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Abstract 

The collapse of mutualisms due to anthropogenic changes is contributing to 

losses of biodiversity. Top predators can regulate biotic interactions between species 

at lower trophic levels and may contribute to the stability of such mutualisms, but they 

are particularly likely to be lost after disturbance of communities. We focused on the 

mutualism between the fig tree Ficus microcarpa and its host-specific pollinator fig 

wasp and compared the benefits accrued by the mutualists in natural and translocated 

areas of distribution. Parasitoids of the pollinator were rare or absent outside the 

natural range of the mutualists, where the relative benefits the mutualists gained from 

their interaction were changed significantly away from the plant’s natural range due to 

reduced seed production rather than increased numbers of pollinator offspring. 

Furthermore, in the absence of the negative effects of its parasitoids, we detected an 

oviposition range expansion by the pollinator, with the use of a wider range of ovules 

that could otherwise have generated seeds. Loss of top-down control has therefore 

resulted in a change in the balance of reciprocal benefits that underpins this obligate 

mutualism, emphasising the value of maintaining food web complexity in the 

Anthropocene.  
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Introduction 

The collapse of mutualisms is a major force driving Anthropocene losses of 

biodiversity [1-3]. The continued stability of mutualisms depends on the interplay 

between changing environments and the evolutionary histories of the interacting 

species [1,4], and in a world where anthropogenic change is increasing, both abiotic 

and biotic environments are being fundamentally altered [5,6]. These changes can 

rapidly alter critical traits of host plants, causing mismatches with the animals and 

microorganisms that are their partners in mutualisms [2,7,8]. Highly specific 

mutualistic associations are often considered to be less likely to respond to changing 

environments because the key traits that link the species together are under strong 

evolutionary constraints [9,10], but these mutualisms rarely occur in isolation from 

other species that may be more responsive to environmental change and other human 

activities [4]. The importance of overall networks of interactions for the stability of 

mutualisms has been demonstrated in some severely degraded ecosystems, where 

alterations in food web structure have even shifted some generalist mutualistic 

relationships towards antagonism [1]. Changes in biotic environments may have 

similar consequences for highly specific mutualisms.  

Food webs including mutualistic species comprise competitors and predators of 

one or more mutualists. The presence of competitors is unlikely to stabilise the 

relative benefits obtained by the partners in a mutualism, because interspecific 

competition is expected to exclude species or enable their persistence only at reduced 

densities. Predators however can regulate the abundance of species at lower trophic 
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levels and facilitate the persistence of interspecific interactions through top-down 

control [11,12]. This suggests that the loss of top predators has the potential to de-

stabilise even highly specific mutualisms. 

Fig trees (Ficus, Moraceae) and their pollinating fig wasps (Hymenoptera, 

Agaonidae) are a well-known example of host-specific obligate mutualism [13-15]. 

Figs (syconia) are enclosed inflorescences that contain many ovules. In monoecious 

Ficus species, each ovule can potentially develop into a seed or form a gall that 

supports a single pollinator offspring. This leads to a conflict of interest between the 

host plant and its pollinators [16,17]. Mechanisms that restrict the extent of pollinator 

oviposition in monoecious figs vary among species [13]. These include (1) closure of 

the entrance tunnel (ostiole) to limit the number of fig wasp foundresses that enter 

each fig [18], (2) host sanctions at either whole fig or ovule levels [19,20], (3) 

physical limitations of agaonids such as their ovipositor lengths [18] and (4) optimal 

oviposition strategies that favour oviposition in certain ovules but not others [21,22].  

In addition to the pollinators, figs support a wider fig wasp community. These 

non-pollinating fig wasps (NPFWs, Chalcidoidea) [23-25], include parasitoids of 

pollinator offspring that can have significant impacts on pollinator abundance [26-28]. 

Moreover, because those parasitoids oviposit from the outside surface of figs, they 

may help stabilize fig-pollinator mutualisms by reducing the benefits to pollinator 

foundresses of ovipositing in ovules located nearer to the outside surface [17]. This is 

because pollinator offspring developing in the ovules nearer the periphery of figs are 

more likely to be attacked [16,29,30]. In conjunction with other factors influencing 
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pollinator oviposition preferences, this results in the spatial stratification of fig wasp 

galls and fig seeds within figs, with ovules located towards the periphery less likely to 

host pollinator offspring and more likely to become seeds (figure 1). 

We hypothesized that in situations where parasitoids that attack pollinator larvae 

are rare or absent there will be reduced selection pressure on pollinator oviposition 

site preferences that will result in a spatial expansion of the ovules they use. Any such 

shift could change the relative benefits gained by host fig trees and their pollinator 

mutualists, because if more pollinator offspring are generated, this can be at the cost 

of fewer seeds, with potential consequences for the long-term stability of the 

mutualism.  

Our study mutualism comprised Ficus microcarpa L. and its associated fig 

wasps. Ficus microcarpa is monoecious and has a natural distribution across Asia and 

Australasia [31] but has also been widely planted outside of its natural range [25,32]. 

Translocated F. microcarpa can set viable seed because of the widespread colonisation 

of its pollinator [25]. Outside the plant’s natural range, some NPFWs have also 

colonised the plant, but parasitoids of pollinator offspring are rare or absent [25,33].  

Here, we compare the fig wasp faunas and seed production of F. microcarpa figs 

in its native and translocated ranges to answer two questions: (1) Do pollinators gall 

more flowers, and are fewer seeds produced where parasitoids are rare or absent? and 

(2) Does the spatial distribution of ovules supporting pollinator development change 

in the absence of selection pressure from parasitoids? 
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Materials and methods 

Ficus microcarpa and its associated fig wasps 

The natural distribution range of F. microcarpa encompasses a variety of tropical 

and sub-tropical climates, and the tree has also been translocated into some localities 

with seasonal, Mediterranean climates world-wide [34,35]. Ficus microcarpa is a 

natural lithophyte or ‘strangler’ of other trees, but outside its native range occurs 

mainly as a planted street tree or as a colonizer of buildings [36]. It produces 

synchronized crops of up to several thousand figs [37], each reaching about 1cm in 

diameter. Reproduction of F. microcarpa relies on its host specific pollinating 

agaonid, Eupristina verticillata (Agaonidae), a morphospecies that contains several 

genetically differentiated taxa of uncertain status (R. Wang, unpublished data).  

