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ABSTRACT

Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and
to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic
region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and
the planet. We model the magnetic interactions occurring in close-in star–planet systems with three-dimensional,
global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar
wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. The
Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star–planet
systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated
with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 1019 W. Close-in
planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The
topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques.
As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the
interaction varies.

Key words: magnetohydrodynamics (MHD) – planet–star interactions – planets and satellites: dynamical evolution
and stability – stars: winds, outflows

1. INTRODUCTION

Techniques for the detection of exoplanets favor so far the
discovery of giant, close-in planets that can significantly
perturb radial velocity signals, or lead to deep, well defined
transits. Furthermore, 34% of the known exoplanets4 are in
orbit closer than R20 . Such planets are expected to interact
strongly with their hosts (see, e.g., Cuntz et al. 2000) in a
potentially observable way. The interactions originate from
tides, magnetism, and radiative processes. The proximity of
close-in exoplanets amplifies these effects, which can theore-
tically lead to exchanges of energy and angular momentum
between the star and the planet and may have observable
signatures.

As a matter of fact, several intriguing observations are
associated with close-in exoplanets. Shkolnik et al. (2008, and
references therein) reported chromospheric emissions for five
different star–planet pairs that correlate with the planetary
orbital period. These correlated emissions were observed to be
subject to an on/off mechanism, possibly originating from the
variability of the stellar magnetic field over timescales of years,
or over the orbital phase of the planet. The particular case of
HD 189733 was recently revisited by Pillitteri et al. (2015),
who interpreted the excess emission as resulting from an infall
of planetary material toward the star. The surprising lack of
X-ray emissions from WASP-18 is also thought to result from
some star–planet interaction (Pillitteri et al. 2014), which is yet
to be understood. Nevertheless, it is today clear that the
enhancement (or lack thereof) of chromospheric or coronal
X-ray emissions due to a close-in planet is situational and
highly variable: it does not statistically induce an observational
trend (see Miller et al. 2015, and references therein). Radio and
UV emissions from star–planet magnetic interactions (SPMI)

are also intensively researched today (Grießmeier et al. 2007;
Fares et al. 2010; Lecavelier des Etangs et al. 2013; Turner et
al. 2013), because any detection may provide constraints on the
hypothetical planetary magnetic fields (e.g., Zarka 2007;
Vidotto et al. 2015).
The statistical distribution of exoplanets also reveals

interesting features. First noted by Pont (2009), it appears that
hosts of close-in planets tend to rotate more rapidly than twin
stars hosting no close-in planets. This was recently confirmed
by Maxted et al. (2015), although the authors question the
original explanation of Pont (2009) based on tidal interactions
because they do not seem to find a correlation between the
anomalous gyrochronological age and the strength of the
expected tidal forces. Furthermore, McQuillan et al. (2013) and
Lanza & Shkolnik (2014) showed a clear dearth of close-in
exoplanets around fast rotators with Kepler. Both effects could
be explained by exchanges of angular momentum between
stars and close-in planets, although their detailed mechanism is
still debated today.
The aforementioned observations are generally interpreted in

terms of tidal, radiative, or magnetic star–planet interactions.
Tides are known to lead to spin–orbit synchronization in star–
planet systems (for a review, see Mathis et al. 2013). The
angular momentum transport resulting from star–planet tides
can also lead to planet migration (see, e.g., Bolmont et al. 2012;
Zhang & Penev 2014; Damiani & Lanza 2015) as well as spin-
up the host star for close-in planets (Barker & Ogilvie 2011;
Poppenhaeger & Wolk 2014; Ferraz-Mello et al. 2015). Planet–
disk tidal interactions provide as well various migration
mechanisms (for a review, see Baruteau et al. 2014) in the
early stages of stellar systems. The efficiency of tidal
interactions depends strongly on the internal structure of both
the star and the planet, and its modeling is still a subject of
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intense research today (Auclair-Desrotour et al. 2014; Guenel
et al. 2014).

Close-in planets are also subject to intense radiation from
their host that can lead to planetary outflows (see, e.g., Yelle et
al. 2008; Owen & Adams 2014; Trammell et al. 2014) and may
in some cases allow some planetary material to impact the
stellar chromosphere. In the case of close-in unmagnetized
planets, intense extreme-UV radiation was shown to favor the
penetration of the stellar wind and may be a source of enhanced
atmospheric escape (Cohen et al. 2015). Matsakos et al. (2015)
classified the different types of planetary outflows, though
further investigation is still required to elucidate how such
flows could explain enhanced emissions or statistical trends in
the exoplanet population (see Pillitteri et al. 2015, for a possible
link between hot spots and radiation-induced planetary
outflows).

Magnetic interactions provide another promising mechanism
for the transfer of energy and angular momentum between a
star and a planet. A close-in planet generally orbits inside the
sub-alfvénic region of the stellar wind, leading to particularly
efficient transfers (see, e.g., Cohen et al. 2010; Strugarek et
al. 2014b). In a pioneering work Ip et al. (2004) modeled such
interaction as a plausible source of additional and localized
coronal heating of close-in planet-hosting stars. In this
scenario, in contrast to radiatively induced planetary outflows,
the energy is carried away from the planet by alfvénic
perturbations propagating in the stellar wind down to the
stellar chromosphere. The energetic transfers occurring due to
magnetic interactions in a star–planet system can be modeled
with the concept of Alfvén wings (Neubauer 1998), inspired by
similar planet–satellite magnetic interactions occurring in the
solar system (Goldreich & Lynden-Bell 1969; Neubauer 1980).
However, in star–planet systems, the detailed structure of the
wind determines how the Alfvén wings develop. The Poynting
flux in Alfvén wings was quantified by Saur et al. (2013) for
the exoplanets known at that time, using simple 1D stellar wind
models. This could provide a source for the intermittent
enhanced emissions sometimes observed in close-in exo-
systems. The magnetic torques originating from SPMI were
proposed as well to be a source of planet migration (Laine et
al. 2008; Lovelace et al. 2008; Vidotto et al. 2010; Laine &
Lin 2011; Strugarek et al. 2014b) and stellar spin-up (Cohen et
al. 2010; Lanza 2010; Strugarek et al. 2014b). On the contrary,
for fast rotating stars those magnetic torques can spin-down the
star, albeit not efficiently enough to solve the so-called angular
momentum problem for young stars (Bouvier & Cébron 2015).
As in the case of tidal interactions, it is important to note that
SPMI generally depend on the planet’s internal composition,
and in particular on whether or not a dynamo process is able to
sustain an intrinsic magnetic field in its interior (Strugarek et
al. 2014b).

