17 research outputs found

    Massive conformational changes during thermally induced self-metalation of 2H-tetrakis-(3,5-di-tert-butyl)-phenylporphyrin on Cu(111)

    Get PDF
    Based on a combined scanning tunnelling microscopy and X-ray photoelectron spectroscopy study we present detailed insights into pronounced changes of long-range order and intramolecular conformation during the self-metalation of 2H-5,10,15,20-tetrakis-(3,5-di-tert-butyl)-phenylporphyrin (2HTTBPP) to CuTTBPP on Cu(111). Upon metalation, the porphyrin literally “pops up” from the surface, due to a drastically reduced molecule–substrate interaction

    Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours : a multicentre retrospective observational cohort study

    Get PDF
    Publisher Copyright: © 2022 The Author(s)Background: Capecitabine- or 5-fluorouracil (5-FU)-based chemotherapy is widely used in many solid tumours, but is associated with cardiotoxicity. S-1 is a fluoropyrimidine with low rates of cardiotoxicity, but evidence regarding the safety of switching to S-1 after 5-FU- or capecitabine-associated cardiotoxicity is scarce. Patients and methods: This retrospective study (NCT04260269) was conducted at 13 centres in 6 countries. The primary endpoint was recurrence of cardiotoxicity after switch to S-1-based treatment due to 5-FU- or capecitabine-related cardiotoxicity: clinically meaningful if the upper boundary of the 95% confidence interval (CI; by competing risk) is not including 15%. Secondary endpoints included cardiac risk factors, diagnostic work-up, treatments, outcomes, and timelines of cardiotoxicity. Results: Per protocol, 200 patients, treated between 2011 and 2020 [median age 66 years (range 19-86); 118 (59%) males], were included. Treatment intent was curative in 145 (73%). Initial cardiotoxicity was due to capecitabine (n = 170), continuous infusion 5-FU (n = 22), or bolus 5-FU (n = 8), which was administered in combination with other chemotherapy, targeted agents, or radiotherapy in 133 patients. Previous cardiovascular comorbidities were present in 99 (50%) patients. Cardiotoxic events (n = 228/200) included chest pain (n = 125), coronary syndrome/infarction (n = 69), arrhythmia (n = 22), heart failure/cardiomyopathy (n = 7), cardiac arrest (n = 4), and malignant hypertension (n = 1). Cardiotoxicity was severe or life-threatening in 112 (56%) patients and led to permanent capecitabine/5-FU discontinuation in 192 (96%). After switch to S-1, recurrent cardiotoxicity was observed in eight (4%) patients (95% CI 2.02-7.89, primary endpoint met). Events were limited to grade 1-2 and occurred at a median of 16 days (interquartile range 7-67) from therapy switch. Baseline ischemic heart disease was a risk factor for recurrent cardiotoxicity (odds ratio 6.18, 95% CI 1.36-28.11). Conclusion: Switching to S-1-based therapy is safe and feasible after development of cardiotoxicity on 5-FU- or capecitabine-based therapy and allows patients to continue their pivotal fluoropyrimidine-based treatment.Peer reviewe

    Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours: a multicentre retrospective observational cohort study

