541 research outputs found

    The equation of state and symmetry energy of low density nuclear matter

    Full text link
    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions and astrophysical phenomena. A recently developed quantum statistical (QS) approach that takes the formation of clusters into account predicts low density symmetry energies far above the usually quoted mean field limits. A consistent description of the symmetry energy has been developed that joins the correct low-density limit with values calculated from quasi-particle approaches valid near the saturation density. The results are confronted with experimental values for free symmetry energies and internal symmetry energies, determined at sub-saturation densities and temperatures below 10 MeV using data from heavy-ion collisions. There is very good agreement between the experimental symmetry energy values and those calculated in the QS approachComment: 16 pages, 10 figures. arXiv admin note: text overlap with arXiv:0908.234

    Towards an understanding of Type Ia supernovae from a synthesis of theory and observations

    Full text link
    Motivated by the fact that calibrated light curves of Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, considerable attention has been given to, both, observations and models of these events over the past 15 years. Here, we summarize new observational constraints, address recent progress in modeling Type Ia supernovae by means of three-dimensional hydrodynamic simulations, and discuss several of the still open questions. It will be be shown that the new models have considerable predictive power which allows us to study observable properties such as light curves and spectra without adjustable non-physical parameters. This is a necessary requisite to improve our understanding of the explosion mechanism and to settle the question of the applicability of SNe Ia as distance indicators for cosmology. We explore the capabilities of the models by comparing them with observations and we show how such models can be applied to study the origin of the diversity of SNe Ia.Comment: 26 pages, 13 figures, Frontiers of Physics, in prin

    Three-dimensional modeling of Type Ia supernovae - The power of late time spectra

    Full text link
    Late time synthetic spectra of Type Ia supernovae, based on three-dimensional deflagration models, are presented. We mainly focus on one model,"c3_3d_256_10s", for which the hydrodynamics (Roepke 2005) and nucleosynthesis (Travaglio et al. 2004) was calculated up to the homologous phase of the explosion. Other models with different ignition conditions and different resolution are also briefly discussed. The synthetic spectra are compared to observed late time spectra. We find that while the model spectra after 300 to 500 days show a good agreement with the observed Fe II-III features, they also show too strong O I and C I lines compared to the observed late time spectra. The oxygen and carbon emission originates from the low-velocity unburned material in the central regions of these models. To get agreement between the models and observations we find that only a small mass of unburned material may be left in the center after the explosion. This may be a problem for pure deflagration models, although improved initial conditions, as well as higher resolution decrease the discrepancy. The relative intensity from the different ionization stages of iron is sensitive to the density of the emitting iron-rich material. We find that clumping, with the presence of low density regions, is needed to reproduce the observed iron emission, especially in the range between 4000 and 6000 AA. Both temperature and ionization depend sensitively on density, abundances and radioactive content. This work therefore illustrates the importance of including the inhomogeneous nature of realistic three-dimensional explosion models. We briefly discuss the implications of the spectral modeling for the nature of the explosion.Comment: 20 pages, 9 figures, resolution of Fig 1 is reduced to meet astro-ph file size restriction, submitted to A&

    Delayed detonations in full-star models of Type Ia supernova explosions

    Get PDF
    Aims: We present the first full-star three-dimensional explosion simulations of thermonuclear supernovae including parameterized deflagration-to-detonation transitions that occur once the flame enters the distributed burning regime. Methods: Treating the propagation of both the deflagration and the detonation waves in a common front-tracking approach, the detonation is prevented from crossing ash regions. Results: Our criterion triggers the detonation wave at the outer edge of the deflagration flame and consequently it has to sweep around the complex structure and to compete with expansion. Despite the impeded detonation propagation, the obtained explosions show reasonable agreement with global quantities of observed type Ia supernovae. By igniting the flame in different numbers of kernels around the center of the exploding white dwarf, we set up three different models shifting the emphasis from the deflagration phase to the detonation phase. The resulting explosion energies and iron group element productions cover a large part of the diversity of type Ia supernovae. Conclusions: Flame-driven deflagration-to-detonation transitions, if hypothetical, remain a possibility deserving further investigation.Comment: 4 pages, 1 figur