This paper focuses on the effects of magnetic topology in the
development of magnetic interactions between a star and a
close-in, magnetized planet. We investigate whether magnetic
interactions can be strong enough to explain enhanced
emissions or a statistical dearth of close-in planets around fast
rotating stars. We study how Alfvén wings develop in self-
consistent, global three-dimensional numerical models of
stellar winds in which an orbiting, magnetized planet is added.
We explore three extreme magnetic topologies of aligned, anti-
aligned, and perpendicular configurations. We systematically
characterize the energy and angular momentum exchanges that

occur in each case and demonstrate the crucial influence of the
magnetic topology. In Section 2 we describe the modeling
approach we chose for the stellar wind and the magnetized
planet. A detailed study of the Alfvén wings that self-
consistently develop in our numerical model is given in
Section 3. The magnetic torques leading to planet migration are
characterized in Section 4 and conclusions are given in
Section 5.

2. STELLAR WIND AND PLANET MODELS

We use the PLUTO code (Mignone et al. 2007) to model
star–planet magnetic interactions. We detail here the system of
equations we solve, our modeling choices for the stellar wind
and the planet, and the numerical methods we use.

2.1. Magnetohydrodynamic Equations

The PLUTO code solves the following set of compressible,
ideal magnetohydrodynamic (MHD) equations:

v 0 1t · ( ) ( )r r¶ + =

v v v B B aP 4 , 2t · ( ) ( )  r r p r¶ + + + ´ ´ =

v vP P c 0, 3t s
2· · ( ) r¶ + + =

B v B 0, 4t ( ) ( )¶ - ´ ´ =
B 0, 5· ( ) =

where ρ is the plasma density, v its velocity, P the gas pressure,
B the magnetic field, a is composed of the gravity, Coriolis,
and centrifugal forces (the MHD equations are written in a
rotating reference frame that is specified in Section 2.3), and
c Ps g r= is the sound speed (γ is the adiabatic exponent,
taken to be the equal to the ratio of specific heats). We use an
ideal-gas equation of state

P 1 , 6( ) ( )re g= -

where ε is the internal energy per unit mass.

2.2. Stellar Wind Models

The base of our MHD modeling approach for stellar wind
was originally developed by Washimi & Shibata (1993), and
extended later on by Keppens & Goedbloed (1999), Matt &
Balick (2004), Matt & Pudritz (2008), Matt et al. (2012),
Strugarek et al. (2014b), and Réville et al. (2015a). In this work
we further develop this approach by considering three-
dimensional stellar winds. We briefly explain here our
modeling methodology and refer the interested reader to the
aforementioned works for further details.
We model stellar winds using the MHD approximation to

describe the stellar corona plasma. In order to simplify the
model, we do not describe the heating mechanism of the corona
itself (see Suzuki & Inutsuka 2006), and instead consider our
stellar boundary condition to represent the base of the corona.
We prescribe there a thermal pressure gradient that drives an
outward accelerating flow, the stellar wind. To mimic the
additional complex heating that occurs in the lower corona and
participates in the physical acceleration of stellar winds, we
choose an effective adiabatic exponent γ close to isothermal (in
this work 1.05g = ). This choice is made to ensure that our
model, when applied to the Sun, achieves velocities compatible
with the slow component of the solar wind observations at
1AU (Washimi & Shibata 1993; Matt & Balick 2004).
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The stellar wind is then determined by the interplay between
the thermally accelerated flow, the large-scale magnetic
structures, the rotation of the star, and the coronal density
(see, e.g., Réville et al. 2015a, 2015b). This latter parameter
can be conveniently used as an adimensionalization parameter
for the MHD equations. The other parameters are described in
terms of characteristic velocities normalized to the escape
velocity v GM R2 .esc  = The thermal driving of the wind is
considered to be spherically symmetric and set by the sound
speed c P .S g r= The rotation of the star is supposed to be
solid and specified by the rotation speed v R .rot  = W Finally,
the stellar magnetic field is prescribed by a given idealized
topology (dipole or quadrupole) and an equatorial Alfvén speed
v B 4 ,A  pr= where B is the stellar magnetic field on the
equatorial plane. We consider in this work that the magnetic
pole is aligned with the rotation axis.

We initialize our simulation domain with a spherically
symmetric Parker wind (Parker 1958) to which we add a
magnetic field of a given topology and a given normalized
Alfvén speed v v .A esc The star is modeled as an internal
spherical boundary condition centered at the middle of the
computational domain. The boundary condition consists of
three spherical layers under the stellar “surface” in which the
gradient of the Parker wind pressure, the rotation rate of the
star, and its magnetic field are imposed (see Strugarek et
al. 2014a, 2014b, for full details on these boundary conditions).

We study two different stellar winds using dipolar and
quadrupolar magnetic fields to explore the effects of the
magnetic topology on SPMI. Both winds are driven by a
normalized sound speed c v 0.222s esc = corresponding to a
coronal temperature of 106K for a solar-like star. They both
rotate slowly with v v 3.03 10 .rot esc

3= ´ - The dipolar case is
characterized by a normalized Alfvén speed of v v 1,A esc = and
in the quadrupolar case v v 3.A esc = This ensures that the total
pressure at the planet’s orbit (dominated by the magnetic
pressure, see Section 2.3) is equivalent in both winds.

Because the coronal base density r is used to adimensio-
nalize the MHD equations, each stellar wind simulation can
represent the wind of different stars. We give in Table 1 the
magnetic field strength at the base of our models (along with
the wind mass and angular momentum loss rates, and the
generalized Alfvén radius R J MA ˙ ˙

= W ) for a coronal
base density chosen to achieve a solar-like mass loss rate
( 3.2 10 15
r = ´ - g cm−3 in the dipolar case and

2.8 10 16´ - g cm−3 in the quadrupolar case). In the remainder
of this paper, the dimensional quantities are given using these
base coronal densities unless stated otherwise.