Across its native range, F. microcarpa supports at least 40 NPFW species. These 

include an obligate seed predator, Philotrypesis taiwanensis Chen (Pteromalidae) [30] 

and several species of Eurytomidae, Ormyridae and Pteromalidae that parasitise 

ovule-galling fig wasps, including the pollinators [25]. Eupristina species enter figs to 

lay their eggs, whereas these NPFW oviposit from outside of figs using their long 

ovipositors to reach the ovules [38]. Several NPFWs have become established in 

translocated populations of F. microcarpa [25,39]. Agaonids are the major hosts of 

NPFWs from the subfamily Sycoryctinae (Pteromalidae), and the host ranges of these 

parasitoids do not vary between the native and the translocated ranges of F. 

microcarpa [33].  
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Sampling strategy and sample sites  

To assess the difference in fig traits and community structure of fig wasps among 

the natural and translocated locations of F. microcarpa, we collected its figs from a 

total of 134 trees at 24 sites between 2010 and 2016 (table S1). We chose trees planted 

on roadsides at all sites, to keep the microhabitats of all sampled trees the same, in 

case of potential differences in some critical but plastic fig traits. At each site, we 

sampled mature crops from trees separated by a minimum interval of 30 m, and at 

least five mature figs were collected from all available heights of each sampled tree 

(table S1). In addition, we tried to collect several immature figs from each sampled 

tree to record the number of pollinator foundresses entering figs at different sites. 

The samples comprised 7 sites within the plant's natural range, 4 sites within the 

plant’s translocated range that extended from its Chinese natural range, and 13 sites 

where the plant has been translocated outside of Asia (table S1). The fig wasps in the 

Chinese extension range may have dispersed from the natural range or have been 

moved by human activities, whereas those in the non-Asian translocation range 

required human transportation [36,39]. Nevertheless, we combined data from the two 

translocated ranges because the characters of the figs and fig wasp communities were 

consistent across these two ranges (see electronic supplementary material for 

comparative results). Eupristina verticillata was first recorded from the areas of host 

translocation at least ten years prior to our fig collections, and each population will 

have been present locally for at least thirty generations given that the fig wasp 

averages three annual generations [37]. 
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Fig contents  

We dissected our sampled figs to describe the characters of both the figs and their 

associated fig wasp communities. From each sampled fig, we recorded the numbers of 

male florets, seeds, unused ovules (neither pollinated nor galled by fig wasps), galls 

containing adult fig wasp offspring, and failed galls that contained no adult fig wasp 

offspring. Each gall that contained an adult fig wasp was opened and it was identified 

to species. We assigned the fig wasps to one of four categories [33]: (1) pollinating 

agaonids, (2) parasitoids of the pollinator offspring, (3) the seed predator 

Philotrypesis taiwanensis; and (4) ‘other NPFWs’, which included other gall-making 

NPFWs and their parasitoids (table S2). We also recorded the number of pollinator 

foundresses in each immature fig by identifying their remains (table S3).  

 

Oviposition sites of fig wasps 

Pollinator fig wasp foundresses lay their eggs into ovules after inserting their 

ovipositors along the styles, which vary greatly in length in monoecious figs, and 

most eggs are laid into the ovules with shorter styles [16,18]. Ovules with shorter 

styles have longer pedicels, and in maturing figs the ovules with short pedicels are 

located towards the periphery, while those with longer pedicels are situated towards 

the centre (figure 1). Pedicel lengths can thus be used to measure the spatial 

distribution of galls containing fig wasp offspring and seeds within the figs, relative to 

the fig wall [17].  
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To examine whether the oviposition behavior of pollinators altered between the 

natural and the translocated ranges of F. microcarpa, the locations of ovules and their 

contents were recorded at 12 sites in a sub-sample of 136 randomly selected figs from 

26 trees where numerous mature figs had been collected (table S4). In these figs we 

recorded the pedicel lengths of all the ovules and their contents. Ovipositor length sets 

an upper limit to utilization of flowers with longer styles, and we randomly selected 

450 adult female pollinators yet to emerge from figs from most of the sub-samples in 

both ranges (table S4) and measured their ovipositor lengths [18]. The lengths of 

pedicels and ovipositors were measured to the nearest 0.02 mm using a binocular 

microscope eyepiece graticule.  

 

Statistical analyses 

Comparisons of fig contents and benefits of mutualists  

Differences in the reproductive investment of figs and the colonisation success of 

fig wasps between different ranges of F. microcarpa were compared by setting the 

numbers of male florets and ovules, seed number, the abundance of total fig wasps 

and pollinators (per fig), ovule occupancy rates (the proportion of ovules containing 

adult fig wasp offspring in each fig), and gall failure rates (the proportion of galled 

ovules in each fig where no offspring completed development) as response variables 

and different ranges of F. microcarpa as a fixed effect (predictor variable). In addition, 

we set the number of pollinator foundresses and sex ratios of pollinator offspring (the 

proportion of male pollinator offspring in each fig) as response variables and different 
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ranges as a fixed effect to test if the variation in pollinator abundance was the result of 

varying foundress numbers in different ranges, because offspring sex ratio varies with 

foundress numbers [40].  

We used the ratio of pollinator abundance to the sum of pollinator abundance and 

seeds per fig (‘P:S ratio’) as a response variable and different ranges as fixed effects, 

to examine if the relative benefits for the two mutualists differed between ranges. 

All the analyses mentioned above were conducted in R 3.4.3 [41] using 

generalized linear mixed models (GLMMs) in package ‘lme4’ version 1.0-5 [42], 

assuming either Poisson or binomial distributions of residuals and setting tree 

identities nested in sites as random effects due to our hierarchical sampling strategy. 

Likelihood ratio (LR) tests were used to evaluate the significance of fixed effects. 

 

Comparisons of NPFW communities and their effects 

We assessed differences in NPFW communities by setting the prevalence 

(proportion of figs where a category of NPFWs (parasitoids of pollinator offspring, 

seed predator or ‘other NPFWs’) was present), the abundance and the species richness 

of each category of NPFWs as response variables and different ranges as a fixed 

effect.  

To test whether variation in NPFW communities contributed to changes in 

benefits gained by the two mutualists, we first evaluated the relationships between 

each NPFW category (fixed effect) and pollinator abundance, seed numbers and the 

P:S ratio (response variables), and then examined whether the strengths of these 
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relationships (represented by the slopes of regression functions) varied between 

ranges by analysing the interactions between the abundance of each category of 

NPFWs and range (fixed effects) on pollinator abundance, seed numbers and the P:S 

ratio (response variables). When analysing the relationships between a category of 

NPFWs and benefits for the two mutualists, we only included figs from the sites 

where this category was present (see table S1, S5).  

All analyses were carried out using GLMMs assuming either Poisson or binomial 

distributions of residuals and setting tree identities nested in sites as random effects. 

Z-tests and LR tests were used to assess the significance of slopes and fixed effects 

(including interactions), respectively.  

