66 research outputs found

    Magnetic games between a planet and its host star: the key role of topology

    Get PDF
    Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfv\'enic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star-planet systems with three-dimensional, global, compressible magneto-hydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. The Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star-planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 101910^{19} W. Close-in planets are also showed to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.Comment: 15 pages, 6 figures, accepted for publication in The Astrophysical Journa

    On the diversity of magnetic interactions in close-in star-planet systems

    Get PDF
    PublishedJournal Article© 2014. The American Astronomical Society. All rights reserved..Magnetic interactions between close-in planets and their host star can play an important role in the secular orbital evolution of the planets, as well as the rotational evolution of their host. As long as the planet orbits inside the Alfvén surface of the stellar wind, the magnetic interaction between the star and the planet can modify the wind properties and also lead to direct angular momentum transfers between the two. We model these star-planet interactions using compressible magnetohydrodynamic (MHD) simulations, and quantify the angular momentum transfers between the star, the planet, and the stellar wind. We study the cases of magnetized and non-magnetized planets and vary the orbital radius inside the Alfvén surface of the stellar wind. Based on a grid of numerical simulations, we propose general scaling laws for the modification of the stellar wind torque, for the torque between the star and the planet, and for the planet migration associated with the star-planet magnetic interactions. We show that when the coronal magnetic field is large enough and the star is rotating sufficiently slowly, the effect of the magnetic star-planet interaction is comparable to tidal effects and can lead to a rapid orbital decay.This work was supported by the ANR 2011 Blanc Toupies and the ERC project STARS2. A.S. acknowledges support from the Canada's Natural Sciences and Engineering Research Council. We acknowledge access to supercomputers through GENCI (project 1623), Prace, and ComputeCanada infrastructures

    The influence of the magnetic topology on the wind braking of sun-like stars.

    Get PDF
    Stellar winds are thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. 60 simulations made with a 2.5D, cylindrical and axisymmetric set-up and computed with the PLUTO code were used to find torque formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phase as observed at the Wilcox Solar Observatory, and of a young K-star (TYC-0486-4943-1) whose topology has been obtained by Zeeman-Doppler Imaging (ZDI).We would like to thank Colin Folsom, Pascal Petit for the magnetic field decomposition coefficients of TYC- 0486-4943-1, J´erome Bouvier and the ANR TOUPIES project which aim to understand the evolution of star?s spin rates, the ERC STARS2 (www.stars2.eu) and CNES support via our Solar Orbiter funding

    Developing Preservice Primary Teachers’ Confidence and Competence in Arts Education using Principles of Authentic Learning.

    Get PDF
    Arts education research over the years has highlighted the situation of non-specialist preservice primary arts teachers as having little confidence in their own artistic ability and their ability to teach the arts to children. Added to this, problems such a lack of resources, confidence, priority, time, knowledge and experience appear to inhibit the regular teaching of the arts by generalist classroom teachers while at the same time, face-to-face hours for preservice primary arts education have decreased significantly over the recent years. This paper describes how one subject within a Primary Teacher Education course responded to these challenges. This subject was based on Herrington, Oliver and Reeves’ (2003) framework for creating authentic learning environments then triangulates this authentic learning framework with what students wanted to learn in the subject and how they perceived they had developed their confidence and competence in creative arts educatio

    MOVES – V. Modelling star–planet magnetic interactions of HD 189733

    Get PDF
    Funding: AS acknowledges funding from the European Union’s Horizon-2020 research and innovation programme (grant agreement no. 776403 ExoplANETS-A), the PLATO/CNES grant at CEA/IRFU/DAp, and the Programme National de Planétologie (PNP). AS and ASB acknowledge funding from the ERC Synergy grant WholeSun 810218. RF acknowledges funding from UAEU startup grant number G00003269. This work has been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). The authors acknowledge the financial support of the SNSF. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project Spice Dune, grant agreement no. 947634). ChH acknowledges funding from the European Union H2020-MSCA-ITN-2019 under grant agreement no. 860470 (CHAMELEON). PJW acknowledges support from STFC through consolidated grants ST/L000733/1 and ST/P000495/1. AAV acknowledges funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 817540, ASTROFLOW). PZ acknowledges funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101020459 - Exoradio).Magnetic interactions between stars and close-in planets may lead to a detectable signal on the stellar disc. HD 189733 is one of the key exosystems thought to harbour magnetic interactions, which may have been detected in 2013 August. We present a set of 12 wind models at that period, covering the possible coronal states and coronal topologies of HD 189733 at that time. We assess the power available for the magnetic interaction and predict its temporal modulation. By comparing the predicted signal with the observed signal, we find that some models could be compatible with an interpretation based on star–planet magnetic interactions. We also find that the observed signal can be explained only with a stretch-and-break interaction mechanism, while that the Alfvén wings scenario cannot deliver enough power. We finally demonstrate that the past observational cadence of HD 189733 leads to a detection rate of only between 12 and 23 per cent, which could explain why star–planet interactions have been hard to detect in past campaigns. We conclude that the firm confirmation of their detection will require dedicated spectroscopic observations covering densely the orbital and rotation period, combined with scarcer spectropolarimetric observations to assess the concomitant large-scale magnetic topology of the star.Publisher PDFPeer reviewe

