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Abstract

Observations of stellar rotation show that low-mass stars lose angular momentum during the main sequence. We
simulate the winds of sunlike stars with a range of rotation rates, covering the fast and slow magneto-rotator
regimes, including the transition between the two. We generalize an Alfvén-wave-driven solar wind model that
builds on previous works by including the magneto-centrifugal force explicitly. In this model, the surface-averaged
open magnetic flux is assumed to scale as µ -B f Roopen 1.2

* *
, where f open

*
and Ro are the surface open-flux filling

factor and Rossby number, respectively. We find that, (1) the angular-momentum loss rate (torque) of the wind is
described as ( )t » ´ W W2.59 10 ergw

30 2.82
* , yielding a spin-down law W µ -t 0.55

* . (2) The mass-loss rate
saturates at  ~ ´ - -M M3.4 10 yrw

14 1, due to the strong reflection and dissipation of Alfvén waves in the
chromosphere. This indicates that the chromosphere has a strong impact in connecting the stellar surface and stellar
wind. Meanwhile, the wind ram pressure scales as µ WPw

0.57
* , which is able to explain the lower envelope of the

observed stellar winds by Wood et al. (3) The location of the Alfvén radius is shown to scale in a way that is
consistent with one-dimensional analytic theory. Additionally, the precise scaling of the Alfvén radius matches
previous works, which used thermally driven winds. Our results suggest that the Alfvén-wave-driven magnetic
rotator wind plays a dominant role in the stellar spin-down during the main sequence.

Unified Astronomy Thesaurus concepts: Stellar evolution (1599); Stellar rotation (1629); Stellar winds (1636);
Solar wind (1534); Solar evolution (1492); Stellar mass loss (1613); Magnetohydrodynamical simulations (1966)

1. Introduction

The dynamo process yields stellar magnetic fields
(Leighton 1969; Brun et al. 2004; Hotta et al. 2016) that give
rise to activity such as coronal heating (Alfvén 1947;
Osterbrock 1961; Parker 1988; Rappazzo et al. 2008), stellar
winds (Parker 1958; Velli 1994), flares, and coronal mass
ejections (CMEs; Argiroffi et al. 2019; Notsu et al. 2019;
Toriumi & Wang 2019). Stellar activity of this type is observed
to decay over the lifetime of a star (Skumanich 1972; Güdel
et al. 1997; Güdel 2007; Vidotto et al. 2014b). Understanding
such long-term evolution is one of the most important
challenges in astronomy, especially in the context of stellar
influences on the habitability of exoplanets, as the erosion of
planetary atmospheres is affected by stellar activity (Lammer
et al. 2010; Johnstone et al. 2015b; Garraffo et al. 2016; Allan
& Vidotto 2019; Johnstone et al. 2019; Airapetian et al. 2020;
Vidotto & Cleary 2020). In order to understand activity
evolution, we first need to understand the evolution of stellar
rotation since (differential) rotation and convection are the
ultimate origin of magnetic energy in low-mass stars.

It is widely known that low-mass stars spin down over their
lifetimes (Schatzman 1962; Kraft 1967), approximately as Ω ∝
t−1/2 over the age range of ~10 yr8 to the age of the Sun
(Skumanich 1972). This stellar spin-down is due to the angular-
momentum loss caused by magnetized stellar winds (magnetic
braking; Weber & Davis 1967; Sakurai 1985; Kawaler 1988).

Magnetic braking governs the long-term variations in stellar
rotation, and thus the stellar dynamo process, which in turn
affects the intensity and structure of the stellar wind. In this
way, the interplay between the stellar dynamo and stellar
wind regulates the rotational evolution of stars (Brun &
Browning 2017).
As well as being an indicator for dynamo efficiency, stellar

rotation is an important fundamental quantity that can be used
as a stellar age diagnostic. Since magnetic braking is stronger
for faster rotators, the rotation periods of low-mass stars are
often found to converge onto a sequence defined by mass and
age, regardless of their initial rotation rates (Irwin &
Bouvier 2009). For example, stars with M*  0.5Me are
known to have rotationally converged by the age of the Hyades
cluster (Radick et al. 1987; Delorme et al. 2011). The use of
rotation as a proxy for age in this way is known as
gyrochronology (Barnes 2003, 2007, 2010). An alternative
diagnostic based on magnetic field strength instead of rotation
rate has also been proposed (Vidotto et al. 2014b). Gyrochro-
nology mainly appears to be applicable to middle-aged stars,
i.e., t 2.5 Gyrage for sunlike stars (Meibom et al. 2015),
while recent asteroseismic studies suggest that the stellar age–
color–rotation relation may deviate from gyrochronology for
stars older than the age of the Sun (Angus et al. 2015; Davies
et al. 2015; van Saders et al. 2016). To understand what causes
the breakdown of gyrochronology, we first need to correctly
model the mechanism by which stars lose angular momentum.
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The evolution of stellar rotation periods is governed by
several physical processes, such as disk-locking, core-envelope
decoupling, internal-structure evolution, and magnetic braking
(Gallet & Bouvier 2013, 2015). The magnetic braking plays a
dominant role in the net angular-momentum loss during the
main sequence. In contrast to observation-based approach to
mass-loss (Johnstone et al. 2015a; Ahuir et al. 2020) and
angular-momentum loss rate (Matt et al. 2015), we aim to
model them in a physics-based way. One problem of physics-
based stellar-wind models is that the scaling laws of the mass-
loss rate (Schröder & Cuntz 2005; Holzwarth & Jardine 2007;
Suzuki 2007, 2018; Cranmer & Saar 2011) and the Alfvén
radius (Kawaler 1988; Matt & Pudritz 2008; Matt et al. 2012;
Réville et al. 2015; Finley & Matt 2017, 2018) have been
discussed independently (note that the torque is a function of
the mass-loss rate, Alfvén radius, and rotation rate; see Weber
& Davis 1967). However, both the mass-loss rate and the
Alfvén radius vary with stellar-wind density, and therefore
should be modeled simultaneously.

The mass-loss rate is determined by the energy balance in the
chromosphere and the corona, while the Alfvén radius is
related to the large-scale magnetism of the star and stellar-wind
acceleration. Thus, in order to simultaneously model the mass-
loss rate and Alfvén radius, we need (1) to resolve the
chromosphere and waves therein (typical spatial scale ∼a few
100 km) and (2) a simulation domain that is sufficiently large to
cover the wind acceleration (typical spatial scale ∼a few 10R*
or more), which requires typically 104-5 grid points in the radial
direction. For this reason, we make use of a one-dimensional
solar wind model that satisfies the aforementioned demand and
generalize it to stellar wind by explicitly taking into account the
rotation effect. This model allows us to investigate the
dependence of stellar-wind parameters (mass-loss rate, Alfvén
radius, torque) on the stellar rotation rate. A goal of this work is
to derive the rotation dependence of stellar-wind characteristics
and compare them with observations.

The remainder of this paper is organized as follows. In
Section 2, we summarize the overview of the model in this
work, including assumptions, basic equations, parameters, and
numerical schemes. The numerical results are discussed in
Section 3. The energetics of the stellar wind is discussed in
Section 4, focusing on the mass-loss saturation and wave
energetics. We discuss the overall results of our work in
Section 5.

2. Model

2.1. Overview

We simulate equatorial stellar winds that extend from the
stellar photosphere to beyond the fast-magnetosonic point. Our
model is based on the magnetohydrodynamic equations
including gravity, thermal conduction, and radiative cooling.
For simplicity, and to reduce the numerical cost, we assume a
one-dimensional geometry and axisymmetry. We therefore
include the turbulent dissipation of Alfvén waves, which is a
multidimensional effect, phenomenologically.