    Turbulence in a three-dimensional deflagration model for Type Ia supernovae: I. Scaling properties

    Full text link
    We analyze the statistical properties of the turbulent velocity field in the deflagration model for Type Ia supernovae. In particular, we consider the question of whether turbulence is isotropic and consistent with the Kolmogorov theory at small length scales. Using numerical data from a high-resolution simulation of a thermonuclear supernova explosion, spectra of the turbulence energy and velocity structure functions are computed. We show that the turbulent velocity field is isotropic at small length scales and follows a scaling law that is consistent with the Kolmogorov theory until most of the nuclear fuel is burned. At length scales greater than a certain characteristic scale, turbulence becomes anisotropic. Here, the radial velocity fluctuations follow the scaling law of the Rayleigh-Taylor instability, whereas the angular component still obeys Kolmogorov scaling. In the late phase of the explosion, this characteristic scale drops below the numerical resolution of the simulation. The analysis confirms that a subgrid-scale model for the unresolved turbulence energy is required for the consistent calculation of the flame speed in deflagration models of Type Ia supernovae, and that the assumption of isotropy on these scales is appropriate.Comment: 7 pages with 16 figures, submitted to Ap

    Pair Fluctuations in Ultra-small Fermi Systems within Self-Consistent RPA at Finite Temperature

    Get PDF
    A self-consistent version of the Thermal Random Phase Approximation (TSCRPA) is developed within the Matsubara Green's Function (GF) formalism. The TSCRPA is applied to the many level pairing model. The normal phase of the system is considered. The TSCRPA results are compared with the exact ones calculated for the Grand Canonical Ensemble. Advantages of the TSCRPA over the Thermal Mean Field Approximation (TMFA) and the standard Thermal Random Phase Approximation (TRPA) are demonstrated. Results for correlation functions, excitation energies, single particle level densities, etc., as a function of temperature are presented.Comment: 22 pages, 13 figers and 3 table

    Dielectric function of a two-component plasma including collisions

    Full text link
    A multiple-moment approach to the dielectric function of a dense non-ideal plasma is treated beyond RPA including collisions in Born approximation. The results are compared with the perturbation expansion of the Kubo formula. Sum rules as well as Ward identities are considered. The relations to optical properties as well as to the dc electrical conductivity are pointed out.Comment: latex, 10 pages, 7 figures in ps forma

    Deuteron life-time in hot and dense nuclear matter near equilibrium

    Get PDF
    We consider deuteron formation in hot and dense nuclear matter close to equilibrium and evaluate the life-time of the deuteron fluctuations within the linear response theory. To this end we derive a generalized linear Boltzmann equation where the collision integral is related to equilibrium correlation functions. In this framework we then utilize finite temperature Green functions to evaluate the collision integrals. The elementary reaction cross section is evaluated within the Faddeev approach that is suitably modified to reflect the properties of the surrounding hot and dense matter.Comment: 15 pages, 5 figure

    Medium corrections in the formation of light charged particles in heavy ion reactions

    Get PDF
    Within a microscopic statistical description of heavy ion collisions, we investigate the effect of the medium on the formation of light clusters. The dominant medium effects are self-energy corrections and Pauli blocking that produce the Mott effect for composite particles and enhanced reaction rates in the collision integrals. Microscopic description of composites in the medium follows the Dyson equation approach combined with the cluster mean-field expansion. The resulting effective few-body problem is solved within a properly modified Alt-Grassberger-Sandhas formalism. The results are incorporated in a Boltzmann-Uehling-Uhlenbeck simulation for heavy ion collisions. The number and spectra of light charged particles emerging from a heavy ion collision changes in a significant manner in effect of the medium modification of production and absorption processes.Comment: 16 pages, 6 figure
    corecore