2.3. Planet Models

The planet is modeled as a second internal boundary
condition inside the computational domain. We consider here
planets in circular orbits with an orbital plane perpendicular to

the stellar rotation axis. The MHD equations are solved in a
frame rotating at the keplerian orbital rate of the planet

GM RK orb
3

W = (in the limit of a small planetary mass),
where Rorb is the orbital radius. The boundary cells composing
the star and the planet are fixed in the rotating frame,
simplifying the numerical setup significantly.
In this study we set the planetary mass and radius to

M M0.01P = and R R0.1P = as in Strugarek et al. (2014b).
We also hold fix the orbital radius R R5 .orb = We consider
planets with an intrinsic dipolar magnetic field oriented along
the rotation axis of the host star and simulate three topological
situations. Using the dipolar wind solution, we consider the
cases of a planet with a dipolar field aligned with the local
magnetic field (hereafter the “aligned” case) and of a planet
with an anti-aligned dipolar field (hereafter “anti-aligned”).5

With the quadrupolar wind solution we simulate a planet with a
dipolar field parallel to the stellar rotation axis, and hence
perpendicular to the local magnetic field (hereafter the
“perpendicular” case). We show the three magnetic configura-
tions in Figure 1, where the field lines of the stellar wind are
shown in black and the planetary field lines in red. In the
dipolar wind cases the planetary dipole strength corresponds to
an equatorial field at the planetary surface BP= 0.9 G (roughly
five times less than the jovian magnetic field), and in the
quadrupolar wind cases BP= 0.25 G. Such planetary fields
ensure extended planetary magnetospheres while not constrain-
ing the numerical time steps too much.
The planet is initialized at the beginning of the simulations

along with the stellar wind (see Section 2.2). We choose to
neglect any kind of atmospheric escape to focus our study
solely on the magnetic interactions (see Matsakos et al. 2015,
for an overview of the impact of atmospheric escape and
planetary “winds” in the context of SPMI). The density of the
planetary boundary is chosen to be ten times the local wind
density, and the pressure to be 90% of the local thermal
pressure of the wind. This ensures that the planet is a cold,
dense obstacle in the stellar wind from which no “wind” is
triggered. Setting a higher density and/or a lower pressure
changes the structure of the planetary magnetosphere very
marginally close to the planet boundary, and does not affect our
results regarding the interaction between the planetary
magnetosphere, the stellar wind, and its host star. The velocity
inside the planet and its magnetosphere is initially set to zero in
the rotating frame, effectively modeling the orbital motion of
the planet and its magnetosphere. We hence consider here only
planets that are “tidally locked,” which is a reasonable
assumption for such close-in planets. The “tidal-locking”
timescale for close-in Jupiter-like planets is estimated to be
of the order of 0.1–1 Myr (see, e.g., Leconte et al. 2010), which
is shorter than the typical migration timescales associated with
magnetic torques that we derive in Section 4. We hence
consider in this work that the planet is already tidally locked on
a circular orbit to focus on the magnetic torques themselves.
The velocity, density, and pressure are held fixed during the
simulation inside the planet boundary and left free to evolve in
the magnetosphere. The magnetic field is maintained as the

Table 1
Properties of Stellar Winds

Dipolar Wind Quadrupolar Wind

B (equator) (G) 12.4 11
Ṁ (10 M yr14 1- -

 ) 2.04 2.11
J̇ (10 M R yr11 2 2- -

  ) 56.0 2.55

RAá ñ R( ) 18.0 3.78

5 Note that in Strugarek et al. (2014b), the “aligned” and “anti-aligned”
denominations had the opposite meaning: they referred to the relative
orientation of the planetary and stellar dipoles. In this work we prefer not to
use this convention since, for more complex topologies, a denomination based
on the local orientation of the magnetic fields in the vicinity of the planet is
more intuitive.
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initial planetary dipole in the inner 70% of the planet and left
free to evolve elsewhere. The planet boundary condition hence
possesses an outer layer in which only the magnetic field is
allowed to change, crudely mimicking a thick ionosphere. After
its initialization, the planetary magnetosphere changes dyna-
mically until a steady state is reached, in which the pressure
balance determines the shape of the magnetosphere. In the case

we consider here, the total pressure in the planet’s vicinity is
dominated by the magnetic pressure, which ensures that the
magnetic interaction develops in the sub-alfvénic regime.

2.4. Numerics

We use the modular PLUTO code (Mignone et al. 2007) to
solve the ideal MHD Equations (1)–(6). The equations are
solved with a second-order, linear spatial interpolation coupled
to the standard HLL Riemann solver and a minmod flux limiter.
The variables are updated in time with a second-order Runge–
Kutta method. The solenoidality of the magnetic field is
ensured to machine precision with a constrained transport
method (Evans & Hawley 1988), in which the face-centered
electromotive forces are arithmetically averaged.
We solve the MHD equations in cartesian geometry with two

internal boundary conditions inside the domain, modeling the
star (Section 2.2) and the planet (Section 2.3). We recall that
the equations are solved in a rotating frame with the rotation
rate ,KW ensuring that the location of the planet can be held
fixed in the simulation grid. At the domain external boundaries
we impose simple outflow conditions (zero gradient on all
quantities). Because we model stellar winds, the flow is
supersonic and super-alfvénic when it reaches the outer
boundaries, hence they have little to no impact on the general
solution, which is driven by the internal stellar boundary
condition.
The simulation are run on a 490×355×355 cartesian

grid. The cube of size R3  enclosing the central star is
discretized over 97 uniform cells in each direction, and the
cube of size R enclosing the planet over 161 uniform cells.
The remainder of the simulation domain is filled with stretched
grids in the three directions toward the domain’s lim-
its R R20 , 20 .3[ ] -
We stress that we use an ideal set of MHD Equations

(Section 2.1), which implies that the only dissipative processes
occurring in our simulations are controlled by the numerical
scheme and the resolution we choose. This limitation is a
reasonable trade-off between numerical simplicity and physical
accuracy of our models. Indeed, in all the cases we consider in
this work the star–planet system quickly reaches a steady state
because the planet is orbiting in a purely axisymmetric wind
(see Section 2.2). As a result, the detailed reconnection process
between, e.g., the stellar wind and the planetary magnetosphere
influences the final steady state only marginally. This is
confirmed with additional simulations we ran with half-
resolution in the cube of size R around the planet, which
encloses the main reconnection sites. In these simulations the
energy and angular momentum transfers (see Sections 3 and 4)
are decreased by less than 15%. Hence, higher resolution, more
accurate simulations would lead to slightly stronger magnetic
interaction, but not qualitatively change the results presented in
this work, as expected. Nevertheless, because we chose an ideal
MHD approach, our model is not suited to tackling the
dynamical response of the interaction to perturbations or non-
axisymmetric structures in the stellar wind. Hence, we only
consider the case of axisymmetric stellar winds in this work.
Thanks to PLUTO’s modular capabilities, such dynamical
processes could be studied more accurately by taking into
account explicit ohmic, Hall, and eventually ambipolar
dissipation (these effects are not included in the public version
of PLUTO yet; for first implementations see Lesur et al. 2014;

Figure 1. Close-in views of the three magnetic configurations shown in this
work. The configurations are labelled by the orientation of the planetary field
(in red) with respect to the local stellar wind magnetic field (in black), i.e.,
aligned, anti-aligned, and perpendicular, from top to bottom.
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Nakhaei et al. 2014). These aspects are beyond the scope of the
present work and will be explored in future studies.

