182 research outputs found

    A Simple and Non-destructive Method for Chlorophyll Quantification of Chlamydomonas Cultures Using Digital Image Analysis

    Get PDF
    Growing interest in the use of microalgae as a sustainable feedstock to support a green, circular, bio-economy has led to intensive research and development initiatives aimed at increasing algal biomass production covering a wide range of scales. At the heart of this lies a common need for rapid and accurate methods to measure algal biomass concentrations. Surrogate analytical techniques based on chlorophyll content use solvent extraction methods for chlorophyll quantification, but these methods are destructive, time consuming and require careful disposal of the resultant solvent waste. Alternative non-destructive methods based on chlorophyll fluorescence require expensive equipment and are less suitable for multiple sampling of small cultures which need to be maintained under axenic growth conditions. A simple, inexpensive and non-destructive method to estimate chlorophyll concentration of microalgal cultures in situ from digital photographs using the RGB color model is presented. Green pixel intensity and chlorophyll a, b and total chlorophyll concentration, measured by conventional means, follow a strong linear relationship (R2 = 0.985–0.988). In addition, the resulting standard curve was robust enough to accurately estimate chlorophyll concentration despite changes in sample volume, pH and low concentrations of bacterial contamination. In contrast, use of the same standard curve during nitrogen deprivation (causing the accumulation of neutral lipids) or in the presence of high quantities of bacterial contamination led to significant errors in chlorophyll estimation. The low requirement for equipment (i.e., a simple digital camera, available on smartphones) and widely available standard software for measuring pixel intensity make this method suitable for both laboratory and field-based work, particularly in situations where sample, qualified personnel and/or equipment is limited. By following the methods described here it should be possible to produce a standard curve for chlorophyll analysis in a wide range of testing conditions including different microalga cultures, culture vessel and photographic set up in any particular laboratory

    Heterogeneities in leishmania infantum infection : using skin parasite burdens to identify highly infectious dogs

    Get PDF
    Background: The relationships between heterogeneities in host infection and infectiousness (transmission to arthropod vectors) can provide important insights for disease management. Here, we quantify heterogeneities in Leishmania infantum parasite numbers in reservoir and non-reservoir host populations, and relate this to their infectiousness during natural infection. Tissue parasite number was evaluated as a potential surrogate marker of host transmission potential. Methods: Parasite numbers were measured by qPCR in bone marrow and ear skin biopsies of 82 dogs and 34 crab-eating foxes collected during a longitudinal study in Amazon Brazil, for which previous data was available on infectiousness (by xenodiagnosis) and severity of infection. Results: Parasite numbers were highly aggregated both between samples and between individuals. In dogs, total parasite abundance and relative numbers in ear skin compared to bone marrow increased with the duration and severity of infection. Infectiousness to the sandfly vector was associated with high parasite numbers; parasite number in skin was the best predictor of being infectious. Crab-eating foxes, which typically present asymptomatic infection and are non-infectious, had parasite numbers comparable to those of non-infectious dogs. Conclusions: Skin parasite number provides an indirect marker of infectiousness, and could allow targeted control particularly of highly infectious dogs

    The effects of seasonal changes on the dynamics of a fig tree's pollination

    Get PDF
    Fig trees and their pollinating wasps are mutually dependent on each other. Both partners' reproductive success is regulated by the capacity of fig wasps to enter receptive figs at an appropriate time for pollination and oviposition. Oviposition is dependent on successful female pollinator dispersal from one tree to another and although fig wasps are slow flyers and short-lived they can be carried long distances by the wind. The relative importance of local versus long-distance pollinator dispersal is unclear, as is how this may vary with season. In the highly seasonal environment of the Makana Botanical Gardens, Grahamstown, South Africa, we recorded fruiting phenologies of all the trees in a monoecious Ficus burtt-davyi Hutchinson population together with variation in the abundance of its pollinator Elisabethiella baijnathi Wiebes. By comparing captures of fig wasps flying in the air with the numbers that emerged locally, we also examined the independence of the fig tree population, which was separated from the nearest conspecifics by more than 1 km. The abundance of pollinators flying in the air and the number of fig wasps released by figs were correlated with temperature. During winter there were times when no pollinators were released locally; however, they were still caught in the traps, showing that the wasps had dispersed from elsewhere and that the population was not totally independent. These results highlight the ability of fig wasps to disperse between populations and the likely impact of seasonal fluctuations on fig tree gene flow

    Evaluation of rK39 rapid diagnostic tests for canine visceral leishmaniasis : longitudinal study and meta-analysis