 

Alterations in pollinator oviposition preferences 

To assess whether the key morphological traits of the two mutualists varied 

between different ranges, we used linear mixed models (LMMs) in R package ‘nlme’ 

version 3.1 [43] and set pedicel lengths and ovipositor lengths of female pollinator 

offspring as response variables and different ranges as a fixed effect.  

To test if pollinator oviposition preferences altered in the plant’s translocated 

range, we first described the spatial distributions of pollinator offspring and seeds by 

evaluating relationships between the proportion of pollinator galls/seeds to total 

ovules (response variable) and their pedicel lengths (fixed effect), and then tested the 

difference in the strengths of these relationships (represented by the slopes of 

regression functions) between ranges by analysing the interactions between pedicel 
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length and range (fixed effects) on the proportion of pollinator galls/seeds to total 

ovules (response variable). These analyses were conducted using GLMMs assuming 

binomial distributions of residuals and setting fig identities nested in tree identities 

nested in sites as random effects. Z-tests and LR tests were used to assess the 

significance of slopes and fixed effects (including interactions), respectively. 

Each parasitoid of a pollinator offspring develops at the expense of a single 

pollinator, and most failed galls are likely to originally have contained eggs of the 

pollinator [44]. We therefore combined the galls of pollinator offspring and 

parasitoids of pollinator offspring and failed galls as a representation of the initial 

oviposition/galling sites of pollinator foundresses. Similarly, the numbers of seed 

predators, one of which develops in each ovule, were combined with seed counts to 

determine initial seed numbers. We then ran the analyses using GLMMs again to test 

for differences in oviposition preferences between ranges. 

 

Results 

Comparisons of fig contents and benefits of mutualists 

We recorded the contents of 1,492 figs that contained E. verticillata (table S1). 

Each fig contained about 17 male florets and 178 ovules, with no significant 

differences between ranges (table S6; figure 2a). Both occupancy rate and gall failure 

rate did not vary between the two range types (table S6; figure 2b), and the pollinator 

was the predominant species, with similar offspring abundance, foundress numbers 

and sex ratios of pollinator offspring in the two ranges (table S3, S6; figure 2a, b). 
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These results suggested that both the plant’s initial reproductive investment to each fig 

and the colonisation success of fig wasps were consistent across different ranges. 

However, figs from the natural range contained on average about 28% more seeds 

than those from the translocated range (table S6; figure 2a) and this led to an apparent 

change in the relative benefits for the two mutualists as shown by a significantly 

higher P:S ratios in the translocated range (table S6; figure 2b). 

 

Comparisons of NPFW communities and their effects 

We recorded a total of 24 NPFW morphospecies in the figs (table S5). The 

parasitoids of pollinator offspring, and the seed predator, were absent from most 

sample sites in the translocated range (table S5), and their prevalence, abundance and 

species richness in the natural range were significantly higher than in the translocated 

range (table S7; figure S1a-c). In contrast, prevalence and species richness of ‘other 

NPFWs’ were similar in both ranges (table S7; figure S1a-c).  

Within the natural range of F. microcarpa, the abundance of parasitoids of 

pollinator offspring had significant negative relationships with both pollinator 

abundance and the P:S ratio (table S8; figure 3a, c), while parasitoid abundance did 

not negatively affect either measure in the translocated range (table S8; figure 3a, c), 

showing that the rarity of parasitoids of pollinator offspring benefited pollinator 

populations and consequently facilitated the alteration of relative benefits for the two 

mutualists. Parasitoids of pollinators had no effects on the number of seeds in figs, 

irrespective of location (table S8; figure 3b).  
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The seed predator and ‘other NPFWs’ had no significant impacts on the P:S ratio 

(table S8; figure S2c, f), though ‘other NPFWs’ had significant negative relationships 

with pollinator abundance and seed number in both ranges (table S8; figure S2d, e). 

 

Alterations in pollinator oviposition preferences 

We measured the pedicel lengths of a total of 20,969 ovules from 136 figs (table 

S9). Mean pedicel and pollinator ovipositor lengths did not differ between the two 

ranges (table S3, S10), showing that the key morphological traits of both mutualists 

had not changed after translocation. The parasitoids of pollinator offspring and the 

seed predator were rare in the translocated range, while ‘other NPFWs’ were 

relatively common throughout (table S9). 

The proportion of ovules galled by pollinators (and containing either pollinator 

offspring, parasitoids of pollinator offspring or were empty) increased with increasing 

pedicel length, i.e. towards the central area of the figs (table S10; figure 4a). This 

trend was significantly stronger in the plant's natural range than in the translocated 

range (table S10; figure 4a) and reflects an apparent alteration in pollinator 

oviposition preferences. Conversely, ovules with longer pedicels (located towards the 

central area of the figs) were less likely to contain seeds or the offspring of the seed 

predator, and this trend was significantly stronger in the translocated range than the 

natural range (table S10; figure 4b), indicating that the expanded oviposition range of 

pollinators restricted the distribution of seeds. In addition, pedicels of pollinator-

galled ovules (containing pollinators, parasitoids of pollinator offspring or as failed 
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galls) were significantly longer in figs from the natural range than in those from the 

translocated range (table S3, S10), further confirming that pollinator foundresses were 

more willing to oviposit in ovules closer to the fig wall in the translocated range. 

When only galls that produced pollinator offspring or seeds were considered, we 

detected similar spatial patterns (table S10; figure S3a, b). 

 

Discussion 

Host-specific mutualisms are often the product of long periods of coevolution and 

are widely considered to be highly stable [45,46]. Despite this, our results have shown 

that the anthropogenic translocation of a pair of mutualists outside of their native 

range, where there was a lower diversity and abundance of parasitoids, has altered the 

relative reproductive benefits in favour of the pollinating fig wasp. Moreover, 

consistent with the selection-relaxation hypothesis [17], we found a within-fig 

oviposition range expansion by the pollinating wasps in the areas where its parasitoids 

were rare, an effect analogous to competitive release, that has occurred in response to 

the availability of enemy-free space [29,47-49]. Such an oviposition range expansion 

utilised some ovules that might otherwise have become seeds, therefore further 

restricting seeds to the places closer to the fig wall and causing a decline in the 

number of seeds. 

 We failed to detect any increase in the number of pollinator offspring in the areas 

where they had been translocated. This may reflect a tradeoff between oviposition 

range expansion and the time taken for individual eggs to be laid by the short-lived 
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pollinators. Although ovipositor length, a key trait for oviposition [10,16], did not 

change within the short time after translocation, oviposition range expansion is likely 

to be at the cost of increased handling time of oviposition because ovules closer to fig 

wall have longer styles and require more time to penetrate. Adult female pollinators 

however have only a few hours to lay their eggs [13]. 