    Get PDF
    Background: Capecitabine- or 5-fluorouracil (5-FU)-based chemotherapy is widely used in many solid tumours, but is associated with cardiotoxicity. S-1 is a fluoropyrimidine with low rates of cardiotoxicity, but evidence regarding the safety of switching to S-1 after 5-FU- or capecitabine-associated cardiotoxicity is scarce. Patients and methods: This retrospective study (NCT04260269) was conducted at 13 centres in 6 countries. The primary endpoint was recurrence of cardiotoxicity after switch to S-1-based treatment due to 5-FU- or capecitabinerelated cardiotoxicity: clinically meaningful if the upper boundary of the 95% confidence interval (CI; by competing risk) is not including 15%. Secondary endpoints included cardiac risk factors, diagnostic work-up, treatments, outcomes, and timelines of cardiotoxicity. Results: Per protocol, 200 patients, treated between 2011 and 2020 [median age 66 years (range 19-86); 118 (59%) males], were included. Treatment intent was curative in 145 (73%). Initial cardiotoxicity was due to capecitabine (n ÂĽ 170), continuous infusion 5-FU (n ÂĽ 22), or bolus 5-FU (n ÂĽ 8), which was administered in combination with other chemotherapy, targeted agents, or radiotherapy in 133 patients. Previous cardiovascular comorbidities were present in 99 (50%) patients. Cardiotoxic events (n ÂĽ 228/200) included chest pain (n ÂĽ 125), coronary syndrome/ infarction (n ÂĽ 69), arrhythmia (n ÂĽ 22), heart failure/cardiomyopathy (n ÂĽ 7), cardiac arrest (n ÂĽ 4), and malignant hypertension (n ÂĽ 1). Cardiotoxicity was severe or life-threatening in 112 (56%) patients and led to permanent capecitabine/5-FU discontinuation in 192 (96%). After switch to S-1, recurrent cardiotoxicity was observed in eight (4%) patients (95% CI 2.02-7.89, primary endpoint met). Events were limited to grade 1-2 and occurred at a median of 16 days (interquartile range 7-67) from therapy switch. Baseline ischemic heart disease was a risk factor for recurrent cardiotoxicity (odds ratio 6.18, 95% CI 1.36-28.11). Conclusion: Switching to S-1-based therapy is safe and feasible after development of cardiotoxicity on 5-FU- or capecitabine-based therapy and allows patients to continue their pivotal fluoropyrimidine-based treatment.</p

    Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours: a multicentre retrospective observational cohort study

    No full text
    Background: Capecitabine- or 5-fluorouracil (5-FU)-based chemotherapy is widely used in many solid tumours, but is associated with cardiotoxicity. S-1 is a fluoropyrimidine with low rates of cardiotoxicity, but evidence regarding the safety of switching to S-1 after 5-FU- or capecitabine-associated cardiotoxicity is scarce. Patients and methods: This retrospective study (NCT04260269) was conducted at 13 centres in 6 countries. The primary endpoint was recurrence of cardiotoxicity after switch to S-1-based treatment due to 5-FU- or capecitabine-related cardiotoxicity: clinically meaningful if the upper boundary of the 95% confidence interval (CI; by competing risk) is not including 15%. Secondary endpoints included cardiac risk factors, diagnostic work-up, treatments, outcomes, and timelines of cardiotoxicity. Results: Per protocol, 200 patients, treated between 2011 and 2020 [median age 66 years (range 19-86); 118 (59%) males], were included. Treatment intent was curative in 145 (73%). Initial cardiotoxicity was due to capecitabine (n = 170), continuous infusion 5-FU (n = 22), or bolus 5-FU (n = 8), which was administered in combination with other chemotherapy, targeted agents, or radiotherapy in 133 patients. Previous cardiovascular comorbidities were present in 99 (50%) patients. Cardiotoxic events (n = 228/200) included chest pain (n = 125), coronary syndrome/infarction (n = 69), arrhythmia (n = 22), heart failure/cardiomyopathy (n = 7), cardiac arrest (n = 4), and malignant hypertension (n = 1). Cardiotoxicity was severe or life-threatening in 112 (56%) patients and led to permanent capecitabine/5-FU discontinuation in 192 (96%). After switch to S-1, recurrent cardiotoxicity was observed in eight (4%) patients (95% CI 2.02-7.89, primary endpoint met). Events were limited to grade 1-2 and occurred at a median of 16 days (interquartile range 7-67) from therapy switch. Baseline ischemic heart disease was a risk factor for recurrent cardiotoxicity (odds ratio 6.18, 95% CI 1.36-28.11). Conclusion: Switching to S-1-based therapy is safe and feasible after development of cardiotoxicity on 5-FU- or capecitabine-based therapy and allows patients to continue their pivotal fluoropyrimidine-based treatment

    Schmierung von Maschinenelementen

    No full text
    corecore