Several theoretical models explain the solar wind based on
Alfvén-wave heating and acceleration (Suzuki & Inutsuka
2006; Cranmer et al. 2007; van der Holst et al. 2014; Shoda
et al. 2019; Réville et al. 2020). We extend this Alfvén-wave
modeling to winds from low-mass stars. In addition to Alfvén
waves, for fast rotators the magneto-centrifugal force can

further accelerate the wind (Belcher & MacGregor 1976;
Sakurai 1985; Réville et al. 2016; Johnstone 2017). In this
work, we account for both effects and conventionally call our
models “Alfvén-wave-driven magnetic rotator winds.” For
simplicity, we fix the mass, luminosity, and metallicity of the
star with solar values (M*=Me, L*=Le, Z*=Ze) and
focus our interest on the rotation dependence.
A key factor in our model (and in the theory of magnetic

braking in general) is the filling factor of open magnetic flux,
defined as

( )
∣ ( )∣

( )
p

=
F

f r
r B r4

, 1
r

open open

2

where ∣ ( )∣B rr is the unsigned radial magnetic field (averaged
over solid angle) and Fopen is the unsigned open magnetic flux.
Note that Φopen is constant in r and is fixed for each simulation.
Magnetic field lines eventually become open, due to their
advection in the stellar wind; therefore, ( ) ¥ =f r 1open . At
the stellar surface, f open is generally much lower than unity. For
the solar surface, f open is typically 10−3 (Cranmer 2017). The
radial increase of f open as a function of radius, i.e., the (super-
radial) expansion of open magnetic field line, needs to be
accounted for.
To follow the (super-radial) magnetic field expansion in our

one-dimensional geometry, we make use of a field-aligned
coordinate system (Hollweg et al. 1982; Kudoh & Shibata
1999; Suzuki & Inutsuka 2005). To be consistent with
axisymmetry, all of the super-radial expansion is attributed to
the poloidal (r and θ) components. The scale factors (that
reflect the degree of expansion of magnetic flux in each
direction) of the corresponding curvilinear coordinate system
are given as

( )= = =q fh h rf h r1, , . 2r
open

For simplicity, the θ and f components are attributed to
(Alfvén) waves and rotation, respectively. By this simplifica-
tion, the polarization of Alfvén waves is restricted to be linear.
However, this restriction is unlikely to affect the conclusion
because the wind structure and dynamics are weakly affected
by the imposed polarization (Suzuki & Inutsuka 2006).
Although stellar-wind outflows are far from symmetric (e.g.,
van der Holst et al. 2014), once the flux-tube expansion is
appropriately prescribed by f open (r), our one-dimensional
model is expected to give a reasonable estimation of wind
parameters. In the wind acceleration region and below, due to
the low-beta nature of the corona, the flux-tube expansion is
essentially set by the global magnetic field and is not affected
by the wind dynamics. Because the interactions between flux
tubes are likely insignificant, in wave-driven winds, each flux
tube behaves independently. Indeed, the three-dimensional
structure of the solar wind is well reproduced from an ensemble
of one-dimensional flux-tube models (Pinto & Rouillard 2017).
Thus, by implementing a representative flux-tube expansion,
we can reliably recover averaged properties of the stellar wind.
An overview of our model geometry is detailed in Figure 1.

An equatorial magnetic flux tube is located on the stellar
surface and expands super-radially into interplanetary space.
MHD waves propagate along the background flux tube and
partially dissipate in the atmosphere.
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2.2. Basic Equations

We assume that the system is one-dimensional (∂/∂ θ=
∂/∂ f=0) and the scale factors are given by Equation (2). The
MHD equations are then written as follows (see Appendix A for
derivation):

( ) ( )r r
¶
¶

+ =
t r f

v r f
1

0, 3r2 open
2 open

( ) [( ) ]

( )

( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

r r

r

r r
p p

¶
¶

+
¶
¶

+

= - +

+ + - -q f
q f

t
v

r f r
v p r f

GM

r
p

d

dr
r f

v
d

dr
rf

r
v

B B d

dr
f

1

ln

ln
1

8 8
ln , 4

r r T2 open
2 2 open

2
2 open

2 open 2
2 2

open

*

( )

( ) ( )

⎜ ⎟

⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

r r
p

p
r r

¶
¶

+
¶
¶

-

= - +

q q q

q
q

t
v

r f r
v v B B r f

B B
v v

d

dr
rf D

1 1

4

4
ln , 5

r r

r
r v

2 open
2 open

open turb

( )

( )

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

r r
p

p
r

¶
¶

+
¶
¶

-

= -

f f f

f
f

t
v

r f r
v v B B r f

B B
v v r

1 1

4

4
, 6

r r

r
r

2 open
2 open

( ) ( )=
r f

d

dr
B r f

1
0, 7r2 open

2 open

[( ) ]

( ) ( ) ( )pr

¶
¶

+
¶
¶

-

= - +

q q q

q q

t
B

r f r
v B v B r f

v B v B
d

dr
rf D

1

ln 4 , 8

r r

r r b

2 open
2 open

open turb

[( ) ]

( ) ( )

¶
¶

+
¶
¶

-

= -

f f f

f f

t
B

r f r
v B v B r f

v B v B r

1

, 9

r r

r r

2 open
2 open

( ) ( · )

( )

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥p

r

¶
¶

+
¶
¶

+ - +

= - -

^ ^v B
t
e

r f r
e p v

B
F r f

v
GM

r
Q

1

4

, 10

T r
r

r

2 open C
2 open

2 R*

where

( )
g

r
p p

=
-

+ + = +^ ^e
p

v
B

p p
B

1

1

2 8
,

8
. 11T

2
2 2

These are closed by the equation of state.

( )r= = ´ - -p c T c, 1.36 10 erg g K 121 1
8 1 1

where the value of c1 is consistent with the equation of state of
a fully ionized plasma that contains a few percent helium (alpha
particle) by number. Dv

turb and Db
turb represent the rate of

turbulent dissipation of Alfvén wave per unit momentum
(Shoda et al. 2018a), which will be discussed in Section 2.4. FC

and QR are the conductive flux and radiative cooling rate,
respectively.
We employ a Spitzer–Härm type of thermal conductive flux

(Spitzer & Härm 1953), with a quenching term that works at
radial distances typically greater than 5Re:

∣ ∣
( )

⎛
⎝⎜

⎞
⎠⎟

r
r

k= -
B

F
B

T
dT

dr
min 1, , 13r

C
C

0
5 2

where we set k = - - - -10 erg cm s K0
6 1 1 7 2 and r =C

- -10 g cm20 3. The quenching term comes from the saturation
of heat flux in interplanetary space (Salem et al. 2003; Bale
et al. 2013). Although this quenching is known to be
overestimated, it is unlikely to affect the numerical result as
it generally occurs beyond the sonic point.
The radiative cooling is a combination of different types:

( ) ( )x x= + -Q Q Q 1 , 14R R,thck 1 R,thin 1

where QR,thck and QR,thin stand for the optically thick and thin
radiative losses, respectively. The switching parameter ξ1

Figure 1. A schematic picture of the stellar-wind geometry used in this study. Shown by the black symbols and characters are the numerical settings. The red symbols
and characters refer to the physical processes considered in this work.
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mimics the optical depth, which takes ξ1≈1 in the photo-
sphere and ξ1≈0 in the corona. Here we assume the following
expression for ξ1:

( )
⎛
⎝⎜

⎞
⎠⎟x = -

p

p
max 0, 1 , 151

chr

where = -p 1 dyn cmchr
2.

In the photosphere, where the optical depth is large, the
balance between radiative heating and cooling keeps the
temperature almost fixed. For this reason, following Gudiksen
& Nordlund (2005), we approximate the optically thick cooling
by an exponential cooling:

( ) ( )
t

= -Q e e
1

, 16R,thck
thck

int int,ref

( )
⎛
⎝⎜

⎞
⎠⎟t

r
r

=
-

0.1 s, 17thck

5 3

*
where r = - -10 g cm7 3 is the mean surface density, and eint,ref

is the internal energy at a given reference temperature that
mimics the radiation-balanced profile (e.g., Figure 4 in
Cranmer & Winebarger 2019). QR,thck only works near the
surface because of the rapid increase of τthck with height.

Following Iijima (2016), the optically thin cooling function
is composed of two different contributions. In the chromo-
sphere, we employ the radiative cooling function given by
Goodman & Judge (2012; QGJ), while in the corona, the
optically thin cooling function taken from Rempel (2017) is
used. These two functions are smoothly connected as a function
of temperature using:

( ) ( )( ) ( )r x x= + L -Q Q T n n T, 1 , 18p eR,thin GJ 2 2

( )⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟x =

-
D

T T

T
max 0, min 1, , 192

TR

where TTR=15,000 K and D =T 5000 K.

2.3. Open-flux Filling Factor

There is a strong relationship between the open magnetic
flux, Φopen, and the strength of magnetic braking (Vidotto et al.
2012, 2014a; Réville et al. 2015). The magnetic-flux
conservation yields

( )p pF = »R B f R B f4 4 , 20open
2 open 2

eq,
open

* * * * * *
where B* is the characteristic field strength at the photosphere,
and can be approximated by the equipartition value Beq,* that
represents equal gas and magnetic pressures (Cranmer &
Saar 2011). We assume that the stellar surface is divided into
two areas: one with zero field and the other with equipartition
field. Indeed, the Sun’s photospheric magnetic field is observed
to be spatially localized, exhibiting a nearly equipartition value
(Tsuneta et al. 2008). Under this assumption, f open

*
represents

the fraction of the stellar surface covered by open magnetic flux
(Saar 2001; Reiners et al. 2009). We note that the “open-flux
filling factor” does not stand for the fraction of the open flux to
the total flux ( )+f f fopen open closed

* * *
, where f closed

*
is the

fraction of the stellar surface covered by closed magnetic flux.
We also note that, for the solar wind, f open

*
(or, equivalently,

the expansion factor) plays a role in determining the wind

speed (Wang & Sheeley 1990; Arge & Pizzo 2000; Fujiki et al.
2015).
Unfortunately, there is no established way to determine f open

*from the photospheric magnetic field, even for the Sun. For
example, the widely used potential field source surface model
(Schatten et al. 1969) consistently underestimates the open
magnetic flux observed by in situ spacecraft, which is referred
to as the open-flux problem (Linker et al. 2017). However, it is
thought that the dipolar magnetic field is the most significant
contributor to the open magnetic flux (Réville et al. 2015; See
et al. 2018). Recently, See et al. (2019) showed that, for most
stars (especially with low Rossby numbers), the dipolar
magnetic field is sufficient to determine the angular-momentum
loss rate. For these reasons, we simply assume that the open
magnetic flux is proportional to the surface-averaged unsigned
dipolar magnetic field á ñBdip :

( )µ
á ñ

f
B

B
. 21open dip

eq,*
*

In this work, we assume a power-law relation for f open

*
as

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 
= »

-
-

-

f f
P

P

Ro

Ro
10 , 22open open

1.2
3 rot

rot,

1.2

*

where we use  » -f 10open 3 as the the solar value of f open

*
.