Contrasting likelihoods of translocation among the different groups of fig wasps 

may reflect their relative native-range distributions and abundance, ability to survive 

in seasonal environments and variation in their ability to establish successfully. This is 

likely to depend on their trophic level [27,28,33]. Pollinators of monoecious fig trees 

can independently disperse long distances [50,51], and some NPFW may be equally 

mobile. Human agency is nonetheless responsible for extra-continental transport [52], 

and this is facilitated by the many pollinator and gall-forming NPFW fig wasp larvae 

that routinely develop inside a single fig. In contrast, the relatively low densities and 

prevalence of parasitoids of both the pollinator and gall-makers in the native range of 

F. microcarpa [25,33] suggest that they are less likely to be transported by un-

sanctioned human activities. Parasitoid NPFWs also need suitable hosts to already be 

present at a translocation site if they are to become established. 

The mean style lengths of ovules galled by pollinator foundresses increases as 

oviposition progresses and if multiple foundresses compete for oviposition sites [53]. 

We found no differences in pollinator foundress numbers, pollinator offspring and 

galling/oviposition rates per fig between the natural and translocated ranges, 

suggesting that foundress number variation is unlikely to explain our results. The 
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climate in the translocated ranges of F. microcarpa is less tropical and more seasonal 

than in its native range and the initiation and development of figs become more 

seasonal there [37]. This might have influenced pollination rates or seed set, but our 

data provide no evidence that relevant morphological traits within figs, such as style 

and pedicel lengths or the numbers of flowers, vary according to range type. Given 

the relatively long generation times of the plant, and their often-horticultural origins, 

this is not surprising. 

Our results emphasise the important role of their natural enemies in reducing the 

value of the more peripheral ovules inside figs to ovipositing pollinator foundresses 

and thus facilitating seed production, because pollinator offspring in these ovules 

suffer higher rates of parasitism. Together with other factors, this selection pressure 

contributes to the oviposition decisions made by the pollinators. In the longer term, 

this may act as an agent of selection on pollinator morphological characters such as 

ovipositor length [10,17], which is correlated with the lengths of the styles of the 

particular host Ficus species [18]. Selection may favour longer ovipositor lengths 

when the value of oviposition in longer-styled flowers (those with shorter pedicels; 

figure 1) increases. We failed to find evidence in support of this, possibly because of 

the relatively short time after translocations (only several tens of generations in many 

translocated sites), and because the small number of foundresses that enter each fig 

also reduces the intensity of competition for oviposition sites, so the advantages of 

being able to oviposit into additional ovules is weak. Changes in behavior appear to 

have been more labile and rapidly responsive to selection than morphological 
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characters [17]. 

The reluctance or inability of pollinators to oviposit in the longer-styled ovules 

has consequences for the long-term relationship between the host trees and their wasp 

mutualists, because it helps ensure that a certain proportion of the ovules become 

seeds and promotes long-term mutualism stability. The benefits for the plant from the 

activities of parasitoid fig wasps might be argued to constrain the evolution of 

defenses favouring pollinators [16], but these benefits must be weighed against direct 

losses to individual trees of the male component of their reproductive function, which 

is related to the number of pollen-carrying female fig wasp offspring they generate 

[13,54].  

Anthropogenic activities are posing increasingly serious threats to the 

maintenance of biodiversity and ecosystem functions. The resulting declines in the 

complexity of food webs and loss of top-down controls are likely to have cascading 

effects [1,55]. Our results show that they can alter the relative benefits to mutualists 

even in a long-established plant-insect pollinator system. Such changes may already 

be ubiquitous, but are seldom sufficiently understood to be detected [1,4].  
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Figure legends 

Figure 1. Schematic spatial stratification pattern of fig contents (a & b). (a) After 

entering figs, pollinator foundresses prefer to oviposit in ovules close to the center of 

a fig, but pollinate flowers irrespective of their style lengths. Conversely, parasitoids 

lay eggs from the outside of figs and are more likely to attack hosts located in ovules 

nearer the fig wall. (b) After pollination and oviposition, galls of pollinator offspring 

are aggregated towards the center of the figs and developing seeds and galls 

containing parasitoid larvae are mainly located nearer the fig wall.  

 

Figure 2. Comparisons of fig contents, gall failure rates, occupancy rates, pollinator 

sex ratios and pollinator abundance to seed number ratio (P:S ratio) between different 

ranges of F. microcarpa (a-c). Different letters indicate significant differences based 

on the results from GLMMs (see table S5).  

 

Figure 3. Relationships between the numbers of parasitoids of pollinator offspring 

and pollinator abundance, seed number and the P:S ratio in different ranges of F. 

microcarpa (a-c). Solid and dashed lines represent significant and nonsignificant 

relationships based on the results from GLMMs, with different letters indicating 

significant differences in the strength of effects (as reflected by the slopes of 

GLMMs) between ranges (see table S8). 

 

Figure 4. The relationships between pedicel length and the proportions of ovules 



27 

 

developing as galls of pollinator fig wasps and their parasitoids (a) and those 

becoming seeds or containing seed predators (b). Trends in different ranges are 

displayed separately, and the proportions of total ovules with different contents 

(means ± S.E.) are shown for every 0.1 unit of LN(x+1)-transformed pedicel length. 

Different letters indicate significant differences in the strength of effects (as reflected 

by the slopes of GLMMs) between ranges (see table S10). 
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Table S1. Sample sizes of F. microcarpa figs at each site. We recorded the contents of 
1,492 figs that contained E. verticillata (additional figs, which contained only NPFWs 
were not included). The sample consisted of 608 and 884 figs from the natural and the 
translocated ranges of F. microcarpa, respectively.  

 