3. ALFVÉN WINGS

The concept of Alfvén wings goes back to the pioneering
work of Drell et al. (1965), in the context of satellites moving
perpendicularly to a uniform magnetic field. Such a satellite
excites alfvénic perturbations that propagate along the magnetic
field lines, effectively developing currents resembling air-
planes’ swept-back “wings”. We detail in this section
how Alfvén wings develop in close-in star–planet systems,
and how the magnetic topology affects their shape and
characteristics.

3.1. Structure of the Alfvén Wings

Alfvén wings develop in close-in star–planet systems due to
the differential motion between the orbiting planet and the
rotating stellar wind. The orbiting planet excites magnetohy-
drodynamic perturbations in the stellar wind that propagate
along the Alfvén characteristics (Drell et al. 1965; Neu-
bauer 1998; Saur et al. 2013):

c v v . 7A A ( )º 

These perturbations are a vector of electromagnetic energy
and angular momentum transport between the planet and its
environment, the latter being either the interplanetary medium
or the host star. The superposition of the travelling perturba-
tions forms what is referred to as an “Alfvén wing”
(Neubauer 1998). If the local Alfvén speed is sufficiently high
and the planet is located inside the Alfvén surface of the stellar
wind, some of the perturbations can be reflected at the stellar
surface and reach back to the orbiting planet. This extreme case
is often referred to as the unipolar inductor case, while the case
where no perturbations reach back to the planet is called the
pure Alfvén wing case. The star–planet system systematically
develops two Alfvén wings, along cA

- and c ,A
+ located in the

v B, w0( ) plane, where Bw is the stellar wind magnetic field and
v v vw0 k= - is the differential motion between the planet and
the wind (v eRk orb K= W j is the keplerian velocity).

We display in Figure 2 the global structure of the Alfvén
wings (right panels) with close-ups on the vicinity of the planet
(left panels) for each of three cases we consider. The parallel
currents

J
B
B

j , 8·
∣ ∣

( )∣∣ =

often referred to as Alfvén wing currents (due to the fact that
they delimit Aflvén wings, see, e.g., Preusse et al. 2006; Jia et
al. 2008), are shown by the red (positive) and blue (negative)
volume renderings. These volume renderings are extruded at
the vertical star–planet plane to make their internal structure
apparent. The magnetic field lines connected to the planet are
shown in gray, and the magnetic field lines connected to the
star are color-coded by the logarithm of the magnetic field
strength. The orbit of the planet is symbolized by the black
dashed circle, and the star and the planet are respectively
represented by the orange and blue spheres.

In the case of a dipolar stellar magnetic field (upper and
middle panels), the two Alfvén wings are connected to the star

at high latitude. Conversely, in the quadrupolar stellar wind
(lower panels), only one of the two Alfvén wings is connected
to the star on the magnetic equator. The footprint of the wings
is generally out of phase from the planetary orbital phase due to
the finite propagation time of the alfvénic disturbances from the
planet’s vicinity to the stellar surface (see Preusse et al. 2006;
Kopp et al. 2011). In all cases the alfvénic perturbations rapidly
travel the planet–star distance along the Alfvén wings in less
than 2 hr, which is less than 6% of the orbital time
t R v2 1.3orb orb Kp= ~ days. As a result, we observe a small
phase lag due to the fast propagation time and the small
inclination angle of the wings (see hereafter Equation (9) and
Table 2). The travel time is nevertheless always larger than the
typical advection time across the planetary diameter
t R v2 10s P K= ~ minutes, due to the fast orbital motion of
the close-in planet. Hence, these perturbations are likely to
never reach back to the orbiting planet and our simulations are
always in the regime of pure Alfvén wings. The upper right and
middle right panels differ only by an inversion of the planetary
magnetic field. We immediately remark the importance of
topology: in the aligned case the Alfvén wings are broader and
the currents much stronger than in the anti-aligned case. As a
result the Alfvén wings are expected to carry much less energy
and angular momentum in the anti-aligned case.
In the upper panel of Figure 3 we quantify the parallel

currents near the planet. We show a side cut of the planet’s
vicinity (the star is located leftwards in those cuts), for which
the keplerian orbital motion of the planet is into the plane. The
black lines represent the magnetic field lines. The parallel
currents are again shown by the red (positive) and blue
(negative) colormap. They are normalized by t 4 ,s pr thus
effectively estimating the ratio between ts and the timescale
associated with the parallel currents. The most intense currents
are found at the boundary between the planetary magnetic field
lines and the wind: they originate from the planet–wind
interaction as a simple rotational discontinuity. They are
associated with very short timescales compared to the
advection timescale ts and trace the—comparatively—fast
reconnection rate between the planetary and wind magnetic
fields as the planet orbits in the wind. We stress here again that
the aligned and anti-aligned cases (two left panels) develop
very different interaction patterns. In the aligned case, the
strong currents are localized at the boundary between open and
closed magnetic field lines and at the Alfvén wing boundaries.
In the anti-aligned case, they are mainly localized at the
magnetsophere–wind boundary. The perpendicular case shows
an in-between situation where the strong currents delimit the
Alfvén wing boundaries and the magnetosphere–wind
interface.
The Alfvén wings plane v B, w0( ) is shown in the middle

panels. The black lines again represent the magnetic field lines,
where the thicker lines are the planetary magnetic field lines
(the planetary magnetic field lines pervade the Alfvén wings
plane in the perpendicular case, since the Alfvén wings plane
coincides with the orbital plane in this case). In all cases the
stellar wind magnetic field lines are bent downstream due to the
interaction with the planet. The difference between aligned and
anti-aligned configurations appears clearly: in the aligned case
the extended polar magnetic field lines of the planet allow for a
large area of magnetic interaction with the wind, whereas in the
anti-aligned case the planetary magnetopshere remains in a
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closed configuration. In both cases, though, Alfvén wings
develop, symbolized by the blue (cA

-) and red (cA
+) streamlines

of the Alfvén characteristics. The expected theoretical inclina-
tion angle AQ between the ambient magnetic field and the
Alfvén wings is shown by the magenta dashed lines and is

given in those cases by (Saur et al. 2013)

M

M M
sin

sin

1 2 cos
, 9A

th A

A
2

A

( )Q =
Q

+ - Q

Figure 2. Three-dimensional views of the aligned (top row), anti-aligned (middle row), and perpendicular (bottom row) configurations. The volume renderings
represent the postive (red) and negative (blue) parallel currents (Equation (8)) delimiting the Alfvén wings. The volume is extruded from the star–planet plane to make
its internal structure apparent. As a result the upstream–downstream asymmetry of the interaction is not visible; it will appear more clearly in Figure 3. The stellar wind
magnetic field lines are logarithmically color-coded with the magnetic field strength, and planetary magnetic field lines are shown in gray. The dashed black circle
traces the orbit of the planet. The blue sphere represents the planet boundary, and the orange sphere the stellar boundary.
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where the wind Aflvén Mach number is defined by M v vA 0 A=
and Θ is the angle between v0 and Bw (note that in Saur et
al. 2013 Θ is the departure from perpendicularity between v0

and Bw). It is worth noticing that the theoretical inclination
angle A

thQ is expected to be independent of the planetary
magnetic field strength, which is held fixed in our three cases.
The theoretical estimate A

thQ compares reasonably well with the
simulated inclination angle of the Alfvén wings AQ (averaged
over the two wings, the characteristics of the Alfvén wings are
summarized in Table 2). The background colormap shows the
aziumthal velocity in the frame where the planet is at rest,
normalized to the keplerian velocity vK. In all cases the
magnetosphere of the planet orbits with the planet (white
regions), as well as the portion of the Alfvén wings intersected
by the cutting plane.