    Get PDF
    Canine visceral leishmaniasis is a vector-borne disease caused by the intracellular parasite Leishmania infantum. It is an important veterinary disease, and dogs are also the main animal reservoir for human infection. The disease is widespread in the Mediterranean area, and parts of Asia and South and Central America, and is potentially fatal in both dogs and humans unless treated. Diagnosis of canine infections requires serological or molecular tests. Detection of infection in dogs is important prior to treatment, and in epidemiological studies and control programmes, and a sensitive and specific rapid diagnostic test would be very useful. Rapid diagnostic tests (RDTs) have been developed, but their diagnostic performance has been reported to be variable. We evaluated the sensitivity of a RDT based on serological detection of the rK39 antigen in a cohort of naturally infected Brazilian dogs. The sensitivity of the test to detect infection was relatively low, but increased with time since infection and the severity of infection. We then carried out a meta-analysis of published studies of rK39 RDTs, evaluating the sensitivity to detect disease and infection. The results suggest that rK39 RDTs may be useful in a veterinary clinical setting, but the sensitivity to detect infection is too low for operational control programmes

    Making the most of your pollinators: An epiphytic fig tree encourages its pollinators to roam between figs

    Get PDF
    Ficus species are characterized by their unusual enclosed inflorescences (figs) and their relationship with obligate pollinator fig wasps (Agaonidae). Fig trees have a variety of growth forms, but true epiphytes are rare, and one example is Ficus deltoidea of Southeast Asia. Presumably as an adaptation to epiphytism, inflorescence design in this species is exceptional, with very few flowers in female (seed‐producing) figs and unusually large seeds. Figs on male (pollinator offspring‐generating) trees have many more flowers. Many fig wasps pollinate one fig each, but because of the low number of flowers per fig, efficient utilization by F. deltoidea's pollinators depends on pollinators entering several female figs. We hypothesized that it is in the interest of the plants to allow pollinators to re‐emerge from figs on both male and female trees and that selection favors pollinator roaming because it increases their own reproductive success. Our manipulations of Blastophaga sp. pollinators in a Malaysian oil palm plantation confirmed that individual pollinators do routinely enter several figs of both sexes. Entering additional figs generated more seeds per pollinator on female trees and more pollinator offspring on male trees. Offspring sex ratios in subsequently entered figs were often less female‐biased than in the first figs they entered, which reduced their immediate value to male trees because only female offspring carry their pollen. Small numbers of large seeds in female figs of epiphytic F. deltoidea may reflect constraints on overall female fig size, because pollinator exploitation depends on mutual mimicry between male and female figs

    Antibody response to sand fly saliva is a marker of transmission intensity but not disease progression in dogs naturally infected with Leishmania infantum

    Get PDF
    BACKGROUND: Antibody responses to sand fly saliva have been suggested to be a useful marker of exposure to sand fly bites and Leishmania infection and a potential tool to monitor the effectiveness of entomological interventions. Exposure to sand fly bites before infection has also been suggested to modulate the severity of the infection. Here, we test these hypotheses by quantifying the anti-saliva IgG response in a cohort study of dogs exposed to natural infection with Leishmania infantum in Brazil. METHODS: IgG responses to crude salivary antigens of the sand fly Lutzomyia longipalpis were measured by ELISA in longitudinal serum samples from 47 previously unexposed sentinel dogs and 11 initially uninfected resident dogs for up to 2 years. Antibody responses were compared to the intensity of transmission, assessed by variation in the incidence of infection between seasons and between dogs. Antibody responses before patent infection were then compared with the severity of infection, assessed using tissue parasite loads and clinical symptoms. RESULTS: Previously unexposed dogs acquired anti-saliva antibody responses within 2 months, and the rate of acquisition increased with the intensity of seasonal transmission. Over the following 2 years, antibody responses varied with seasonal transmission and sand fly numbers, declining rapidly in periods of low transmission. Antibody responses varied greatly between dogs and correlated with the intensity of transmission experienced by individual dogs, measured by the number of days in the field before patent infection. After infection, anti-saliva antibody responses were positively correlated with anti-parasite antibody responses. However, there was no evidence that the degree of exposure to sand fly bites before infection affected the severity of the infection. CONCLUSIONS: Anti-saliva antibody responses are a marker of current transmission intensity in dogs exposed to natural infection with Leishmania infantum, but are not associated with the outcome of infection

    Effect of Heterogeneous Mixing and Vaccination on the Dynamics of Anthelmintic Resistance: A Nested Model