Area Site (abbreviation) Location Year(s) N 

trees 

N 

figs 

Natural range     

China Guangzhou (GZ) N 23º11', E 113º22' 2012, 2015 11 127 

China Xishuangbanna (XS) N 22º00', E 100º48' 2011, 2016 17 279 

China Taibei (TB) N 25º01', E 121º33' 2012 8 104 

Thailand Bangkok (BK) N 13º44', E 100º33' 2012, 2015 4 43 

Thailand Chiang Mai (CM) N 18º46', E 98º59' 2012 4 47 

Thailand Kanchanaburi (KC) N 14º04', E 99º32' 2013 5 48 

The Philippines Manila (MN) N 14º40', E 121º04' 2012 2 40 

Total -- -- -- 51 608 

Translocated range     

Chinese extension range     

China Chengdu (CD) N 30º40', E 104º06' 2012, 2015 3 21 

China Panzhihua (PZ) N 26º35', E 101º43' 2012 4 31 

China Sanming (SM) N 26º16', E 117º38' 2013 4 71 

China Xichang (XC) N 27º53', E 102º17' 2012 2 23 

Total -- -- -- 13 146 

Non-Asian translocation range     

Australia Brisbane (BR) S 27º29', E 153º06' 2012 3 48 

Bermuda Bermuda (BM) N 32º18', W 64º47' 2016 3 25 

Brazil Rio de Janeiro (RJ) S 22º53', W 43º34' 2012 6 101 

Canary Islands Tenerife (TN) N 28º29', W 16º19' 2013 1 30 

Florida Davie (DV) N 26º04', W 80º14' 2012 4 75 

Greece Rhodes (RD) N 36º10', E 27º58' 2011, 2012 11 67 

Greece Symi (SY) N 36º35', E 27º50' 2012 2 19 

Italy Sicily (SC) N 38º07', E 13º22' 2012 10 87 

Libya Tripoli (TP) N 32º51', E 13º12' 2012 7 75 

Malta Malta (MT) N 35º56', E 14º23' 2011 9 57 

Puerto Rico Puerto Rico (PR) N 18º23', W 66º04' 2013 7 64 

Spain  Majorca (MJ) N 39º35', E 2º40' 2012 6 80 

Turkey Marmaris (MM) N 36º51', E 28º15' 2013 1 10 

Total -- -- -- 70 738 

Overall total -- -- -- 134 1492 

 

 
  



Table S2. Species belonging to different categories of fig wasps based on Wang et al. 
(2015a) and Compton et al. (2018). 
 

Categories of fig wasps Wasp taxon (abbreviation) 

Pollinating agaonids Agaonidae, Agaoninae 

 Eupristina verticillata Waterston (Ev) 

Parasitoids of pollinator 

offspring 

Pteromalidae, Sycoryctinae 

Philotrypesis emeryi Grandi (Pe) 

 Philotrypesis okinavensis Ishii (Po) 

 Philotrypesis sp.1 (Ps1) 

 Philotrypesis sp.2 (Ps2) 

 Philotrypesis sp.3 (Ps3) 

 Sycoryctes moneres Chen (Srm) 

 Sycoryctes sp. (Srs) 

 Sycoscapter gajimaru Ishii (Scg) 

 Sycoscapter sp. (Scs) 

Seed predator Pteromalidae, Sycoryctinae 

 Philotrypesis taiwanensis Chen (Pt) 

ಫOther NPFWs’ 
Agaonidae, Agaoninae 

 Eupristina sp. (‘Cheater’) (Es) 

 Pteromalidae, Epichrysomallinae 

 Acophila quinata Zhang & Xiao (Aq) 

 Meselatus bicolor Chen (Mb) 

 Odontofroggatia corneri Wiebes (Oc) 

 Odontofroggatia galili Wiebes (Og) 

 Odontofroggatia ishii Wiebes (Oi) 

 Odontofroggatia quinifuniculus Feng & Huang (Oq) 

 Sycobia sp. (Sbs) 

 Pteromalidae, Otitesellinae 

 Micranisa degastris Chen (Md) 

 Walkerella microcarpae Bouček (Wm) 

 Walkerella nigrabdomina Ma & Yang (Wn) 

 Walkerella sp. (Ws) 

 Eurytomidae 

 Bruchophagus sensoriae Chen (Bs) 

 Sycophila curta Chen (Sc) 

 Sycophila maculafacies Chen (Sm) 

 Sycophila maculafacies (‘pale’) (Smp) 

 Sycophila petiolata Chen (Sp) 

 Sycophila sp. (Ss) 

 Ormyridae 

 Ormyrus lini Chen (Ol) 

 Ormyrus sp. (Os) 

 Pteromalidae, Pireninae 



 Sirovena costallifera Li, Xiao & Huang (Sic) 



Table S3. Pollinator foundress number, pedicel lengths of all ovules and the ovules becoming galls of pollinators and parasitoids of pollinator 
offspring and failed galls, and ovipositor lengths of pollinators in different ranges.  
 
 Natural range Translocated range 

 N crops N figs N ovules Mean ± S.E. N crops N figs N ovules Mean ± S.E. 

Number of pollinator foundresses 30 216 -- 1.47 ± 0.06 51 266 -- 1.44 ± 0.06 

Pedicel lengths of all ovules (mm) 11 57 9488 0.246 ± 0.003 15 79 11481 0.247 ± 0.002 

Pedicel lengths of ovules becoming galls 

of pollinators and parasitoids of pollinator 

offspring and failed galls (mm) 

11 57 2477 0.484 ± 0.006 15 79 3146 0.427 ± 0.005 

Ovipositor lengths of pollinators (mm) 11 32 150 0.681 ± 0.011 15 50 300 0.732 ± 0.006 

 
  



Table S4. Sample sizes of F. microcarpa figs used in the oviposition preference study 
and for measuring the ovipositor lengths of female pollinator offspring. Order and 
abbreviations of sample sites are as in Table S1. 
 
Range Site  N 

trees  

N 

figs 

N trees for 

ovipositor length 

N figs for 

ovipositor length 

Natural range     

 GZ 2 12 2 10 

 XS 3 11 3 8 

 BK 3 11 3 6 

 KC 3 23 3 8 

Total -- 11 57 11 32 

Translocated range     

Chinese extension range     

 PZ 2 6 2 5 

 SM 2 10 2 10 

 XC 2 6 2 5 

Total -- 6 22 6 20 

Non-Asian translocation range     

 DV 2 12 2 5 

 RD 2 11 2 10 

 TP 3 18 3 10 

 MJ 2 16 2 5 

Total -- 9 57 9 30 

 
 
  



Table S5. Distributions and prevalence (% of figs occupied) of fig wasps associated with F. microcarpa figs. Order and abbreviations of sample 
sites are as in Table S1; Order and abbreviations of species are as in Table S2. Sp: species richness of putative parasitoids; So: species richness of 
‘other NPFWs’; St: total fig wasp species richness.  
 