Finally, in the lower panels we display the flow in the rest
frame of the planet (blue streamlines) and the plasma density
(logarithmic colormap, normalized to the planet’s density) on the
planetary orbital plane. In the first two panels the flow is
primarily in the orbital direction because the planet orbits inside
the dead-zone of the stellar corona, where the radial flow of the
stellar wind is negligible. The effective obstacle is larger on the
equatorial plane in the anti-aligned case due its larger magneto-
spheric extent (this is also apparent in the middle panels). The
effective obstacle is nevertheless three-dimensional and is
generally much bigger in the aligned case (see Section 4). No
strong wake is observed downstream since we chose to neglect
planetary outflows and the fact that the interaction is sub-
alfvénic. In the third panel, the stellar wind magnetic field lines
are open in the orbital plane. The flow is consequently composed
of the orbital motion and the accelerating radial wind. The
planetary obstacle is observed to be much larger than the
planetary magnetosphere. Indeed, the Alfvén wings extend
toward and away from the star on the orbital plane and act as a
supplementary obstacle to the flow (see also the vj colormaps in
the middle panels). Since we considered the idealized case of a
planet with no intrinsic mass loss, the high planet density does
not propagate to more than a few grid points inside the planet
magnetosphere. Varying the planet’s internal density only
marginally affects our results. The detailed density pattern in
the planetary magnetosphere is found to have very little impact
on the properties of the Alfvén wings.

3.2. Poynting Flux in Alfvén Wings

The magnetic interaction is a source of magnetic energy
transfer between the wind, the planet, and the host star. It
could be a source of observable emissions, and thus its

characterization is of major importance to the search for
exoplanets today. The Poynting flux in each Alfvén wing can
be evaluated as

E B c

c
S

c

4
, 10a

A

A

· ( )
p

=
´ 



where the electric field is E v Bc = - ´ in the ideal MHD
approximation. The Poynting flux depends on the frame in
which it is calculated; as a result we consider here the inertial
reference frame to mimic what a distant observer would see
when observing such a system. Because the central star rotates
slowly, this frame also conveniently corresponds to the stellar
reference frame, and the Poynting flux corresponds to the energy
that may be deposited on the star due to the SPMI. We display in
Figure 4 the Poynting flux on horizontal cutting planes along the
cA
- Alfvén wing for the aligned and anti-aligned cases, slightly
above the equatorial plane at z R0.3, 0.5, 0.7 .= For the
quadrupolar stellar wind (right panels) the Alfvén wings are
centered on the orbital plane, hence we display the Poynting flux
along the cA

+ Alfvén wing on vertical cutting planes in between
the planet and the star. In each panel, the blue circle and the
dashed line respectively represent the projection of the planet
and that of its orbital trajectory on the cutting plane.
Comparing the aligned and anti-aligned cases (left two

panels), we immediately observe the strong Poynting flux
concentrated inside the Alfvén wing in the aligned case, while
in the anti-aligned case the Poynting flux is extremely weak. In
all cases the flux is nevertheless positive, denoting a flux of
energy toward the star. In the aligned and perpendicular cases
the Alfvén wing is tear-shaped in the direction of the flow (gray
arrows), and the maximum Poynting flux is localized close to
the side of the wing facing the flow. In these two cases the
Alfvén wing clearly acts as an obstacle to the flow. Conversely,
in the anti-aligned case, the very small cross-section of the
Alfvén wing makes only a small perturbation to the flow, as
seen in the middle panels. As the cutting plane is shifted away
from the planet (from top to bottom), the center of the Alfvén
wing is observed to shift toward the star and downstream.
The cross-section of the Alfvén wing perpendicular to the

flow, R2 ,eff is indicated by the double arrows in Figure 4, and
computed by taking the maximal extent of the wing
perpendicular to the flow. It remains approximately constant
along the wing as long as the cutting plane remains roughly
perpendicular. Saur et al. (2013) used a simple magnetostatic
equilibrium code to estimate the expected Reff as a function of
the standard obstacle radius Robst (e.g., Lovelace et al. 2008;
Lanza 2009), which are defined by

R R 3 cos
2

, 11M
eff obst

1 2

( )⎜ ⎟⎛
⎝

⎞
⎠~

Q

R R
B

P8
, 12p

P

t
obst

2 1 6

( )
⎛
⎝⎜

⎞
⎠⎟p

~

where Pt is the total pressure in the vicinity of the planet, and
MQ is the inclination angle between the polar planetary field

and Bw (we focus here on the case of a magnetized planet; the
effective obstacle in the case of a planet with no intrinsic
magnetism is discussed, e.g., by Kopp et al. 2011). Because of
the magnetostatic equilibrium assumed to derive Equation (11),

Table 2
Properties of Alfvén Wings

Aligned Anti-aligned Perpendicular

A
thQ (deg) 25 K 25

AQ (deg) 29.7 28.2 27.3
Reff

th (RP) 3.6 K 3.0
Reff (RP) 3.0 1.2 2.2

th (W) 2.05 × 1019 K 1.09 × 1018

 (W) 1.39 × 1019 9.74 × 1017 7.72 × 1017

Note. The theoretical th values are estimates from the analytical model of Saur
et al. (2013) (in which the anti-aligned case is not modeled).
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we do not expect it to exactly match our observed effective
radii R .eff The estimated and simulated effective radii Reff are
given in Table 2. It appears that the theoretical value slightly
overestimates the effective radius we obtain in our simulation.
The shape of the simulated Alfvén wing cross-section is much

more elongated—in the flow direction—than the theoretical
Alfvén wing of Saur et al. (2013). As a result, this effect
compensates the discrepancy in the effective radii of the
obstacle, and the theoretical and simulated wings have similar
cross-sectional areas.

