911 research outputs found

    The Structure Of The Accretion Disk In The ADC Source 4U 1822-371

    Get PDF
    The low-mass X-ray binary (LMXB) 4U 1822-371 has an accretion disk corona (ADC) that scatters X-ray photons from the inner disk and neutron star out of the line of sight. It has a high orbital inclination and the secondary star eclipses the disk and ADC. We have obtained new time-resolved UV spectrograms and V- and I-band photometry of 4U 1822-371. The large quadratic term in our new optical eclipse ephemeris confirms that the system has an extremely high rate of mass transfer and mass accretion. The C IV lambda lambda = 1548 - 1550 angstrom emission line has a half width of similar to 4400 km/s, indicating a strong, high velocity wind is being driven off the accretion disk. Near the disk the wind is optically thick in UV, V, and J and the eclipse analysis shows that in V and J the optically thick wind extends nearly to the outer edge of the disk. The ADC must also extend vertically to a height equal to approximately half the disk radius.Astronom

    Effects of math anxiety on student success in higher education

    Get PDF
    This study examines whether math anxiety and negative attitudes toward mathematics have an effect on university students" academic achievement in a methodological course forming part of their degree. A total of 193 students were presented with a math anxiety test and some questions about their enjoyment, self-confidence and motivation regarding mathematics, and their responses were assessed in relation to the grades they had obtained during continuous assessment on a course entitled"Research Design". Results showed that low performance on the course was related to math anxiety and negative attitudes toward mathematics. We suggest that these factors may affect students" performance and should therefore be taken into account in attempts to improve students" learning processes in methodological courses of this kind

    Optical and Infrared Light Curves of the Eclipsing X-ray Binary V395 Car = 2S 0921-630

    Get PDF
    We present results of optical and infrared photometric monitoring of the eclipsing low-mass X-ray binary V395 Car (2S 0921-630). Our observations reveal a clear, repeating orbital modulation with an amplitude of about one magnitude in B, and V and a little less in J. Combining our data with archival observations spanning about 20 years, we derive an updated ephemeris with orbital period 9.0026+/-0.0001d. We attribute the modulation to a combination of the changing aspect of the irradiated face of the companion star and eclipses of the accretion disk around the neutron star. Both appear to be necessary as a secondary eclipse of the companion star is clearly seen. We model the B, V, and J lightcurves using a simple model of an accretion disk and companion star and find a good fit is possible for binary inclinations of 82.2+/-1.0 degrees. We estimate the irradiating luminosity to be about 8x10^35 erg/s, in good agreement with X-ray constraints.Comment: 6 pages, accepted for publication in MNRA

    Echo-Mapping of Swift J1753.5-0127

    Get PDF
    We present two epochs of coordinated X-ray-optical timing observations of the black hole candidate Swift J1753.5-0127 during its 2005 outburst. The first epoch in July occurred at outburst peak. Two consecutive nights of observations using the McDonald Observatory Argos camera with the Rossi X-ray Timing Explorer show a consistent correlation with an immediate response and an extended tail lasting ~5s. The properties of the variability and the correlation are consistent with thermal reprocessing in an accretion disk. The shortness of the lag suggests a short orbital period consistent with that recently claimed. The second epoch in August used the VLT FORS2 HIT mode again in conjunction with RXTE. Again a repeatable correlation is seen between two independent subsets of the data. In this case, though, the cross-correlation function has an unusual structure comprising a dip followed by a double-peak. We suggest that this may be equivalent to the dip plus single peak structure seen by Kanbach et al. (2001) in XTE J1118+480 and attributed there to synchrotron emission; a similar structure was seen during later activity of Swift J1753.5-0127 by Durant et al. (2008).Comment: 7 pages, accepted for publication in Monthly Notices of the Royal Astronomical Societ
    corecore