Site Pollinating 

agaonids 

Parasitoids of pollinator offspring Seed predator ‘other NPFWs’ 

 Ev Pe Po Ps1 Ps2 Ps3 Srm Srs Scg Scs Sp Pt Es Aq Oc Og Oi Oq Md Wm Wn Ws Sm Smp Sp Ol So St 

Natural range                            

GZ 100 4 27 0 0 0 27 0 20 0 4 43 0 0 6 29 13 1 3 21 0 0 9 0 5 2 9 15 

XS 100 10 5 0 0 0 4 4 12 0 5 20 37 0.4 7 0.4 4 1 5 11 4 0 1 0 0 0 10 17 

TB 100 7 2 0 0 0 20 0 43 4 5 41 0 0 2 55 4 1 20 2 0 0 15 8 24 0 9 16 

BK 100 30 0 0 0 2 0 0 0 0 2 40 0 0 9 0 23 0 2 16 0 5 0 0 0 0 5 9 

CM 100 0 0 0 0 0 11 0 13 0 2 2 0 0 6 0 0 0 0 0 9 0 0 0 0 0 2 6 

KC 100 6 6 2 2 2 23 0 4 0 7 1 0 0 8 2 23 0 13 4 0 0 6 0 0 0 6 15 

MN 100 0 0 0 0 0 80 0 0 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Translocated range                           

Chinese extension range                           

CD 100 0 0 0 0 0 0 0 0 0 0 0 0 0 48 57 0 0 0 0 0 0 0 0 0 0 2 3 

PZ 100 0 29 0 0 0 0 0 0 0 1 26 0 0 29 35 0 0 0 48 0 0 23 0 0 0 4 7 

SM 100 0 9 0 0 0 0 0 0 0 1 0 0 0 30 30 22 0 4 26 0 0 0 0 0 0 5 7 

XC 100 0 0 0 0 0 0 0 0 0 0 0 0 0 8 17 0 0 0 13 0 0 8 3 1 0 6 7 

Non-Asian translocation range                          

BR 100 0 0 0 0 0 0 0 0 0 0 0 0 0 23 31 0 0 0 0 0 0 31 15 0 0 4 5 

BM 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 0 0 64 4 0 0 0 0 0 0 3 4 

RJ 100 1 26 0 0 0 0 0 0 0 2 30 0 0 0 0 23 0 0 23 6 0 0 0 0 0 3 7 

TN 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 1 2 

DV 100 0 4 0 0 0 0 0 49 0 2 25 0 0 0 83 0 0 92 0 0 0 3 0 0 0 3 7 

RD 100 6 0 0 0 0 0 0 0 0 1 0 0 0 0 45 0 0 0 3 0 0 16 0 0 0 3 5 

SY 100 21 0 0 0 0 0 0 0 0 1 0 0 0 0 47 11 0 0 0 0 0 0 0 0 0 2 4 



SC 100 1 0 0 0 0 0 0 0 0 1 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 1 3 

TP 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 0 0 0 0 0 0 0 0 0 0 1 2 

MT 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 0 0 1 2 

PR 100 5 20 0 0 0 0 0 0 0 2 30 0 0 0 0 20 0 39 16 0 0 0 0 0 0 3 7 

MJ 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 13 21 0 0 0 0 0 0 3 4 

MM 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 
  



Table S6. Comparisons of different fig contents, pollinator foundress number, gall failure rate, occupancy rate, pollinator sex ratio and pollinator 
abundance : seed number ratio (the P:S ratio) (per fig) between different ranges of F. microcarpa, using GLMMs that assumed either binomial 
(B) and Poisson (P) distributions of residuals. A total of 79,846 fig wasps were present within the figs, comprising 58,023 pollinators and 21,823 
NPFWs. A total of 88996 ovules had been galled by pollinators or a galler NPFW, with 10.5% ± 0.3% of these galls failing to support the full 
development of fig wasp offspring (failed galls).  
 

Response variable Fixed effect Model df LR test 

    df LR p 
Male floret number Range GLMMs (P) 1488 1 0.23 0.634 NS 
Ovule number Range GLMMs (P) 1488 1 0.01 0.923 NS 
Abundance of total fig wasps Range GLMMs (P) 1488 1 0.10 0.747 NS 
Pollinator abundance Range GLMMs (P) 1488 1 <0.01 0.986 NS 
Seed number Range GLMMs (P) 1488 1 6.39 0.011 * 
Number of pollinator foundresses Range GLMMs (P) 478 1 0.11 0.744 NS 
Gall failure rate Range GLMMs (B) 1488 1 2.56 0.110 NS 
Occupancy rate Range GLMMs (B) 1488 1 0.33 0.567 NS 
Pollinator sex ratio Range GLMMs (B) 1488 1 0.77 0.380 NS 
P:S ratio Range GLMMs (B) 1488 1 13.37 0.001 ***  

 

NS: not significant; *: p<0.05; ** : p<0.01; *** : p<0.001. 
 
  



Table S7. Comparisons of the prevalence, abundance and species richness of total NPFWs and three component categories of fig wasps between 
different ranges of F. microcarpa, using GLMMs that assumed either binomial (B) and Poisson (P) distributions of residuals. 
 

Response variable Fixed effect Model df LR test 

    df LR p 
Prevalence of total NFPWs Range GLMMs (B) 1488 1 0.39 0.531 NS 
Prevalence of parasitoids of pollinator offspring Range GLMMs (B) 1488 1 12.01 <0.001 ***  
Prevalence of seed predator Range GLMMs (B) 1488 1 9.92 0.002 **  
Prevalence of ‘other NPFWs’ Range GLMMs (B) 1488 1 2.13 0.145 NS 
Abundance of total NFPWs Range GLMMs (P) 1488 1 0.02 0.893 NS 
Abundance of parasitoids of pollinator offspring Range GLMMs (P) 1488 1 11.27 <0.001 ***  
Abundance of seed predator Range GLMMs (P) 1488 1 10.35 0.001 **  
Abundance of ‘other NPFWs’ Range GLMMs (P) 1488 1 4.90 0.027 * 
Species richness of total NFPWs Range GLMMs (P) 1488 1 2.29 0.131 NS 
Species richness of parasitoids of pollinator offspring Range GLMMs (P) 1488 1 12.31 <0.001 ***  
Species richness of seed predator Range GLMMs (P) 1488 1 9.37 0.002 **  
Species richness of ‘other NPFWs’ Range GLMMs (P) 1488 1 1.82 0.177 NS 

 
NS: not significant; *: p<0.05; ** : p<0.01; *** : p<0.001. 
  



Table S8. Comparisons of the strengths of effects of different categories of fig wasps on pollinator abundance, seed number and the P:S ratio 
between different ranges of F. microcarpa, using GLMMs that assumed either binomial (B) and Poisson (P) distributions of residuals. 
 