Figure 3. Top: positive (red) and negative (blue) parallel currents in the star–planet plane perpendicular to the orbital plane. The currents are normalized with the
advection timescale across the planet (see text). The black lines represent the magnetic field lines and the white circle represents the planet. Middle: cuts of the
v B, w0( ) plane. The gray shades show the azimuthal velocity in the rest frame of the planet, normalized by the keplerian velocity v .K The Alfvén characteristic
streamlines away from the planet are shown in blue and red. We do not plot the Alfvén characteristics inside the planetary magnetosphere, where they do not
correspond to the travelling path of the perturbations forming the Alfvén wings. The expected inclination angle A

thQ of the Alfvén wings is shown by the purple dashed
line. Bottom: density (on a logarithmic scale) in the orbital plane close to the planet. The streamlines of the flow in the orbital plane are shown in blue.
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The maximum amplitude of the Poynting flux scales
remarkably well with the predicted value of v B 4w0

2 p expected
from the analytical estimates of Saur et al. (2013). By
integrating the total Poynting flux inside the area AS delimited
by black contours in Figure 4 (effectively delimiting the Alfvén
wing cross-section), we find that the total Poynting flux is close
to being constant throughout each wing. We report the average
value of the integrated Poynting flux

S d 13A A
A

( ) ò= S

in Table 2, where Aá stands for an average along the Alfvén
wing. The theoretical and simulated Poynting fluxes agree

within a factor of two, which is satisfying given the
approximations embedded in both the analytical and numerical
models. The total Poynting flux is smaller by a factor of six
between the aligned and the anti-aligned cases. This topolo-
gical effect could provide a simple explanation for the on/off
enhanced emissions observed in extreme exo-systems over the
timescales of typical stellar magnetic cycles or orbital periods.

4. PLANET MIGRATION DUE TO MAGNETIC TORQUES

We have demonstrated that our numerical model is able to
simulate adequately Alfvén wings that compare well with
estimates from analytical theory. We now focus on the less

Figure 4. Poynting flux along Alfvén wings. The rows correspond to cuts of the Alfvén wing at distances of 0.3, 0.5, and 0.7 R from the planet. The Poynting flux is
normalized to the maximum expected Poynting flux v B 4 .w0

2 p The black contours represent the boundary of the Alfvén wing, identified as the region co-orbiting with
the planet in the projection plane. The cross-section of the Alfvén wing perpendicular to the flow is indicated in purple. The black arrows represent the flow on the
cutting plane in the rest frame of the planet. The dashed blue line is the projection of the orbital trajectory and the blue circle the projection of the planet’s boundary.
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studied magnetic torques, which can play a role in the secular
evolution of close-in star–planet systems.

4.1. Physical Origin of the Torques

Torques in magnetic star–planet systems can be separated
into contributions from ram pressure, thermal pressure,
magnetic pressure, and magnetic tension. We derive the
angular momentum fluxes associated with those torques in a
frame rotating at the planetary orbital rate. The angular
momentum is defined with respect to the stellar rotation axis,
which coincides with the orbital axis for the cases considered in
this work. The interested reader will find the derivation of the
various torque expressions in the Appendix.

Thanks to angular momentum conservation, these torques
can be evaluated on any surface enclosing the planet. As a
result we estimate the torques from integrations over concentric
spheres around the planet, and check a posteriori that the total
torque  (black lines in Figure 5) is indeed constant with the
integration radius. The different components of the torque are
detailed in Figure 5.

In the aligned and perpendicular cases (left and right panels),
the torque is dominated by the tension of the magnetic field
lines connecting the planet to the star (green line). It is slightly
opposed by the magnetic pressure (cyan line) while the ram and
thermal pressures play almost no role in the overall torque.
Note that in the three cases, the magnetic pressure (cyan)
changes sign as the integration sphere surrounding the planet is
expanded. This is a simple consequence of the fact that the
magnetosphere of the planet is more extended downstream than
upstream. As a result, the integration is imbalanced toward the
downstream contribution and gives a negative contribution
when the integration spheres are fully inside the planetary
magnetosphere. When the integration sphere is fully outside the
planetary magnetosphere, the contribution of magnetic pressure
to the torque is positive, as expected.

In the anti-aligned case (middle panel), the total torque is the
combination of both magnetic tension and pressure, corre-
sponding to the wind magnetic field lines impacting the closed
planetary magnetosphere. The ram and thermal pressures play a
marginal role here as well in the total torque. The torque
applied to the planet in the aligned case is roughly 10% of the
stellar wind torque applying to the host star. Because the two
Alfvén wings connect back to the star, it means that the star
brakes 10% less efficiently than a twin star not harbouring any
close-in planet. The torque in the aligned case is furthermore
approximately five times higher than in the anti-aligned case,

showing again the very strong impact of the magnetic topology
on the strength of the SPMI. The perpendicular case shows a
very similar repartition of the different contributions to the
aligned cases, with a slightly higher magnetic pressure. It is
interesting to note that in the perpendicular case only one wing
connects the star and the planet; as a result only half of the
angular momentum extracted from the orbit of the planet will
be transferred to the star, while the other half will be advected
in the wind. Hence, the impact of the SPMI on the host star is
maximized in the aligned case.
We further calculate the migration timescale associated with

those torques, given by

t
J2

, 14P
P ( )


=

where J M GM RP P orb
1 2( )= is the orbital angular momentum

of the planet, and the factor 2 originates from the Rorb
1 2

dependence of JP. The migration timescale depends on the
density normalization .r In Table 3 we give the migration
timescales (as well as the average torques  ) for a r
normalization corresponding to the mass loss rate of a T Tauri
star (five orders of magnitude higher than the Sun, correspond-
ing as well to a much stronger stellar magnetic field). The
timescales are clearly sufficiently short to suggest that magnetic
interactions can play a role in the migration of close-in planets,
especially during the early stages (typically T Tauri and pre-
main sequence phases) of star–planet systems. The density
normalization divides the migration timescale tP when
computing it from adimensionalized units. For a solar-like
density normalization (see Section 2.2), the timescales would

Figure 5. Torques applied to the planet integrated over concentric spheres around the planet. The torques are normalized to the stellar wind torque in each case. They
are separated into contributions from the ram pressure and Coriolis force, thermal pressure, magnetic pressure, and magnetic tension (see the Appendix for details).
The total torque is indicated in black.