Note that we only consider main-sequence sunlike stars
( =M M* , R*=Re, Z*=Ze), and therefore, the Rossby
number is a function of rotation rate only. Our implementation
is in line with the derivation presented in See et al. (2019), who
showed

( )á ñ µ - B Ro , 23dip
1.3 0.1

based on a statistical analysis of Zeeman–Doppler imaging
(ZDI) observations. The actual dependence of á ñBdip on Ro
could be weaker because the ZDI observation tends to
underestimate the magnetic field strength, especially when
the field is weak (See et al. 2020). This supports our
assumption that á ñBdip depends more weakly on Ro than the
observation by See et al. (2019). In the future, a rotation-
dependent correction factor to the ZDI-based á ñBdip values
could be used. We summarize the input and output parameters
of our simulations in Table 1.
We assume a two-step super-radial expansion of the

magnetic field line: one expansion occurs in the chromosphere
and the other in the corona (Cranmer & van Ballegooijen 2005).
To implement such two-step expansion, we need to set the
filling factor between the two expansion regions (at the coronal
base), which we denote fcor

open. Following Cranmer & Saar
(2011), we simply assume a power-law relation between f open

*and fcor
open as

( ) ( )= qf f , 24cor
open open B

*
where we use θB=1/3 as a reference value.
Once f open

*
and fcor

open are given, we set the radial profile of
( )f ropen as

( ) ( ) ( ) ( )=f r f f r f r , 25aopen open
1
exp

2
exp

*

( ) ( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥=

-
f r f f

r R

h
min , exp

2
, 25b1

exp
cor
open open

exp*
*
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( )
( ) ( )( )

( ( ) )
( )=

+ + -

+

 


f r
r f R f

f r

1

1
, 25c2

exp cor
open

cor
open

cor
open

*

where ( )( ) =
s
- r exp

r rexp

exp
. f1

exp and f2
exp represent the degree

of flux-tube expansion in the chromosphere and corona,
respectively. We assume that, in the stellar chromosphere, the
flux tube expands so that the plasma beta is fixed until

=f f f1
exp

cor
open open

*
(Tsuneta et al. 2008). Such an expansion is

approximately realized by setting the scale height hexp as

( )=h a g , 26exp
2
* *

where a* and g* are the sound speed and gravitational
acceleration at the stellar surface, respectively. Here we assume
that the pressure scale height of the chromosphere is similar to
the photospheric value. For the coronal expansion, we follow
the formulation of Kopp & Holzer (1976), with =r R 1.2exp *
and s =R 0.3exp * .

2.4. Alfvén-wave Turbulence

Broadband energy spectra observed in the solar wind indicate
that the solar wind is at least partially heated by turbulence
(Coleman 1968; Belcher & Davis 1971; Podesta et al. 2007;
Chen et al. 2020). In fact, in the outer heliosphere, the observed
turbulent dissipation accounts for the required heating rate of the
solar wind (Carbone et al. 2009). Although it is still unclear how
the solar wind is energized in and below the acceleration region,
it is straightforward to assume that the heating process should be
similar to what we observe in the distant solar wind; i.e., plasma
is heated by turbulence in the solar atmosphere. Alfvén-wave
turbulence is a promising candidate of such a heating mechanism.
It is a type of MHD turbulence that is driven by the collision of
bidirectional Alfvén waves or Elsässer variables (Kraichnan 1965;
Dobrowolny et al. 1980; Howes & Nielson 2013). It is likely to
develop in the stellar atmosphere (corona) and wind because the
reflection of Alfvén waves therein naturally gives rise to wave–
wave collisions (Matthaeus et al. 1999; Dmitruk et al. 2002).
Alfvén-wave turbulence is now regarded as one of the most

dominant heating processes in coronal holes and the fast solar
wind (Cranmer et al. 2007; Verdini & Velli 2007; Perez &
Chandran 2013; van Ballegooijen & Asgari-Targhi 2016; Shoda
et al. 2019), in coronal loops (van Ballegooijen et al. 2011;
Verdini et al. 2012), and in the chromosphere (Verdini &
Velli 2007; van Ballegooijen et al. 2011). Note, however, that
other processes such as mode conversion (Moriyasu et al. 2004;
Suzuki & Inutsuka 2005; Antolin et al. 2008), parametric decay
instability (Suzuki & Inutsuka 2006; Tenerani & Velli 2013; Del
Zanna et al. 2015; Réville et al. 2018; Shoda et al. 2018b), and
phase mixing (Heyvaerts & Priest 1983; Magyar et al. 2017) are
also likely to be important.
Without any additional terms, one-dimensional models

cannot deal with Alfvén-wave turbulence, because it is a
multidimensional process. To model the Alfvén-wave turbu-
lence without expensive numerical cost, phenomenological
treatments have been proposed (Hossain et al. 1995; Dmitruk
et al. 2002). These models have been validated in previous
solar wind simulations (e.g., van Ballegooijen & Asgari-
Targhi 2016). Following Shoda et al. (2018a), we introduce a
phenomenological model of turbulent dissipation as

(∣ ∣ ∣ ∣ ) ( )
l

= - +q q q q
^

+ - - +D
c

z z z z
4

, 27av
dturb

(∣ ∣ ∣ ∣ ) ( )
l

= - -q q q q
^

+ - - +D
c

z z z z
4

, 27bb
dturb

where λ⊥ is the perpendicular correlation length and q
z are

Elsässer variables (Elsässer 1950):

( ) pr=q q q
z v B 4 . 28

We assume that the correlation length increases with the
flux-tube radius:

( )l l=^ ^
B

B
. 29

r
,*

*

In the photosphere, Alfvénic fluctuations are localized in the
intergranular lanes where magnetic flux is concentrated (van
Ballegooijen et al. 1998, 2011; Chitta et al. 2012). For this
reason, we set the photospheric correlation length of Alfvén-
wave turbulence as the typical width of intergranular lanes:

( )l =^ 100 km. 30,*
For the value of cd in Equations 27(a) and (b), following Shoda
et al. (2018a), we set

( )=c 0.1, 31d

which is supported by both a reduced-MHD simulation (van
Ballegooijen & Asgari-Targhi 2017) and a shell-model calculation
(Verdini et al. 2019). However, the best choice of cd remains
controversial as one reduced-MHD calculation by Chandran &
Perez (2019) shows ~c 1d . The uncertainty in cd is not a key
issue in this work because the stellar-wind parameters appear to
weakly depend on the value of cd (see Shoda et al. 2018a).

2.5. Simulation Domain and Boundary Condition

We solve the basic equations from the photosphere (r=R*)
to the outer boundary of the stellar wind (r=rout). The extent
of the simulation domain changes depending on Prot, such that
the rout is always beyond the fast-magnetosonic point. For

Table 1
Summary of the Input and Output Parameters of Our Simulations

Prot f open

*
Mw rA vr,A tw

( )day ( )-10 3 ( )
- -M10 yr14 1 ( )R ( )-10 km s2 1 ( )10 erg30

48 0.466 1.01 11.4 2.14 0.61
40 0.580 1.26 12.2 2.33 1.03
32 0.758 1.58 13.3 2.62 1.96
24 1.07 2.00 15.6 3.08 4.48
20 1.33 2.23 17.5 3.40 7.54
16 1.74 2.49 20.5 3.80 14.4
12 2.46 2.79 25.3 4.41 33.0
10 3.06 2.87 29.6 4.81 56.0
8 4.00 3.05 35.8 5.34 108
6 5.65 3.25 46.2 5.95 258
5 7.03 3.41 54.2 6.57 433
4 9.19 3.36 64.9 7.37 825
3 13.0 3.28 80.2 9.81 1650
2 21.1 3.09 107 16.5 3890

Note. The first two columns correspond to the input parameters (rotation period
and open-flux filling factor), while the last four columns show the output
parameters (mass-loss rate, Alfvén radius, Alfvén-point wind velocity, and
angular-momentum loss rate).
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example, we set rout/R*=100 when =P 24 dayrot and
rout/R*=690 when =P 2 dayrot .

