figure 3 shows the workload fraction
of each part of the algorithms for variable input sizes. The most interesting function to
parallelize in the SLIC algorithm is the connectivity enforcement. In this example, we
have chosen for 10 iterations in the algorithm (which typically suffices). Obviously, a

9

higher number of iterations will result into relatively more computing time reassigning
the pixels and recomputing the cluster centers. The active contours algorithm spends
most of the computing time in the estimation of p (fortunately, we typically have con-
vergence after 1 iteration). As a consequence, this part of the algorithm is essential to
parallelize in order to guarantee a higher speedup.

4.2 Estimating the achievable speedup

Figure 4 illustrates the achieved speedup by GPU acceleration of SLIC superpixel and
active contour segmentation applied on a 0.001, 0.1 and 10 megapixel 8-bit grayscale
image using Quasar. An important notice is that Quasar is designed for program execu-
tion on heterogeneous hardware and will decide at runtime whether to run a function on
the host CPU or another specific device (usually a GPU) according to its own heuris-
tics. The experiments were performed using an Intel Core i7 4720 2.60 GHz CPU and
GeForce GTX 960M GPU.

Once the most time-requiring functions are detected, it is important to analyze their
characteristics and the type of data that they will have to process. We provide a (non-
exhaustive) list of properties that, according to our experiences, significantly impact the
achievable speedup and illustrate them with examples of subprograms of the accelerated
segmentation algorithms (see Figure 4):

– Coarse-grained parallelism of the function: Functions that consist of many com-
putations that are mutually independent are typically called functions with coarse-
grained parallelism. This naturally translates to parallel computing and is therefore
an indicator for a high or low potential speedup. For example, all the functions in
the active contour algorithm are pixel-wise image operations resulting in significant
speedups.

– Size of the data to process: This is a consequence of concealing memory latency
while accessing it. Larger amounts of data typically allow more operations to be
performed in parallel, resulting in higher speedups, compared to small amounts of
data. For example, we establish higher speedups in the initialization of the seeds and
the cluster center recomputing of the SLIC algorithm. However, since the amount
of superpixels is usually much smaller compared to the number of pixels, and the
pixel reassigning and cluster center recomputation iterate over the cluster centers,
their corresponding speedup is relatively smaller. The active contours computation
requires sufficiently enough input data in order to efficiently execute a number of
iterations and conceal memory latency. This can be seen by the attained speedups
as the input data size increases.

– Computational complexity: The operational complexity should justify the cost of
transferring data to and from the device, i.e. maximize the computation/memory
transfer ratio. Note that in many cases, data remains on the GPU memory: in this
case global memory reads/writes should be used in order to compute the computa-
tion/transfer ratio. As an example, assume two N × N matrices have to be added
using the GPU: this requires N2 operations and 3N2 data reads/writes to global
memory, resulting in a computation/transfer ratio of 3. Alternatively, the case of

10

(a) SLIC superpixels

(b) Geometric active contours

Fig. 4. Execution timing distribution (in ms) of the (a) SLIC superpixel and (b) geometric active
contours algorithm applied on 0.001, 0.1 and 10 megapixel 8-bit images using multi threaded
CPU and GPU processing. For each part of the program, the achieved speedup is indicated on top
of the bars. Note that the execution time axis is logarithmically scaled.

matrix multiplication would require N3 operations and 3N2 elements to be trans-
ferred, resulting in a computation/transfer ratio of N . In this case, the algorithm
would benefit from larger matrix sizes. Similarly, we denote in the parts of the ac-
tive contour algorithm where u and v are being updated, that the update for v is
computationally (slightly) more intense than the update on u. Hence, the corre-
sponding speedups are increasing faster as the input data size increases.

In practice, the achievable speedup is determined by a combination of the previous
and other functional and data-dependent properties. Even under perfect function and
data circumstances, the achievable speedup may still rely on implementation-dependent
factors such as memory transfer, data type and alignment, thread divergence, etc. Nev-
ertheless, the coarse-grained parallelism, data size and computation/memory transfer
ratio give a good indication whether an algorithm is suitable to GPU acceleration.