    Alfvén-wave-driven Magnetic Rotator Winds from Low-mass Stars. I. Rotation Dependences of Magnetic Braking and Mass-loss Rate

    Get PDF
    This is the final version. Available from IOP Publishing via the DOI in this recordJapan Society for the Promotion of Science (JSPS)MEXT of JapanEuropean Union Horizon 2020European Research Council (ERC)Programme National de Planétologie (PNP

    Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars

    Full text link
    A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of 'gyrochronology' uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period-age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can---unlike existing models---reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.Comment: 25 pages, 3 figures in main paper, 6 extended data figures, 1 table. Published in Nature, January 2016. Please see https://youtu.be/O6HzYgP5uyc for a video description of the resul

    Flux rope and dynamics of the heliospheric current sheet Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

    Get PDF
    Context: Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfvénic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ during the month of June 2020. We used the Alfvén-wave turbulence magnetohydrodynamic solar wind model WindPredict-AW and we performed two 3D simulations based on ADAPT solar magnetograms for this period. Results: We show that the dynamic regions measured by both spacecraft are pervaded by flux ropes close to the HCS. These flux ropes are also present in the simulations, forming at the tip of helmet streamers, that is, at the base of the heliospheric current sheet. The formation mechanism involves a pressure-driven instability followed by a fast tearing reconnection process. We further characterize the 3D spatial structure of helmet streamer born flux ropes, which appears in the simulations to be related to the network of quasi-separatrices

    Two-dimensional simulations of solar-like models with artificially enhanced luminosity. II. Impact on internal gravity waves

    Get PDF
    This is the final version. Available from EDP Sciences via the DOI in this recordArtificially increasing the luminosity and the thermal diffusivity of a model is a common tactic adopted in hydrodynamical simulations of stellar convection. In this work, we analyse the impact of these artificial modifications on the physical properties of stellar interiors and specifically on internal gravity waves. We perform two-dimensional simulations of solar-like stars with the MUSIC code. We compare three models with different luminosity enhancement factors to a reference model. The results confirm that properties of the waves are impacted by the artificial enhancement of the luminosity and thermal diffusivity. We find that an increase in the stellar luminosity yields a decrease in the bulk convective turnover timescale and an increase in the characteristic frequency of excitation of the internal waves. We also show that a higher energy input in a model, corresponding to a larger luminosity, results in higher energy in high frequency waves. Across our tests with the luminosity and thermal diffusivity enhanced together by up to a factor of 104, our results are consistent with theoretical predictions of radiative damping. Increasing the luminosity also has an impact on the amplitude of oscillatory motions across the convective boundary. One must use caution when interpreting studies of internal gravity waves based on hydrodynamical simulations with artificially enhanced luminosity.Science and Technology Facilities Council (STFC)European Research Council (ERC

    Magnetic reconnection as a mechanism to produce multiple protonpopulations and beams locally in the solar wind

    Get PDF
    Context. Spacecraft observations early revealed frequent multiple proton populations in the solar wind. Decades of research on their origin have focused on processes such as magnetic reconnection in the low corona and wave-particle interactions in the corona and locally in the solar wind.Aims.This study aims to highlight that multiple proton populations and beams are also produced by magnetic reconnection occurring locally in the solar wind. Methods. We use high resolution Solar Orbiter proton velocity distribution function measurements, complemented by electron and magnetic field data, to analyze the association of multiple proton populations and beams with magnetic reconnection during a period of slow Alfv\'enic solar wind on 16 July 2020. Results. At least 6 reconnecting current sheets with associated multiple proton populations and beams, including a case of magnetic reconnection at a switchback boundary, are found during this day. This represents 2% of the measured distribution functions. We discuss how this proportion may be underestimated, and how it may depend on solar wind type and distance from the Sun. Conclusions. Although suggesting a likely small contribution, but which remains to be quantitatively assessed, Solar Orbiter observations show that magnetic reconnection must be considered as one of the mechanisms that produce multiple proton populations and beams locally in the solar wind
    • …
    corecore