The spatial resolution of the simulation domain is inhomoge-
neous. Below r=1.02R*, the grid size Δr is fixed to D =r
20 km independent of Ω*. Δr increases with r as a power law
of r above r=1.02R* until it reaches the maximum value,
Δrmax. To resolve Alfvén waves without large numerical cost, we
increase Δrmax with rotation rate, Ω*, because stellar-wind speed
and Alfvén velocity are larger in faster rotators. Specifically,
D = ´r 4 10 kmmax

3 for =P 48 dayrot and D =r 10 kmmax
4

for =P 2 dayrot .
Beyond the outer boundary, rout, a marginal simulation

domain is set with gradually increasing grid size. Any
numerical errors in the marginal region are unlikely to affect
the simulation result since the outer boundary is always beyond
the fast-magnetosonic point, where physical fluctuations cannot
propagate back into the simulation domain.

Values evaluated at the inner boundary are denoted with the
subscript ∗, and are given as follows. Fixed boundary
conditions are imposed for T, vf, Br, and Bf:

( )
r

= = = W

= = =

f

f

T
p

c
v R

B B B

6000 K,

1300 G, 0, 32r

1
,

, eq, ,

*
*

*
* * *

* * *

Note that Beq,* is assumed to be constant with respect to Ω*.
Because the photospheric motion exhibits a much smaller
timescale than the rotation, the local property of the photo-
sphere is independent from rotation rate.

To inject MHD waves at the photosphere, we impose time-
dependent boundary conditions for density, velocity, and
perpendicular magnetic field. Fluctuations of density and radial
velocity are given as

( )
⎛
⎝⎜

⎞
⎠⎟r r= +

v

a
1 33r,

* *
*

*

where

( )r = =- - a c T10 g cm , . 347 3
1* * *

The time-dependent radial (vertical) velocity vr,* has a
broadband spectrum of

( ) ( )å p f pµ +
=

v f t fsin 2 2 , 35r
N

N
l

N
l

N
l

,
0

10

*

where the fN
l is a random phase and the wave frequency

f lN ranges in ´ ´- - f3.33 10 Hz 3.33 10 HzN
l3 2 . The

lower limit of f lN is set to be the cutoff frequency of acoustic
waves at the stellar surface. The amplitude of vr,* is set so that
the rms amplitude of upward acoustic waves is -0.9 km s 1.
Considering the downward wave contribution, the rms velocity
at the surface is approximately -1.3 km s 1, consistent with
solar observations (Oba et al. 2017; Ishikawa et al. 2020).

The θ-component of the velocity and magnetic field is given
in terms of Elsässer variables from Equation (28). We impose a
zero-derivative boundary condition on q

-z such that reflected
Alfvén waves can be absorbed through the bottom boundary:

( )¶
¶

=q
-

r
z 0. 36
*

Like vr,*, the upward Elsässer variable q
+z ,* is given with a

broadband spectrum as follows:

( ) ( )å p f pµ +q
+

=

z f t fsin 2 2 , 37
N

N
t

N
t

N
t

,
0

20

*

where fN
t is a random phase and f tN ranges in ´1.00

´- - f10 Hz 1.00 10 HzN
t3 2 . The lower and upper limits

of this frequency range approximate the turn-over timescale in
granules and intergranular lanes (Hirzberger et al. 1999). The
amplitude is tuned so that the rms amplitude of upward Alfvén
waves is -1.2 km s 1, which yields the rms photospheric
transverse velocity of -1.7 km s 1. This value is consistent with
observations of the solar surface convection (de Wijn et al.
2008; Oba et al. 2020). There is evidence that the imposed
spectrum of transverse waves may affect the dynamics of the
resulting stellar wind (Shoda et al. 2018b). Therefore, in the
future, simulations should be performed with a self-consistent
convection zone (e.g., Rempel 2017) to remove the uncertainty
in the wave generation process.

3. Trends in the Wind Simulations

3.1. Overview of Rotation Dependence

In Figure 2, we show the time-averaged radial profiles of the
simulated winds with various rotation rates: =P s24 dayrot (red
solid line), 12 days (orange dashed–dotted line), 6 days (green
dashed line), and 3 days (blue dotted line). To eliminate the
influence of initial conditions, time averaging is conducted after
the system reaches a quasi-steady state that is independent from
the choice of initial condition. The averaging time is typically

´ »1.2 10 s 1.39 day5 . Note that we show the rms value for
the wave amplitude vθ.
Panel (e) directly reflects the different rotation velocities

used in our simulations; vf increases with rotation rate. Up to a
certain height, the wind corotates with the stellar surface. The
corotation breaks up below the Alfvén radius, and vf in turn
begins to decrease. This behavior is consistent with the Weber–
Davis solution, fv ,WD, which predicts

( )
( ) ( )




» W

» W
f

f

v r r r

v r r r r

,

. 38

,WD A

,WD A
2

A

*

*

In fact, the radial profile of vf almost perfectly coincides with
the Weber–Davis solution (thin black lines). Similarly, panel (f)
shows that- fB Br increases with r, typically −Bf/Br∝r far
away from the star. This is also consistent with Weber–Davis
solution that predicts the Parker–spiral relation (Parker 1958).

( ) ( )- » Wf ¥B B r v r r . 39r r,WD , A*
Diamonds on each line indicate the Alfvén point. The Alfvén

point occurs at larger radii as the rotation rate increases. This is
a natural consequence of larger open magnetic flux and the
larger coronal Alfvén speed of the faster rotators. As shown in
Table 1, the largest Alfvén radius exceeds the mean orbital
radius of Mercury (∼83Re). This indicates that Mercury was
possibly subject to magnetic star–planet interactions with the
young Sun (see, e.g., Strugarek et al. 2014; Folsom et al. 2020).
Panels (a) and (b) show the weak dependence of density

and temperature on Ω*. We can hardly see any differences
between the four lines, especially near the coronal base. The
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rotation-rate dependences of stellar-wind parameters are shown
more clearly in Figure 3. Panel (a) shows the dependence of the
electron number density at the coronal base (where
= -p 0.03 dyne cm 2), ne,cor, on Ω*. In contrast to the observed

relation (dashed line; Ivanova & Taam 2003), our simulations
do not show any correlation. In panel (b), we show the coronal-
base temperature (Tcor, circles) and the maximum temperature
(Tmax, diamonds) against Ω*, both of which are inconsistent
with the relation µ WTcor

0.45
*

found by O’Fionnagáin &
Vidotto (2018).

These inconsistencies can be explained in the framework of
our model. The observed scaling relations of ne and T are
deduced from X-ray emission that mostly comes from closed
magnetic field loops, while the wind comes from the open-field
region (e.g., Cranmer 2009). Therefore, the difference between
our result and the observed trends indicates that the density and
temperature scale in different ways for open and closed regions.
To exemplify this, we also show a power-law fitting between
Tmax and Ω*: µ WTmax

0.18
*

, which is closer to the relation by
O’Fionnagáin & Vidotto (2018).

The constant coronal temperature with respect to Ω* is due to
the constant Alfvén-wave energy flux transmitted into the corona.
As Alfvén waves are the only source of coronal heating in our
model, their constant energy flux leads to a constant coronal
temperature. The coronal density is in general determined by the
energy balance between radiative cooling and conductive heating
(Hammer 1982; Withbroe 1988). Because the constant temper-
ature yields constant basal conductive heating, the coronal
density is also kept fixed with Ω*. Therefore, the constant coronal
temperature and density are attributed to constant Alfvén-wave

energy flux in the corona, which is discussed in more detail in
Section 4.
Panel (c) shows the Ω* dependence of the wind terminal

velocity. For Ω*/Ωe  7, the wind velocity weakly depends on
the rotation rate. However, when Ω*/Ωe 7, the wind velocity
drastically increases with rotation. Beyond a critical rotation rate,
the magneto-centrifugal force dominates the force balance in the
wind acceleration, resulting in a strong acceleration of the wind
(Belcher & MacGregor 1976). The critical point Ω*/Ωe≈7
turns out to be the regime-changing point in terms of energy
budget. We will discuss this further in Section 4.