11

5 Conclusion

Image segmentation remains one of the most challenging problems in microscopy anal-
ysis. Typically, the user is obligated to find an optimal balance between algorithm com-
plexity on the one hand, which is heavily correlated with computational complexity,
and manual post-processing on the other hand. High computational costs are a common
reason for the impracticality of many high-quality segmentation algorithms and can
be mitigated through recent developments in GPU accelerated computing. However,
accelerating algorithms using the GPU is a costly operation because of the required
programming expertise. Additionally, predicting the attainable speedup is difficult in
practice because of the large amount of influencing factors. In this paper, we iden-
tify which algorithm and data characteristics significantly relate to the achievable GPU
speedup. In particular, we have found that 1) the algorithm needs to exhibit coarse-
grained parallelism, 2) the data size needs to be sufficiently large to benefit from GPU
parallelization and 3) the computation/memory transfer ratio needs to sufficiently large
so that the computational cost outweigh the memory transfer cost. This is illustrated on
two types of well-known segmentation methods that are extensively used in microscopy
image analysis: superpixels and active contours.

References
1. Achanta, R., Shaji, A., Smith, K., Lucchi, A.: SLIC Superpixels Compared to State-of-the-

art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence
34(11), 2274–2281 (2012)

2. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. International Jour-
nal of Computer Vision 63(1), 85–104 (2005)

3. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimiza-
tion of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2),
151–167 (2007)

4. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for Finding Global Minimizers of Image
Segmentation and Denoising Models. SIAM Journal on Applied Mathematics 66(5), 1632–
1648 (2006)

5. Crookes, D., Miller, P., Gribben, H., Gillan, C., McCaughey, D.: GPU Implementation of
MAP-MRF for microscopy imagery segmentation. In: Proceedings - 2009 IEEE Interna-
tional Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009. pp. 526–529
(2009)

6. Goossens, B., De Vylder, J., Philips, W.: Quasar: a new heterogeneous programming frame-
work for image and video processing algorithms on CPU and GPU. In: Proc. IEEE Interna-
tional Conference on Image Processing. pp. 2183—-2185 (2014)

7. He, Z., Kuester, F.: GPU-based active contour segmentation using gradient vector flow. In:
ISVC Proceedings of the Second International Conference on Advances in Visual Computing
- Volume Part I. pp. 191–201 (2006)

8. Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., Denk, W.: Connec-
tomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500(7461),
168–74 (2013), http://www.ncbi.nlm.nih.gov/pubmed/23925239

9. Holk, E., Pathirage, M., Chauhan, A., Lumsdaine, A., Matsakis, N.D.: GPU programming
in rust: Implementing high-level abstractions in a systems-level language. In: Proceedings
- IEEE 27th International Parallel and Distributed Processing Symposium Workshops and
PhD Forum, IPDPSW 2013. pp. 315–324 (2013)

12

10. Huang, Y., Liu, Z.: Segmentation and Tracking of Lymphocytes Based on Modified Active
Contour Models in Phase Contrast Microscopy Images. Computational and Mathematical
Methods in Medicine 2015, 1–9 (2015)

11. Jain, V., Turaga, S.C., Briggman, K.L., Helmstaedter, M.N., Winfried Denk, Seung, H.S.:
Learning to agglomerate superpixel hierarchies. Advances in Neural Information Processing
Systems pp. 1–9 (2011)

12. Jorstad, A., Fua, P.: Refining mitochondria segmentation in electron microscopy imagery
with active surfaces. In: Proc. European Conference on Computer Vision. pp. 367–379
(2015)

13. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of
mitochondria in EM image stacks with learned shape features. IEEE Transactions on Medical
Imaging 31, 474–486 (2012)

14. Meziou, L., Histace, A., Precioso, F., Matuszewski, B.J., Murphy, M.F.: Confocal mi-
croscopy segmentation using active contour based on alpha (α)-divergence. In: Proc. In-
ternational Conference on Image Processing. pp. 3077–3080 (2011)

15. Ragan-Kelley, J., Adams, A., Paris, S., Durand, F., Barnes, C., Amarasinghe, S.: Halide: A
Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image
Processing Pipelines. Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation pp. 519–530 (2013)

16. Ren, C.Y., Reid, I.: gSLIC: a real-time implementation of SLIC superpixel segmentation.
University of Oxford, Department of Engineering Science pp. 1–6 (2011)

17. Stegmaier, J., Amat, F., Lemon, W.C., McDole, K., Wan, Y., Teodoro, G., Mikut, R., Keller,
P.J.: Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of
Developing Embryos. Developmental Cell 36(2), 225–240 (2016)

18. Wang, S., Cao, G., Wei, B., Yin, Y., Yang, G., Li, C.: Hierarchical level features based train-
able segmentation for electron microscopy images. BioMedical Engineering OnLine 12, 59
(2013), http://www.biomedical-engineering-online.com/content/12/1/59