Table 3
Torques and Effective Obstacle Areas of the Magnetic Interaction

Aligned Anti-aligned Perpendicular

 w( ) 0.11 0.02 0.13
cd 0.43 1.0 0.64
Aobst

th Rp
2( )p 4.4 4.4 4.0

Aobst Rp
2( )p 72.4 5.1 25.0

tP (Myr) 1.39 × 102 8.46 × 102 2.70 × 103

Note. The theoretical area Aobst
th is obtained with the expected magnetospheric

size Robst
th from Equation (12). The migration timescale tP is calculated with a

base density 3.2 10 10
r = ´ - g cm−3 for the aligned and anti-aligned cases,

and 2.8 10 11
r = ´ - g cm−3 for the perpendicular case (see the text).
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be five orders of magnitude higher and be negligible compared
to typical tidal effects. Preliminary scaling laws for the
migration timescales of close-in planets were derived Strugarek
et al. (2014b) from reduced 2.5D simulations. The variation of
tP with topology in our 3D models agrees with the predicted
law from Strugarek et al. (2014b), and the dependence on
orbital radius is not expected to change significantly from 2.5D
to 3D models. Nevertheless, the torques differ qualitatively
because the multiplicative constant in front of the scaling law
derived in Strugarek et al. (2014b) was calibrated with 2.5D
models. By using a grid of 3D numerical simulations (currently
under investigation), we intend to better constrain this multi-
plicative constant to obtain a quantitatively accurate scaling law
in the near future. This extended set of simulations will also
confirm the dependence of the migration timescale tP on the
orbital radius Rorb found in Strugarek et al. (2014b). Finally,
close-in star–planet systems can also be in a super-alfvénic
interaction regime (not explored here). Indeed, even if the wind
in the vicinity of the planet is sub-alfvénic, the relatively fast
orbital motion can exceed the local Alfvén speed. How the
torque scaling law changes between the sub- and super-alvénic
regimes still remains to be explored.

4.2. Parameterization of Magnetic Torques and
Effects of Magnetic Topology

By analogy with an obstacle in a flow, the magnetic torque
applied to the planet due to the SPMI is generally written as
(e.g., Lovelace et al. 2008; Vidotto et al. 2009)

c R A P , 15d torb obst ( ) =

where Aobst is the effective obstacle area exposed to the flow, Pt

the total (thermal plus ram plus magnetic) pressure of the wind
in the frame where the planet is at rest, and cd a drag
coefficient. The right-hand side is conveniently composed of
the total angular momentum that can be transferred, multiplied
by cd. In the case of SPMI, the drag coefficient cd and the
effective area Aobst should generally depend on the topology of
the interaction, i.e., on the respective orientations of the orbital
motion, the interplanetary magnetic field, and the planetary
magnetic field. Due to this complexity, the drag coefficient cd
and the effective interaction area Aobst can be non-trivial to
estimate.

The drag coefficient is generally thought to represent—in the
case of SPMI—the reconnection efficiency between the stellar
wind and the planetary magnetic fields, at the boundaries of the
planetary magnetosphere or of the Alfvén wings themselves. In
the context of planetary radio emissions, Zarka (2007)
approximated cd with (see also Neubauer 1998; Saur et
al. 2013)

c
M

M M1 2 cos
. 16d

A

A
2

A

( )~
+ - Q

This latter equation is not thought to be valid in the closed
magnetosphere case (here the so-called “anti-aligned” case), for
which we simply choose c 1.d ~ The drag coefficient in the
aligned and perpendicular cases is given in Table 3.

The obstacle area Aobst is generally considered as a circular
cross-section of the planetary magnetosphere, of estimated
radius Robst (Equation (12)), itself deduced from a simple

pressure balance. However, it is not often recognized that this
effective area changes drastically with the magnetic topology
and is, in general, far from being circular. We use here our
numerical simulations to estimate A ,obst based on the integrated
torque  shown in Figure 5. The resulting areas are given in
Table 3, along with the standard obstacle area A R .obst

th
obst

2p=
The anti-aligned case (middle panels in Figure 3) is the only
situation in which the effective obstacle is indeed the roughly
circular magnetospheric cross-section perpendicular to the flow
(see also schematic in Figure 6).
In the aligned and perpendicular cases (upper and lower

panels in Figure 3), the connection between the planetary field
and the wind magnetic field leads to an interaction cross-
section composed of the whole flux-tube connecting the star
and the planet (the width of which is given by R ,eff see
Table 2), and hence to a much greater torque (as seen in
Figure 5). The corresponding obstacle area is found to be 14
times higher than the standard obstacle area in the aligned case,
and 5 times higher in the perpendicular case (note that the
corresponding torques in Table 3 are normalized to the stellar
wind torques ,w which differ in the dipolar and quadrupolar
cases as seen in Table 1). The torque is maximized and
minimized in the two extreme cases of aligned and anti-aligned
topologies. As a result, since we generally cannot infer the
magnetic field of known exoplanets, these two cases give good
upper and lower estimates of magnetic torques that a given
star–planet system can develop.

5. CONCLUSIONS

In this work we have simulated in three dimensions the
magnetic interactions of a star with a close-in planet. By
simulating the system globally, we were able to trace Alfvén
wings extending from the planet’s magnetosphere to the stellar
lower corona. We have explored three typical magnetic
configurations of SPMI: aligned, anti-aligned, and perpendi-
cular orientations of the planetary field with respect to the
ambient wind magnetic field. For the perpendicular case we
chose to consider a dipolar planetary field perpendicular to the
orbital plane and a quadrupolar stellar wind. In this latter case
the accelerating wind participates in the interaction and the
Alfvén wings extend near the orbital plane. In the aligned and
anti-aligned cases, the planet orbits inside a wind “dead-zone”
and the Alfvén wings extend out of the orbital plane along the
dipolar structure of the stellar corona.
The Poynting flux in Alfvén wings provides an energy

source for enhanced X-ray or UV emissions in the star–planet
system. We were able to validate our numerical model by
comparing the simulated Poynting fluxes with analytical
predictions. We find that the size of the Alfvén wings (and
their associated Poynting flux) depends dramatically on the
magnetic configuration of the interaction: by reversing the
planetary field, the Poynting flux drops by a factor of
approximately 14.
We used numerical simulations to estimate the magnetic

torques that develop in SPMI. Again, the magnetic configura-
tion significantly affects the torques that develop in such
systems. In the aligned case, a part of the planetary magneto-
sphere is open in the ambient stellar wind and connects the star
and the planet together. They are a source of magnetic tension
that effectively transfers angular momentum between the star
and the planet. In the cases presented in this paper, the planet
loses orbital angular momentum and migrates inward (for fast
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rotators a planet may a priori gain orbital angular momentum
from such interaction; for a detailed discussion see Strugarek et
al. 2014b). In the aligned case the migration timescale of the
studied planets varies from 100 to 1000Myr for a T Tauri-like
host star. As a result, magnetic interactions can be an important
factor in migration for young close-in planets. In the anti-
aligned case the magnetosphere is completely closed: the
torque then originates from the coronal plasma impacting on
the cross-section of the magnetosphere. The area of interaction

is hence much smaller than in the aligned case, and the
associated magnetic torque is roughly 14 times smaller.
We illustrate the importance of magnetic configuration in