3.2. Angular-momentum Loss Rate (Torque)

One of the principal purposes of this work is to investigate
whether the Alfvén-wave-driven magnetic rotator wind model
can explain the observed spin-down of low-mass stars.
Ignoring the core-envelope decoupling and internal-structure
evolution, the stellar rotational evolution is described as

( )t
W

= -I
d

dt
, 40w*

*

where I* is the momentum of inertia of the star. If one assumes
that the wind torque is approximated by t µ W +p

w
1

* , the
solution of the rotational evolution yields

( )W µ -t , 41p1
*

from which the Skumanich relation is reproduced when p=2.
In the quasi-steady state, an analytical formulation of torque

can be obtained (see, e.g., Lamers & Cassinelli 1999). The time-
averaged mass conservation and magnetic-flux conservation are

Figure 2. Comparison of the quasi-steady-state solutions after time averaging. The four lines correspond to =P 24 daysrot (red solid line), =P 12 daysrot (orange
dashed–dotted line), =P 6 daysrot (green dashed line), and =P 3 daysrot (blue dotted line), respectively. Panel (a): mass density ρ, panel (b): temperature T, panel (c):
radial velocity vr, panel (d): rms wave amplitude qv ,rms, panel (e): rotation velocity vf, and panel (f): field inclination- fB Br . The thin black lines in panel (e) indicate
the Weber–Davis solution and, for better visualization, the wind simulations are shown with dotted lines (only in panel (e)). The diamonds indicate the Alfvén point.
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given by

( ) p r= =M r f v4 const ., 42rw
2 open

( )pF = =r f B4 const. 43ropen
2 open

Combining these equations gives the following identity:

( )p

F
= = =

M
r f

v

v
r v

16
const. , 44

r
r

open
2

2
w

2 open A
2

A
2

,A

where we assume that the open-flux filling factor at the Alfvén
point is unity. For simplicity, we assume that rA is spherically

symmetric. The torque is then given by

( )
( )t = W = WM r

B f

v
R

2

3

2

3
. 45

r

r
w w A

2 ,
open 2

,A

4
*

* *
* *

where vr,A is the wind velocity at the Alfvén point. Substituting
=B 1300 Gr,* , = ´R 6.96 10 cm10

* , and Equation (22), a
semi-analytical expression of τw is obtained:

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ 

t = ´
W
W

-
v

v
1.22 10 erg, 46r

g
w

30 ,A

,

1 3.4

*

where   = » -v GM R2 617 km sg,
1 is the escape velo-

city at the solar surface. To express v vr g,A , as a function of
Ω*, a numerical simulation is required.
The torques calculated from our numerical simulations are

shown in Figure 4. Panel (a) shows how the wind torque varies
with the stellar rotation rate. In the whole range of Ω*, the
simulation results are well fitted by a single power law of

( )
⎛
⎝⎜

⎞
⎠⎟

t = ´
W
W

2.59 10 erg, 47w
30

2.82

*

which yields

( )W µ -t . 480.549
*

We note that the data points in the fast-rotator regime deviate
slightly from the fit line, which is possibly a result of the regime
change (see Section 4). This spin-down law is consistent with the
recent gyrochronology relation from Angus et al. (2015) who find

µP trot
0.55. For Ω/Ωe=1, the calculated angular-momentum

loss rate ( t = ´2.59 10 ergw,
30 ) matches with the observed

solar wind torque (Finley et al. 2018, 2019). However, this value
is still smaller than the stellar-observation-based empirical value
( t = ´6.3 10 ergw,

30 ; Matt et al. 2015) by a factor of 2.4. One
possibility for this gap is that the Sun has a smaller amount of
open magnetic flux than typical sunlike stars. We will discuss this
point in more detail in Section 5.
Comparing Equations (46) and (47), one can tell that

v vr g,A , should depend on Ω*, specifically  µ Wv vr g,A ,
0.58
* .

This is directly confirmed in panel (b). If we simply assume
that  »v v 1r g,A , , which is not a bad approximation, the torque
scales as t µ Ww

3.4, yielding slower spin-down than the
observed one: W µ -t 0.417

* . In this respect, the Ω* dependence
of v vr g,A , is also important in evaluating the spin-down law.

3.3. Alfvén Radius

Several works have produced semi-analytic scaling relations
for rA (Kawaler 1988; Matt & Pudritz 2008; Matt et al. 2012).
Here we compare two relations that are based on the open
magnetic flux in the wind. These scaling relations are given in
terms of the dimensionless wind-magnetization parameter
ϒopen, which is:

( ) 
¡ =

F

R M v
. 49

g
open

open
2

2
w ,*

For comparison, we convert the equatorial Alfvén radius from
our simulations, rA, to a latitudinally averaged value, á ñrA ,

Figure 3. Ω* dependences of stellar-wind parameters. Panel (a): coronal-base
electron number density, ne,cor. Also shown by the dashed line is the empirical
scaling of µ Wne,cor

0.6
* (Ivanova & Taam 2003). Panel (b): coronal-base

temperature (Tcor, circles) and maximum temperature (Tmax, diamonds). The
dashed line is the observational single-power-law relation (O’Fionnagáin &
Vidotto 2018). The dotted line is the power-law fitting between Tmax and Ω*.
Panel (c): termination velocity of stellar wind.
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based on the following formulation (Washimi & Shibata 1993):

( ) t = W = á ñ WM r M r
2

3
. 50w w A

2
w A

2
* *

Therefore, á ñ =r r2 3A A, where spherical symmetry has
been assumed.

We compare first to the scaling law given by Finley & Matt
(2018):

( )
( )

( )
⎪

⎪

⎧
⎨
⎩á ñ =

¡

¡
r R

0.33 dipole ,

0.46 general ,
51A FM18

open
0.371

open
0.329*

where the first case is fitted from simulations with only dipole
fields and the second case corresponds to a fit using a range of
simulations with combinations of dipole, quadrupole, and
octupole geometries.
The second scaling relation is given by Réville et al. (2015)

as follows:

( )
( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥á ñ =

¡

+
r R

f
0.64

1 0.06
, 52A R15

open

bu
2

0.31

*

where ( )= W -f R GMbu
3 2 1 2

* * * is the break-up fraction of the
rotation speed.
In Figure 5 we compare our results with Finley & Matt

(2018; top panel, dashed and dashed–dotted lines) and Réville
et al. (2015; bottom panel, dashed line). In each panel, our
results and a fitted power law are indicated by circles and the
solid line. The results of both Réville et al. (2015) and Finley &
Matt (2018) are consistent with our results, indicating that
scaling relations for the Alfvén radius are robust regardless of
simulation setting. Note that the open flux is an output of the
simulations in Réville et al. (2015) and Finley & Matt (2018)
while the mass-loss rate is mostly controlled by the coronal
density and temperature imposed at the boundary condition. On
the other hand, in our calculations, the mass-loss rate is an
output while the open flux is an input. A more self-consistent
treatment requires a full-sphere simulation with physics-based
coronal heating and chromospheric evaporation.
As shown in Figure 5, our simulations yield a power-law

relation between á ñr RA * and ϒopen of

( )á ñ µ ¡r R . 53A open
0.36

*

The origin of the exponent 0.36 is explained as follows.
Rewriting Equation (44) in terms of ϒopen, one obtains

( )
⎛
⎝⎜

⎞
⎠⎟

á ñ µ ¡
-

r R
v

v
. 54r

g
A

2 2
open

,A

,

1

*

Suppose a power-law relation ( ) µv v r Rr g
q

,A , A * is satisfied,
then

( )( )á ñ µ ¡ +r R . 55q
A open

1 2
*

It is evident from Figure 6 that the power-law relation
( ) µv v r Rr g

q
,A , A * is satisfied with q=0.77, which yields

the exponent in Equation (55) of 1/(2+q)=0.361. Also, our
results are consistent with the scaling law by Pantolmos & Matt
(2017) if we adopt the sound-to-escape velocity ratio

 =a v 0.23g, . According to Pantolmos & Matt (2017), the q
value is sensitive to the coronal temperature. In our model, the
coronal temperature is almost constant with respect to Ω*, and
thus, all of our simulations are fitted by a unique q value.

3.4. Mass-loss Rate

In this section, we discuss another interesting topic: the
rotation dependence of mass-loss rates, Mw. The top panel of
Figure 7 shows how Mw varies with the stellar rotation rate
(circles). Also shown by diamonds are the results with a fixed
open-flux filling factor = -f 10open 3

*
(see also Figure 10). Mw

increases with Ω* in the slow-rotator regime and saturates
around  ~ ´ - -M M3.4 10 yrw

14 1 in the faster rotation cases.
Observations of asterospheric line absorption show that the

Figure 4. Circles in each panel show the simulated panel (a): angular-
momentum loss rates (torques) of the winds, tw, and panel (b): stellar-wind
velocities at the Alfvén point, vr,A, normalized by the escape velocity at the
surface vg, . Also shown by the dashed lines are power-law fittings to circles.
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mass-loss rate tends to increase with X-ray flux (Wood et al.
2002, 2005, 2014), and thus with rotation rate (Güdel
et al. 1997; Ribas et al. 2005; Wright et al. 2011; Magaudda
et al. 2020). However, we need to note that what is actually
obtained by the asterospheric observation is the characteristic ram
pressure, p r=P r v4 rw out

2
out ,out

2 (Holzwarth & Jardine 2007), not
the mass-loss rate,  p r=M r v4 rw out

2
out ,out. Bearing this in mind,

we henceforth focus on Pw for comparison with observation.
The bottom panel of Figure 7 shows the relation between

P Pw w, and W W* , which has a power-law relation of

( ) ( ) = W WP P , 56w w,
0.83

*

where we set  = ´P 5.0 10 dynew,
19 . Following Wright et al.