Response variable Fixed effect Model df LR test Z-test 

    df LR p Range Slope (mean ± S.E.) z value p 

Pollinator abundance Abundance of the parasitoids of 

pollinator offspring × Range 

GLMMs (P) 1117 1 91.10 <0.001 ***  Natural -0.07 ± 0.01 -8.05 <0.001 ***  

Translocated 0.09 ± 0.01 6.40  <0.001 ***  

Seed number Abundance of the parasitoids of 

pollinator offspring × Range 

GLMMs (P) 1117 1 0.48 0.490 NS Natural -0.02 ± 0.01 -1.93 0.053 NS 

Translocated -0.03 ± 0.02 -1.74 0.082 NS 

P:S ratio Abundance of the parasitoids of 

pollinator offspring × Range 

GLMMs (B) 1117 1 41.79 <0.001 ***  Natural -0.07 ± 0.01 -5.13 <0.001 ***  

Translocated 0.12 ± 0.03 4.58 <0.001 ***  

Pollinator abundance Abundance of the seed predator 

× Range 

GLMMs (P) 873 1 0.81 0.369 NS Natural -0.001 ± 0.01 -0.07 0.948 NS 

Translocated -0.02 ± 0.02 -1.05 0.293 NS 

Seed number Abundance of the seed predator 

× Range 

GLMMs (P) 873 1 0.02 0.901 NS Natural -0.02 ± 0.01 -1.99 0.047 * 

Translocated -0.02 ± 0.02 -0.85 0.395 NS 

P:S ratio Abundance of the seed predator 

× Range 

GLMMs (B) 873 1 0.20 0.658 NS Natural 0.03 ± 0.01 1.82 0.053 NS 

Translocated 0.01 ± 0.03 0.51 0.612 NS 

Pollinator abundance Abundance of ‘other NPFWs’ × 

Range 

GLMMs (P) 1436 1 2.68 0.101 NS Natural -0.16 ± 0.01 -21.84 <0.001 ***  

Translocated -0.18 ± 0.01 -34.58 <0.001 ***  

Seed number Abundance of ‘other NPFWs’ × 

Range 

GLMMs (P) 1436 1 3.56 0.059 NS Natural -0.14 ± 0.01 -17.98 <0.001 ***  

Translocated -0.16 ± 0.01 -25.39 <0.001 ***  

P:S ratio Abundance of ‘other NPFWs’ × 

Range 

GLMMs (B) 1436 1 0.62 0.431 NS Natural -0.002 ± 0.01 -0.18 0.859 NS 

Translocated 0.01 ± 0.01 1.07 0.287 NS 

 

NS: not significant; *: p<0.05; ** : p<0.01; *** : p<0.001; ×: interaction. 
 
  



Table S9. Contents in the figs where pedicel lengths of all ovules were measured for analyzing the oviposition preferences of fig wasps. Order and 
abbreviations of species are as in Table S2, and clustering of fig wasps are as in Table S5. 
 

Content Unused 

ovules 

Failed 

galls 

Seeds Pollinating 

agaonids 

Parasitoids of pollinators Seed 

predator 

‘Other NPFWs’ Total 

ovules 

Species    Ev Pe Po Srm Srs Scg Sum Pt Es Oc Og Oi Md Wm Sm Smp Sp Sum  

Natural range 4778 468 1500 1772 71 17 55 21 73 237 250 130 71 66 114 12 52 18 11 9 483 9488 

Translocated range 5412 487 2013 2647 0 5 0 0 7 12 0 0 73 571 0 98 99 34 19 16 910 11481 

Total 10190 955 3513 4419 71 22 55 21 80 249 250 130 144 637 114 110 151 52 30 25 1393 20969 

 
  



Table S10. Comparisons of lengths of ovule pedicels and pollinator ovipositors (mm) and trends in the proportions of ovules containing different 
contents in relation to increasing pedicel lengths in the figs used in the oviposition preference study between different ranges of F. microcarpa, 
using LMMs and GLMMs assuming binomial distributions of residuals. 
 

Response variable Fixed effect Model df LR test Z-test 

    df LR p Range Slope (mean ± S.E.) z value p 

Pedicel lengths of all ovules Range LMMs 1, 20833 1 3.12 0.077 NS -- -- -- -- 

-- -- -- -- 

Pedicel lengths of ovules becoming 

galls of pollinators and parasitoids of 

pollinator offspring and failed galls 

Range LMMs 1, 5487 1 8.24 0.004 **  -- -- -- -- 

-- -- -- -- 

Ovipositor lengths of pollinators Range LMMs 1, 366 1 2.71 0.100 NS -- -- -- -- 

-- -- -- -- 

Proportion of ovules becoming galls 

of pollinators, parasitoids of pollinator 

offspring and failed galls 

Pedicel length × Range GLMMs (B) 20962 1 108.26 <0.001 ***  Natural 7.22 ± 0.16 44.66 <0.001 ***  

Translocated 5.14 ± 0.12 41.58 <0.001 ***  

Proportion of ovules becoming seeds 

and galls of seed predator 

Pedicel length × Range GLMMs (B) 20962 1 176.74 <0.001 ***  Natural -0.50 ± 0.14 -3.52 <0.001 ***  

Translocated -3.37 ± 0.17 -20.34 <0.001 ***  

Proportion of ovules containing 

pollinating agaonids 

Pedicel length × Range GLMMs (B) 20962 1 115.43 <0.001 ***  Natural 6.96 ± 0.17 40.41 <0.001 ***  

Translocated 4.72 ± 0.13 37.66 <0.001 ***  

Proportion of ovules becoming seeds Pedicel length × Range GLMMs (B) 20962 1 178.75 <0.001 ***  Natural -0.42 ± 0.15 -2.81 0.005 **  

Translocated -3.38 ± 0.17 -20.35 <0.001 ***  

 
NS: not significant; *: p<0.05; ** : p<0.01; *** : p<0.001; ×: interaction. 
 
 



 

 
 
Figure S1. Comparisons of prevalence, abundance and species richness of all NPFW 
species and the three categories of NPFWs between two ranges of F. microcarpa (a-c). 
Groupings of NPFW species are as shown in Table S5, and different letters indicate 
significant differences based on the results from GLMMs (see table S7). 
  



 

 
 
Fig. S2. Effects of the seed predator (a-c) and ‘other NPFWs’ (d-f) on pollinator 
abundance, seed number and the P:S ratio in different ranges of F. microcarpa. Black 
curves with squares, red curves with circles and blue curves with triangles represent the 
regression functions and the data points (per fig) in the natural and the translocated 
ranges of F. microcarpa. Solid and dashed curves represent significant and 
nonsignificant relationships, respectively (see Table S8).  
  



 

 
 
Figure S3. Trends of the proportions of ovules containing pollinator offspring (a) and 
those becoming seeds (b) towards increasing pedicel lengths in different ranges of F. 
microcarpa. The proportion of ovules containing each of the two contents to total ovules 
(mean ± S.E.) is shown for every 0.1 unit of LN(x+1)-transformed pedicel length except 
for the last one, which includes all ovules with pedicel lengths larger than 0.6 unit 
(shown at 0.65 unit). Different letters indicate significant differences in the strength of 
effects (reflected by the slopes of GLMMs) between two ranges (see Table S10). 
  



Electronic supplementary material for comparative results (three ranges) 

Comparisons of fig contents and benefits of mutualists 

We recorded the contents of 1,492 figs that contained E. verticillata (table S1). 