    Get PDF
    Anthelmintic resistance is a major threat to current measures for helminth control in humans and animals. The introduction of anthelmintic vaccines, as a complement to or replacement for drug treatments, has been advocated as a preventive measure. Here, a computer-based simulation, tracking the dynamics of hosts, parasites and parasite-genes, shows that, depending on the degree of host-population mixing, the frequency of totally recessive autosomes associated with anthelmintic resistance can follow either a fast dynamical regime with a low equilibrium point or a slow dynamical regime with a high equilibrium point. For fully dominant autosomes, only one regime is predicted. The effectiveness of anthelminthic vaccines against resistance is shown to be strongly influenced by the underlying dynamics of resistant autosomes. Vaccines targeting adult parasites, by decreasing helminth fecundity or lifespan, are predicted to be more effective than vaccines targeting parasite larvae, by decreasing host susceptibility to infection, in reducing the spread of resistance. These results may inform new strategies to prevent, monitor and control the spread of anthelmintic resistance, including the development of viable anthelmintic vaccines

    Loss of top-down biotic interactions changes the relative benefits for obligate mutualists

    Get PDF
    The collapse of mutualisms owing to anthropogenic changes is contributing to losses of biodiversity. Top predators can regulate biotic interactions between species at lower trophic levels and may contribute to the stability of such mutualisms, but they are particularly likely to be lost after disturbance of communities. We focused on the mutualism between the fig tree Ficus microcarpa and its host-specific pollinator fig wasp and compared the benefits accrued by the mutualists in natural and translocated areas of distribution. Parasitoids of the pollinator were rare or absent outside the natural range of the mutualists, where the relative benefits the mutualists gained from their interaction were changed significantly away from the plant's natural range owing to reduced seed production rather than increased numbers of pollinator offspring. Furthermore, in the absence of the negative effects of its parasitoids, we detected an oviposition range expansion by the pollinator, with the use of a wider range of ovules that could otherwise have generated seeds. Loss of top-down control has therefore resulted in a change in the balance of reciprocal benefits that underpins this obligate mutualism, emphasizing the value of maintaining food web complexity in the Anthropocene

    Of cattle, sand flies and men : a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination

    Get PDF
    Background: Studies performed over the past decade have identified fairly consistent epidemiological patterns of risk factors for visceral leishmaniasis (VL) in the Indian subcontinent. Methods and Principal Findings: To inform the current regional VL elimination effort and identify key gaps in knowledge, we performed a systematic review of the literature, with a special emphasis on data regarding the role of cattle because primary risk factor studies have yielded apparently contradictory results. Because humans form the sole infection reservoir, clustering of kala-azar cases is a prominent epidemiological feature, both at the household level and on a larger scale. Subclinical infection also tends to show clustering around kala-azar cases. Within villages, areas become saturated over a period of several years; kala-azar incidence then decreases while neighboring areas see increases. More recently, post kalaazar dermal leishmaniasis (PKDL) cases have followed kala-azar peaks. Mud walls, palpable dampness in houses, and peridomestic vegetation may increase infection risk through enhanced density and prolonged survival of the sand fly vector. Bed net use, sleeping on a cot and indoor residual spraying are generally associated with decreased risk. Poor micronutrient status increases the risk of progression to kala-azar. The presence of cattle is associated with increased risk in some studies and decreased risk in others, reflecting the complexity of the effect of bovines on sand fly abundance, aggregation, feeding behavior and leishmanial infection rates. Poverty is an overarching theme, interacting with individual risk factors on multiple levels. Conclusions: Carefully designed demonstration projects, taking into account the complex web of interconnected risk factors, are needed to provide direct proof of principle for elimination and to identify the most effective maintenance activities to prevent a rapid resurgence when interventions are scaled back. More effective, short-course treatment regimens for PKDL are urgently needed to enable the elimination initiative to succeed

    Spatial and Genetic Epidemiology of Hookworm in a Rural Community in Uganda

    Get PDF
    There are remarkably few contemporary, population-based studies of intestinal nematode infection for sub-Saharan Africa. This paper presents a comprehensive epidemiological analysis of hookworm infection intensity in a rural Ugandan community. Demographic, kinship, socioeconomic and environmental data were collected for 1,803 individuals aged six months to 85 years in 341 households in a cross-sectional community survey. Hookworm infection was assessed by faecal egg count. Spatial variation in the intensity of infection was assessed using a Bayesian negative binomial spatial regression model and the proportion of variation explained by host additive genetics (heritability) and common domestic environment was estimated using genetic variance component analysis. Overall, the prevalence of hookworm was 39.3%, with the majority of infections (87.7%) of light intensity (≀1000 eggs per gram faeces). Intensity was higher among older individuals and was associated with treatment history with anthelmintics, walking barefoot outside the home, living in a household with a mud floor and education level of the household head. Infection intensity also exhibited significant household and spatial clustering: the range of spatial correlation was estimated to be 82 m and was reduced by a half over a distance of 19 m. Heritability of hookworm egg count was 11.2%, whilst the percentage of variance explained by unidentified domestic effects was 17.8%. In conclusion, we suggest that host genetic relatedness is not a major determinant of infection intensity in this community, with exposure-related factors playing a greater role
    • …
    corecore