(2011), we convert the rotation rate Ω* to the X-ray flux FX as

( ) ( ) = W WF F , 57X X,
2.18

*

where  = ´ - -F 3 10 erg cm sX,
4 2 1. Note that (1) all of our

simulation runs are in the unsaturated regime (in which stellar
activities correlate with stellar rotation) and (2) there is a one-
to-one relation between FX and LX/Lbol because the stellar
radius and luminosity are fixed in our simulations. Combining
Equations (56) and (57),

( ) ( ) =P P F F . 58w w, X X,
0.38

Figure 8 shows FX–Pw for the asterospheric observations taken
from Wood et al. (2014; symbols), the empirical relation from
Wood et al. (2005; blue solid line), and our result
(Equation (58); red dashed line). Our simulation result is
consistent (within a factor of three) with the observations of 61
Vir, Sun, α Cen, ε Ind, 61 Cyg A, ξ Boo, Prox Cen, and EV
Lac. A similar trend is found in the work of Holzwarth &
Jardine (2007). Our model is able to explain a good fraction of
the observations, although there exist non-negligible offsets for
three K-dwarfs (36 Oph, 70 Oph, and ε Eri). It is left for future
work to test whether Equations (56) and (58) are valid for non-
sunlike stars.

4. Wind Energetics

The physics of the stellar-wind heating and acceleration can
be inferred by following the energy flow from the stellar
surface to interplanetary space. For example, one can estimate
the stellar-wind mass-loss rate analytically, based on wind
energetics (Hansteen & Leer 1995; Cranmer & Saar 2011;
Suzuki 2018). To understand what causes the saturation of the
mass-loss rate, the energy budget in the stellar wind is
discussed.

Figure 5. Comparison of Alfvén-radius scaling laws from Finley & Matt
(2018; top panel) and Réville et al. (2015; bottom panel).

Figure 6. á ñr RA * vs. v vr g,A , (circles) and a power-law fit (  µv vr g,A ,

( )á ñr RA
0.77
* ; solid line). Also shown by the dashed line is the relation given by

Pantolmos & Matt (2017) with  =a v 0.23g, .
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4.1. Energy Conservation

After time averaging, the energy conservation law is written
as follows:

( ) ( )p+ + - - = -
d

dr
L L L L L r f Q4 , 59K E A C G

2 open
rad

where

( )r p=L v r f
1

2
4 , 60arK

3 2 open

( )g
g

p=
-

L pv r f
1

4 , 60brE
2 open

( · ) ( )
⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥r

p p
p= + -^

^
^ ^v

B
v BL v

B
r f

1

2 4 4
4 , 60cr

r
A

2
2

2 open

( )p= -L F r f4 , 60dC C
2 open

( )r p= =L v
GM

r
r f M

GM

r
4 . 60erG

2 open
w* *

LA, LE, LA, LC, and LG correspond to the wind kinetic energy
flux, enthalpy flux, Alfvén-wave energy flux, conductive flux,
and gravitational energy flux, respectively. Bearing in mind
that the θ and f components stand for Alfvén waves and
rotation, respectively, we can decompose LA as

( )= +L L L , 61aA A
wav

A
rot

( )
⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥r

p p
p= + -q

q
q qL v

B
v

B
v B r f

1

2 4 4
4 , 61br

r
A
wav 2

2
2 open

( )
⎡
⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥r

p p
p= + -f

f
f fL v

B
v

B
v B r f

1

2 4 4
4 , 61cr

r
A
rot 2

2
2 open

where LA
wav and LA

rot correspond to the luminosities of Alfvén
waves and magneto-rotation, respectively.

4.2. Energetics in the Corona and Above

The energy conservation is more simply approximated above
the coronal base, where the enthalpy flux and the radiative loss

Figure 7. (Top panel) Mass-loss rate, Mw, vs. rotation rate, Ω*. The circles
show the fiducial cases ( ( )= W W-f 10open 3 1.2

* * ) and diamonds show the
results with fixed f open

*
( = -f 10open 3

*
; see also Figure 10 and discussions

there). (Bottom panel) Characteristic wind ram pressure, p r=P r f v4 rw
2 2,

normalized by the solar value vs. rotation rate, Ω*. Shown by the dashed line is
a power-law fit to the numerical results: ( ) = W WP Pw w,

0.83
* .

Figure 8. X-ray flux FX vs. characteristic ram pressure normalized by solar
value P Pw w, . The symbols indicate the asterospheric observations; diamonds,
circles, and stars stand for G-type, K-type, and M-type stars, respectively, and
binaries are doubly marked with corresponding symbols. Also, the red dashed
and blue solid lines show our simulation result and the empirical relation
proposed by Wood et al. (2005), respectively.
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are negligibly small.

( ) ( )+ + - - »
d

dr
L L L L L 0. 62K A

wav
A
rot

C G

Integrating this equation from the coronal base to the distant
stellar wind and ignoring minor components, one obtains

( )+ - - » +L L L L L L , 63A,cor
wav

A,cor
rot

C,cor G,cor K,out A,out
rot

where Xcor and Xout denote X measured at the coronal base and
outer boundary, respectively.

Taking the coronal base as =r R1.02 *, we have confirmed
that this approximated energy balance relation is satisfied to
within 2% error. In Figure 9, we plot each term in Equation (63)
as a function of rotation rate Ω*. Figure 9 has several features:

1. In the slow-rotator regime ( W W  4* ), the dominant
coronal energy injection is by Alfvén waves: LA,cor

wav

LA,cor
rot . In this regime, the energy balance is approximated

as » +L L LA,cor
wav

G,cor K,out, as assumed by Cranmer &
Saar (2011).

2. In the fast-rotator regime ( W W  10* ), the rotation
components becomes dominant: L LA,cor

wav
A,cor
rot . The

energy balance relation is then » +L L LA,cor
rot

K,out A,out
rot .

3. The “regime change” from wave-driven wind ( >LA,cor
wav

LA,cor
rot ) to rotation-driven wind ( <L LA,cor

wav
A,cor
rot ) takes

place around W W » 7* , or equivalently »Prot
3.6 day. Note that the regime-changing period strongly
depends on the filling factor of open flux.

An interesting behavior of the rotation-driven wind is that, in
spite of the rapid increase of rotational energy injection LA,cor

rot

with Ω*, the µL MG,cor w does not increase. This is because the

wind density is determined by the energy injected below the
sonic (slow-magnetosonic) point (Hammer 1982; Leer et al.
1982; Hansteen & Leer 1995; Hansteen & Velli 2012). The
magneto-rotational acceleration (magneto-centrifugal force)
works in the supersonic region and works to accelerate the
stellar wind without increasing the mass-loss rate. To show
this, we perform a set of test simulations with different rotation
rates ( =P 24, 8, 2.4, 0.8 dayrot ) and fixed open-flux filling
factor to = -f 10open 3

*
to see the purely rotational effect on the

wind. Figure 10 shows LK,out (black), µL MG,cor w (blue), and
LA,cor

rot (red) as functions of Ω*. The gravitational luminosity
LG,cor (or the mass-loss rate) does not respond to the increase of
rotational energy flux. Instead, the terminal wind kinetic energy
flux increases with rotational energy. For this reason, enhanced
rotation rate does not lead to enhanced mass-loss rate.
An approximated relation for the mass-loss rate is derived

from our analysis. Consider the energy balance assumed in
Cranmer & Saar (2011) of

( )+ »L L L . 64K,out G,cor A,cor
wav

We have already shown that this holds for the slow-rotator
regime but breaks down in the presence of large rotational
energy injection. However, Figure 9 shows that, in the whole
range of Ω*, LA,cor

wav is well approximated as

( )»L L2 , 65A,cor
wav

G,cor

which yields

( )


»M
L

v
. 66

g
w

A,cor
wav

,
2

Equation (66) is validated as follows. As we have already
shown, the magneto-centrifugal force works to enhance the
wind velocity but not to increase the mass-loss rate. In
other words, the mass-loss rate remains unchanged even if
the magneto-centrifugal force does not work. Therefore, the
rotational terms in the energy budget in Equation (63) can
be ignored in discussing the mass-loss rate. Ignoring the

Figure 9. Luminosities in Equation (63) as functions of rotation rate Ω*.
Shown are the wind kinetic energy flux at the outer boundary LK,out (red dashed
line), rotational energy flux at the outer boundary LA,out

rot (blue dashed line),
gravitational energy flux at the coronal base LG,cor (orange solid line),
downward conductive energy flux at the coronal base LC,cor (green solid line),
Alfvén-wave energy flux at the coronal base LA,cor

wav (cyan solid line), and
rotational energy flux at the coronal base LA,cor

rot (blue solid line), respectively.

Figure 10. Energy-flux dependence on the rotation rate Ω* of the open-flux
filling factor fixed to = -f 10open 3

*
. Definitions of the lines and markers are the

same as in Figure 9.