Figure 6 where the aligned and anti-aligned configurations are
schematized. The red areas show the cross-section of one
Alfvén wing that carries the induced Poynting flux. The blue
areas represent the interaction areas leading to magnetic
torques. The standard estimation of magnetic torques, based
on Equation (15), generally makes use of the effective area of
the anti-aligned interaction. We find here that this area
minimizes the magnetic torque that can develop in close-in
star–planet systems, while the blue area of the aligned case
maximizes it.
The three-dimensional simulations reported in this work

confirm the 2.5D axisymmetric results of Strugarek et al.
(2014b): magnetic torques can be a source of close-in planet
migration. We have focused on characterizing the impact of
magnetic configuration on the shape and strength of the
magnetic interactions. We are currently running a more
extensive set of models to empirically refine the scaling laws
first derived in Strugarek et al. (2014b).
Real stars possess much more complex magnetic fields than

the simple dipolar and quadrupolar configurations we con-
sidered in this work. In reality close-in planets are likely to
interact with different local magnetic configurations along their
orbit (see, e.g., Cohen et al. 2014; Strugarek et al. 2014c;
Vidotto et al. 2015). Our results suggest that, in such systems,
the associated Poynting fluxes and torques will vary by at least
an order of magnitude, which provides a simple geometrical
explanation for an on/off mechanism of magnetically enhanced
emissions in close-in star–planet systems. The average
Poynting flux and torque that such systems develop are
nonetheless non-trivial to estimate. They will require dedicated
3D simulations tackling the dynamical aspects of magnetic
interactions as a planet orbits in a non-homogenous corona.
Indeed, the timescale on which the equilibrated configurations
modeled in this paper become established depends on the
resistivity of the magnetospheric plasma of the planet, and on
its efficiency of reconnection with the stellar wind magnetic
field. The numerical model presented in this work provides a
solid basis for further, more realistic studies of SPMI in which
these dynamical aspects could be explored.
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Canadian Institute of Theoretical Astrophysics, and acknowl-
edges support from Canada’s Natural Sciences and Engineering
Research Council. This work was supported by the ANR 2011
Blanc Toupies and the ERC project STARS2. We acknowledge
access to supercomputers through GENCI (project 1623), Prace
(8th call), and ComputeCanada infrastructures.

APPENDIX
GENERAL EXPRESSIONS OF TORQUES

We derive here the general expression for torques in a
rotating frame, based on the initial derivation of Mestel &
Selley (1970). The momentum equation in the MHD formalism
in a rotating frame (with a rotation rate W) can be written as

u uu BB I

g u r

P4

2 , 17
t t( )( ) ·

( )
r r p
r r rW W W

¶ = - + -
+ - ´ + ´ ´

Figure 6. Schematics of magnetic star–planet interactions in the aligned (top)
and anti-aligned (bottom) cases. The black lines represent the magnetic field
lines; the blue and red lines delimit the upper Alfvén wing. Characteristic
surfaces associated with the Poynting flux (red area) and the magnetic torques
(blue area) are highlighted in each configuration, showing the critical role of
magnetic topology in the development of the interaction.
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where the total pressure is the sum of the thermal pressure and
the magnetic pressure P P B 8 .t

2 p= + We define the vectorial
angular momentum by

r u dV , 18
V

( ) ò rº ´

with V a given volume. The time evolution of the angular
momentum, or equivalently the torques acting on the volume V,
is given by

r u r u r udV dV ,

19
V

t t
V

t˙ ( ) ( )

( )

 ò òr r r= ´ ¶ + ¶ ´ = ´ ¶

where we supposed that the volume V is held constant in the
rotating frame.

In the context of star–planet systems, we are here primarily
interested in the rotational angular momentum of the star and in
the orbital angular momentum of the planet. Both are defined
through Equation (18), respectively projected on the rotation
axis and on the normal to the orbital plane.

Combining Equations (19) and (17) we get
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In all the cases considered here, the gravity profile will be close
to symmetric in the volume of integration V, hence the last term
of Equation (20) will be neglected. The centrifugal contribution
can be reworked through

r r
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dV . 21
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In order to rewrite the first two terms on the right-hand side
of (20), we use the Levi–Civita permutation symbol ijke and
Einstein’s summation notation ( a b a bi ijk

j k( ) e´ = ). If a tensor
C is symmetric, we can write

x C C x C x C .x ijk j kl ijk kl jl j x kl ijk j x kll l l( ) ( )e e d e¶ = + ¶ = ¶

Since the three tensors in the first term on the right-hand side of
(20) are symmetric, we can define T uu BB IPtrº - + - and
write

r T dV x T dV
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where S is the surface bounding V and n the normal to this
surface. Finally, we expand the Coriolis contribution by

conveniently introducing the following surface integral:
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where we have used the mass continuity equation u 0x ll ( )r¶ =
that is satisfied in a steady state. We note that the Coriolis
contribution in Equation (20) can be written as
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Combining Equations (23) and (24) we obtain

r u

A u x x u dV

dV A . 25
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⎤
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ò
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rW

=- + W - W
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We can finally combine Equations (20), (21), and (25) to obtain

r u r

x u u x
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4
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]
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⎡
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⎤
⎦⎥

  ò

ò

r

d p

rW W
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- +
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

The surface integral corresponds to the flux of angular
momentum through the boundaries of the integration volume
V, and the second term appears to account for the rotating
frame.
We consider here only the case where the rotation axis is

normal to the orbital plane. In this case the definitions of the
rotational and orbital angular momentum coincide, albeit with a
different integration volume V. In both cases, the angular
momentum component of interest is ,z which is the
component aligned with the rotation axis .W W The second
term of Equation (26) vanishes for ,z̇ leaving only the surface
integral balancing the evolution of the angular momentum
contained in volume V. If the system is in a steady state, or
slowly evolving (which will be justified here a posteriori),

0z̇ » and as a result this surface integral is zero as well.
We now consider a volume V bounded by two spherical

surfaces SP and S, centered on the location of the orbiting
planet, of spherical radii RP and R (RP being typically the
planetary radius). For a slowly evolving system (or a steady-
state system), using Equation (26), we deduce that the torque
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applied to the planet can then be simply written as (see also
Mestel & Selley 1970; Vidotto et al. 2014)

x u u x

P B B n dS4 .
27S

ijk j l kmn m n

t kl l l

k

k

( )
]

( )
⎡⎣  ò r

d p

= + W

+ -

This final expression can then be rewritten in any desired
system of coordinates, for any surface S enclosing the planet.
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