12

The Astrophysical Journal, 896:123 (18pp), 2020 June 20 Shoda et al.



conductive flux, which is always minor LC,cor, the energy
conservation is reduced to

( ) ( ) + = + »L L M v v L
1

2
. 67r gK,out G,cor w ,out

2
,

2
A,cor
wav

We have confirmed by numerical simulations (not shown here)
that, in the absence of magneto-centrifugal force, vr,out is
always approximated by vg, . With »v vr g,out , , Equation (66)
is derived from Equation (67). Now, it turns out that the
saturation of mass-loss rate comes from the saturation of LA,cor

wav

(energy flux of Alfvén waves transmitted into the corona),
which is further discussed in the following section.

4.3. Alfvén-wave Energetics in the Chromosphere

We further investigate the rotation dependence of Alfvén-wave
energy flux (or luminosity) at the coronal base LA,cor

wav . The solid
lines in Figure 11 show the Ω* dependences of the wave
luminosities measured at the photosphere (LA,pho

wav , red line), and
the coronal base (LA,cor

wav , blue line). The dashed lines represent the
rotational luminosities: LA,pho

rot (red) and LA,cor
rot (blue). The

photospheric value is measured 20km above the stellar surface,
eliminating the direct influence of the lower boundary condition.
We can tell several interesting features from Figure 11:

1. Near the stellar surface, the wave energy flux is always
larger than the rotation energy flux in the parameter range
of our simulations. Our fastest rotating case has a surface
rotation velocity of ~ -25 km s 1, which is much larger
than the wave amplitude of ~ -1.2 km s 1. However,
because the azimuthal magnetic field Bf is small in the
lower atmosphere (as the Weber–Davis solution predicts),
the energy flux of magneto-rotation remains smaller than
the wave energy flux.

2. LA,cor
wav is much smaller than LA,pho

wav . This means that a large
fraction of Alfvén waves dissipates between the photo-
sphere and coronal base. Interestingly, the “energy
transmission rate,” L LA,cor

wav
A,pho
wav , decreases with Ω*. This

is why LA,cor
wav saturates with respect to Ω* at rapid rotation

in spite of the power-law dependence of LA,pho
wav on Ω*.

3. In contrast to the wave luminosity, the rotational
luminosity hardly decreases between the photosphere
and coronal base. The rotational luminosity steeply
increases with Ω*, which is consistent with semi-
analytical predictions ( µ WLA,cor

rot 3.83
* ; see Appendix B).

As a result, at the coronal base, the rotational energy flux
overtakes the wave energy flux in the fast-rotator regime,
typically from P 4 dayrot . This transition is responsible
for the wind regime change discussed in Section 4.2

To summarize, the stellar wind experiences a regime change at
»P 4 dayrot . This results from a significant decrease in coronal

Alfvén-wave energy flux, which is overtaken by the rotational
energy flux at »P 4 dayrot . Note that the Alfvén-wave energy flux
at the stellar surface is always larger than the rotation energy flux.
To determine the reason for the saturation of Alfvén-wave

luminosity, we analyze the Alfvén-wave energy loss in the
chromosphere. The conservation of Alfvén-wave energy flux
(luminosity) is given as follows:

( )

⎛
⎝⎜

⎞
⎠⎟r

p p
e

¶
¶

+ +
¶
¶

= - -q
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r f r
L Q

1

2 8

1

4
,

68
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2

2

2 open A
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where Qturb is the turbulent dissipation and e q«r represents the
energy conversion between Alfvén wave and longitudinal
motion:
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8 4
ln . 70r r r
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2

2
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In this paper, we shall interpret e q«r as mode conversion, since
the energy conversion between transverse and longitudinal
waves is described by this term. Note that the mode conversion
works efficiently in the chromosphere (Rosenthal et al. 2002;
Bogdan et al. 2003), both transforming longitudinal waves to
transverse waves (Schunker & Cally 2006; Shoda &
Yokoyama 2018) and transverse waves to longitudinal waves
(Hollweg et al. 1982; Kudoh & Shibata 1999; Matsumoto &
Shibata 2010). We can define the loss fractions as

( )D = D + D q«L L L , 71rA,tot
wav

A,turb A,

( )ò pD =L dr r f Q4 , 72
R

r

A,turb
2 open

turb

*

( )ò p eD =q q« «L dr r f4 . 73r
R

r

rA,
2 open

*

In Figure 12, we show the Alfvén-wave energy loss in the
chromosphere. In panel (a), we show LA

wav as a function of height
for different rotation periods. In panels (b)–(d), the relative
fractions of energy loss DL LA

wav
A,pho
wav are plotted for each case

(panel (b): =P 24 dayrot , panel (c): =P 12 dayrot , and panel (d):
=P 6 dayrot ), where total loss DL LA,tot

wav
A,pho
wav , turbulence loss

Figure 11. Ω* dependences of Poynting-flux luminosities. Alfvén-wave
luminosities are shown by the solid lines for photospheric (red) and coronal-
base (blue) values. Rotational luminosities are shown by the dashed lines for
photospheric (red) and coronal-base (blue) values. A semi-analytical relation

µ WLA,cor
rot 3.83

*
is indicated by the dashed line.
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DL LA,turb A,pho
wav , and mode-conversion loss D q«L LrA, A,pho

wav are
shown by the black solid, red dashed, and blue dashed–dotted
lines, respectively. The black lines in panels (b)–(d) show that
more than 90% of the Alfvén-wave energy flux is lost in the
chromosphere. Moreover, the energy-loss fraction is larger for the
faster-rotating case. Figure 13 shows the trend of the wave
energy-loss fraction measured in the corona ( - =r R 10 Mm),
in which a larger loss fraction is clearly seen for the faster
rotator. The aforementioned saturation of coronal Alfvén-wave
energy flux LA,cor

wav is caused by this enhanced dissipation in fast
rotators.

Comparing the red lines in panels (b)–(d), the increased energy
loss is attributed to the increased turbulent loss. Given that the
magnetic filling factor increases with rotation rate, the increased
turbulent loss is a natural consequence for the following two
reasons:

1. When the filling factor is large, magnetic-flux expansion
is suppressed because one flux tube merges with the
adjacent one after small expansion. The vortex size of
turbulence (correlation length) is expected to expand with
the flux tube, and thus remains small for fast rotators that
are expected to have large open-flux filling factors.
Therefore, Alfvén waves dissipate on smaller timescales,
or equivalently, dissipate more quickly.

Figure 12. Alfvén-wave energy loss in the chromosphere. Panel (a): Alfvén-wave luminosities vs. height for different rotation rates: =P 24 dayrot (red solid line),
=P 12 dayrot (green dashed–dotted line), and =P 6 dayrot (blue dashed line). Panel (b): normalized energy-loss fraction DL LA

wav
A,pho
wav (black solid line) for

=P 24 dayrot . Energy loss through turbulence and mode conversion are also shown with a red dashed line and a blue dashed–dotted line, respectively. Panels (c) and
(d): same as panel (b) now for =P 12 dayrot and =P 6 dayrot , respectively.

Figure 13. Fraction of Alfvén-wave energy loss in the chromosphere
(DL LA

wave
A,pho
wav measured at - =r R 10 Mm* ) as a function of rotation rate.
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2. The coronal magnetic field is stronger for cases with
faster rotation. As a result, Alfvén-wave reflection at the
transition region is enhanced. Therefore, Alfvén-wave
turbulence (triggered by the Alfvén-wave reflection),
should be promoted.

Although turbulent dissipation plays an important role in our
model, we expect that our conclusion is not strongly affected
by the amount of turbulent dissipation. Let us consider an
extreme case with no turbulent dissipation. Alfvén waves
propagate through the chromosphere with less dissipation and
are strongly reflected at the transition region (Cranmer & van
Ballegooijen 2005; Verdini & Velli 2007; Réville et al. 2018).
Reflected Alfvén waves propagate backward without turbulent
dissipation and reach the stellar surface. Since the net upward
Alfvén-wave energy flux is reduced if more downward Alfvén
waves are present, reduced turbulent dissipation leads to
reduced LA,pho

wav , which can also cause the saturation of the mass-
loss rate. A detailed parameter survey on the turbulent
correlation length should be done to test the above hypothesis.

We note that, because radiation dominates the energetics of
the chromosphere, any dissipated energy is quickly radiated
away. In this sense, our model is consistent with that of Suzuki
et al. (2013), with the saturation of the mass-loss rate being
compensated by an enhanced radiative loss.

To summarize our analysis, we have shown that a larger
fraction of Alfvén-wave energy is dissipated in the chromo-
sphere for faster-rotating cases. As a result, even though the
photospheric Alfvén-wave luminosity follows a power-law
relation in Ω*, the coronal-base Alfvén-wave luminosity
saturates with increasing rotation, thus producing a saturation
in the mass-loss rate.

5. Discussion

5.1. Comparison with Cranmer & Saar (2011)

A standard theoretical model of the stellar-wind mass-loss
rate, for low-mass stars, is given by Cranmer & Saar (2011).
Although both our model and that of Cranmer & Saar (2011)
are based on Alfvén-wave heating and are calibrated by solar
wind observations, the rotation dependence of the mass-loss
rate is different. For example, when =P 2 dayrot , the Cranmer
& Saar (2011) model yields a mass-loss rate that is 100 times
larger than that predicted by our model. There are three factors
that explain this difference.

1. Cranmer & Saar (2011) assumed a steeper dependence of
f open

*
on Ro with the exponent ranging between −2.5 and

−3.4 in the unsaturated regime, while our model assumes
much weaker dependence: µ -f Roopen 1.2

*
. For example,

when  =Ro Ro 0.1, =f 0.36open

*
in Cranmer & Saar

(2011), while =f 0.016open

*
in this work. Given that the

mass-loss rate approximately scales as ( )µ f open 5 7

*
, this

discrepancy yields a factor of 9.3 difference between
Cranmer & Saar (2011) and our model. Since many
observational aspects of stellar magnetism/winds are
unresolved, theoretical mass-loss rates remains uncertain
by around a factor of 10.

2. Cranmer & Saar (2011) employed a simplified model of
Alfvén-wave propagation. Although their model also
considers the turbulent dissipation of Alfvén waves, the
difference between their wave equations and those used

in this work may lead to discrepancies in the resulting
mass-loss rates. This hypothesis should be tested in the
future by directly comparing the coronal wave energy
between our model and that of Cranmer & Saar (2011).

3. Cranmer & Saar (2011) assumed that the wind speed is
constant regardless of the open-flux filling factor. In
reality, even without rotational acceleration, the wind
speed tends to be higher for larger open-flux filling
factors, which is explained as follows. Faster rotators
exhibit larger coronal Alfvén speed that allows for more
heat to be deposited beyond the sonic point. Given that
the kinetic energy flux of the wind ( rµ vr

3) is constant, the
mass-loss rate ( rµ vr) becomes smaller as the wind
velocity vr increases in response to enhanced heating in
the supersonic region.

5.2. Magnetic Transient Events

Our model assumes that the global magnetic structure is
invariant on timescales of the stellar-wind acceleration.
However, actual stellar magnetic fields can evolve in compar-
able or even shorter timescales than the wind acceleration.
Specifically, the large-scale shuffling of magnetic field lines by
super-granular motions is observed to cause magnetic recon-
nection and open closed magnetic features (Fisk et al. 1999;
Antiochos et al. 2011; Moore et al. 2011; Higginson et al.
2017). Although the reconnection/loop-opening process is
unlikely to be able to drive the majority of the solar wind (see,
e.g., Cranmer & van Ballegooijen 2010; Lionello et al. 2016), it
may play an important role for more active stars. Additionally,
the reconnection/loop-opening process can work indirectly.
For example, if the open magnetic field (carrying a quasi-
steady wind) is rapidly connecting to closed loops with a high
temperature, then the wind properties are determined by the
closed loop temperature (O’Fionnagáin & Vidotto 2018). Such
reconnection can also feed magnetohydrodynamic waves in
addition to the surface granular motion (Cranmer 2018).
Eruptive processes such as CMEs can also be important in

active stars (Aarnio et al. 2012; Drake et al. 2013). According
to Cranmer (2017), CMEs could be a dominant source of mass
loss for moderately faster rotators than the Sun. For much
younger, much faster rotators, the centrifugally supported
“slingshot prominences” are also expected to be present
(Collier Cameron & Robinson 1989a, 1989b), and are likely
to play a significant role in mass loss and magnetic braking.
Recently Jardine & Collier Cameron (2019) have extended the
FX– Mw relation of Wood et al. (2014) to more active stars,
based on mass-loss rates estimated from slingshot prominences.
They show a significant mass loss through prominence ejection
for such rapid rotators. The role of these eruptive processes
should be taken into account in future works.

5.3. Comparison with Observations of Spin Evolution

In spite of successfully reproducing the stellar spin-down
W µ -t 0.55
* , there exist several discrepancies between our

model and stellar observations of spin evolution. As already
mentioned in Section 3.2, the torque is smaller than the
empirical value from stellar observation (Matt et al. 2015) but
is consistent with solar wind observations (Finley et al. 2018).
Since our model is calibrated by the solar wind, the deviation of
our model from that of Matt et al. (2015) might be a result of
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the solar magnetic field having an unusual character. However,
reconstructions of the solar open magnetic flux from the last
9000 yr also recover the same solar wind torque as our model
(see Finley et al. 2019).

Indeed, recent asteroseismic observations indicate that the
solar dynamo could be in transition (Metcalfe et al. 2016). The
deviation between our model and that of Matt et al. (2015)
would be explained if the dynamo transition works to reduce
the amount of open magnetic flux, by a factor of 2.4 from the
canonical value. This hypothesis is consistent with the
observed breakdown of gyrochronology (van Saders et al.
2016), and some spin-down models already take this effect into
account (e.g., Garraffo et al. 2018). However, we must note
that, from the perspective of dynamo simulations, large-scale
field diminishing at >Ro 1 is not supported (Strugarek et al.
2018; Warnecke 2018; Guerrero et al. 2019). Thus, the small
solar torque could be attributed to another mechanism.

5.4. Implications for Stars in the Saturated Regime

We have assumed that the filling factor of the open-flux regions
monotonically increases with rotation rate, Equation (22), which is
derived from stars in the slow-rotator regime of See et al. (2019).
However, this power-law relation may be modified for fast
rotators; the filling factor of the open regions may saturate at rapid
rotation rates because a large fraction of the surface is expected to
be covered by closed loops (these closed loops are thought to
provide the observed coronal X-ray flux). This modification
would affect the magnetic field strength in the chromosphere and
the low corona, and changes the vertical profile of the Alfvén
velocity there. A different profile of vA may enhance the
transmitted fraction of Alfvénic waves through the transition
region (Suzuki et al. 2013), which could increase the mass-loss
rate in the fast-rotator regime.

In this work, we focused on the unsaturated regime of
magnetic activity. However, many young low-mass stars
(especially M dwarfs) lie in the saturated activity regime
(e.g., Wright & Drake 2016; See et al. 2019). Given that the
total open flux might be constant for stars in the saturated
regime, our simulation results yield several implications for the
winds of these stars. We expect that the mass-loss rate should
be constant in the saturated regime. As shown in Figure 10, as
long as the total open flux is fixed, increasing the rotation rate
does not yield larger mass-loss rates. Instead, the increased
rotational energy is used purely for wind acceleration. When
the wind velocity is larger, vr,A (wind velocity at Alfvén point)
should also be larger. According to the analytical expression of
the torque in Equation (45), a larger vr,A yields a smaller
t Ww *. Thus, in the saturated regime, the torque could have a
weaker-than-linear dependence on Ω*. In the future, this
prediction could be directly tested by numerical simulations of
stars in the saturated regime.
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Appendix A
Derivation of Basic Equations

Except the nonideal terms (gravity, radiative loss, thermal
conduction, and turbulent dissipation), our basic equations
Equations (3)–(10) are derived from the typical ideal MHD
equations as follows. Given the metrics of

( )= = =q fh h rf h r1, , , A1r
open

and considering a one-dimensional system ( q f¶ ¶ = ¶ ¶ = 0),
the nabla operators are expressed as follows:

( )y
y

 =
¶
¶

e
r

, A2ar

· ( ) ( ) =
¶
¶

A
r f r

r fA
1

, A2br2
2

( ) ( ) ( ) ´ = -
¶
¶

+
¶
¶

q f f qA e e
r r

rA
rf r

rfA
1 1

, A2c

where, for simplicity, we denote f open as f. Using these
expressions, each basic equation is derived in a straightforward
manner. For example, the inertial and Lorentz forces in the
equation of motion are written explicitly as
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Similarly, the rotation of the electromotive force is

( ) [ ( )]

[ ( )] ( )

 ´ ´ = -
¶
¶

-

-
¶
¶

-

q q q

f f f

v B e

e

r r
r v B v B

rf r
rf v B v B

1

1
. A5

r r

r r

After these calculations, one can obtain the basic equations
after rewriting in a conservation form.
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Appendix B
An Analytical Formulation of Coronal Rotational

Luminosity

The coronal rotational luminosity LA,cor
rot is obtained analy-

tically based on Weber–Davis solution. We begin with the
analytical expression of (time-averaged) vf and Bf:

( ) ( ) ( )= W
W -
-

= - Wf f fv r
M L r

M
B

B

v
v r

1

1
, . B1r

r

A
2 2

A
2*
*

*

Near the coronal base where the wind velocity is negligibly
small, we can approximate vf and Bf to the first order of MA

2 as

( )
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To the first order of MA
2 , the rotational luminosity at the coronal

base is given as

·
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p
p

t= - » W = Wf fL r f
B

v B r M4
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.
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r
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rot 2 open

cor
A
2
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It is interesting to see that the rotational luminosity is
approximated by t Ww *. Using Equation (44), the above
formulation is further simplified as

( )
p

»
F

W µ WL
v16

, B4
r

A,cor
rot open

2

2
,A

2 3.83
* *

where we have used F µ Wopen
1.2
* and µ Wvr,A

0.57
* .
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