Each fig contained about 17 male florets and 178 ovules, with no significant 

differences among the three ranges (table S11; figure S4a). Both occupancy rate and 

gall failure rate did not vary across the three range types (table S11; figure S4b), and 

the pollinator was the predominant species, with similar abundance, foundress 

numbers and sex ratios of pollinator offspring in all three ranges (table S11; figure 

S4a, b). These results suggested that the plant’s initial reproductive investment to each 

fig and the colonisation success of fig wasps were consistent across different ranges.  

Figs from the natural range however contained on average about 25% more seeds 

than those from the two translocated ranges (table S11; figure S4a) and consequently 

led to a significant change in the relative benefits for the two mutualists mirrored by 

significantly higher P:S ratio in both translocated ranges (table S11; figure S4b).  

 

Comparisons of NPFW communities and their effects 

We recorded a total of 24 morphospecies of NPFWs in the figs (table S5), and 

their overall prevalence, abundance and species richness did not vary significantly 

among different ranges (table S12; figure S5a-c). However, the parasitoids of 

pollinator offspring and the seed predator were absent from most sample sites in both 

translocated ranges (table S5), and their prevalence, abundance and species richness in 

the plant’s natural range were significantly higher than in the two translocated ranges 



(table S12; figure S5a-c). In contrast, prevalence, abundance and species richness of 

‘other NPFWs’ were similar in all three ranges (table S12; figure S5a-c).  

Within the natural range of F. microcarpa, the abundance of parasitoids of 

pollinator offspring had significant negative relationships with both pollinator 

abundance and the P:S ratio within individual figs (table S13; figure S6a-c), while 

parasitoid abundance failed to negatively affect either measure in the two translocated 

ranges (table S13; figure S6a-c), showing that the rarity of parasitoids of pollinator 

offspring benefited pollinator populations and consequently facilitated the change of 

relative benefits for the two mutualists. This category of NPFWs had no effects on the 

number of seeds in figs, irrespective of location (table S13; figure S6a-c).  

The seed predator and ‘other NPFWs’ had no significant effects on the P:S ratio 

(table S13; figure S7c, f), though ‘other NPFWs’ had significant negative relationships 

with both pollinator abundance and seed number in any of the three ranges (table S13; 

figure S7d, e). 

 

Alterations in pollinator oviposition preferences 

We measured the pedicel lengths of a total of 20,969 ovules from 136 figs (table 

S14). Mean pedicel and pollinator ovipositor lengths did not differ among the three 

ranges (table S15), showing that key morphological traits of both mutualists did not 

change after translocation. The parasitoids of pollinator offspring and the seed predator 

were rare in both translocated ranges, while ‘other NPFWs’ were relatively common 

throughout (table S14). 



The proportion of ovules galled by pollinators (and containing either pollinator 

offspring, parasitoids of pollinator offspring or were empty) increased with increasing 

pedicel length, i.e. towards the central area of the figs (table S15; figure 8a). This trend 

was significantly stronger in the plant's natural range than in the two translocated 

ranges (table S15; figure 8a) and reflects an apparent alteration in pollinator 

oviposition preferences. Conversely, ovules with longer pedicels (located towards the 

central area of the figs) were less likely to contain seeds or the offspring of the seed 

predator, and this trend was significantly stronger in the two translocated ranges than 

the natural range (table S15; figure 8b), indicating that the expanded oviposition range 

of pollinators restricted the availability of seeds. In addition, pedicels of pollinator-

galled ovules (containing pollinators, parasitoids of pollinator offspring or as failed 

galls) were significantly longer in figs from the natural range than in those from 

translocated ranges (table S15), further confirming that pollinator foundresses were 

more willing to oviposit in ovules closer to the fig wall in the two translocated ranges. 

We detected similar spatial distribution patterns when only galls containing pollinators 

or seeds were considered (table S15; figure 9a, b).  

  



Table S11. Comparisons of different fig contents, pollinator foundress number, gall failure rate, occupancy rate, pollinator sex ratio and pollinator 
abundance : seed number ratio (P:S) (per fig) among different ranges of F. microcarpa, using GLMMs that assumed either binomial (B) and 
Poisson (P) distributions of residuals. A total of 79,846 fig wasps were found within the figs, comprising 58,023 pollinators and 21,823 NPFWs. A 
total of 88996 ovules had been galled by pollinators or galler NPFWs, with 10.5% ± 0.3% of these galls failing to support the full development of 
fig wasp offspring (empty galls). Bonferroni corrections were used to evaluate the significance of multiple pair-wise tests among different ranges, 
and the corrected significance was presented as ‘NS: not significant; *: p<0.05; ** : p<0.01 and *** : p<0.001’. 
 

Response variable Fixed effect Model df LR test Pair-wise comparison 

    df LR p Comparison pair (mean value (mean ± S.E.)) z value p 

Male floret number Range GLMMs (P) 1487 2 2.94 0.230 NS Natural vs. Chinese extension 0.87 0.383 NS 

Natural vs. Non-Asian translocation -0.98 0.326 NS 

Chinese extension vs. Non-Asian translocation -1.68 0.092 NS 

Ovule number Range GLMMs (P) 1487 2 0.11 0.944 NS Natural vs. Chinese extension 0.16 0.870 NS 

Natural vs. Non-Asian translocation -0.19 0.852 NS 

Chinese extension vs. Non-Asian translocation -0.32 0.745 NS 

Abundance of total fig 

wasps 

Range GLMMs (P) 1487 2 0.44 0.803 NS Natural vs. Chinese extension 0.64  0.519 NS 

Natural vs. Non-Asian translocation 0.15 0.884 NS 

Chinese extension vs. Non-Asian translocation -0.58 0.563 NS 

Pollinator abundance Range GLMMs (P) 1487 2 0.20 0.907 NS Natural vs. Chinese extension 0.34 0.733 NS 

Natural vs. Non-Asian translocation -0.11 0.915 NS 

Chinese extension vs. Non-Asian translocation -0.44 0.658 NS 

Seed number Range GLMMs (P) 1487 2 7.07 0.029 * Natural vs. Chinese extension 2.41 0.016 * 

Natural vs. Non-Asian translocation 2.48 0.013 * 

Chinese extension vs. Non-Asian translocation -0.82 0.411 NS 

Number of pollinator 

foundresses 

Range GLMMs (P) 477 2 3.87 0.144 Natural (1.47 ± 0.06) vs. Chinese extension (1.74 ± 0.19) -1.38 0.167 NS 

Natural vs. Non-Asian translocation (1.37 ± 0.06) 0.93 0.353 NS 

Chinese extension vs. Non-Asian translocation 1.99 0.047 NS 

Gall failure rate Range GLMMs (B) 1487 2 2.59 0.274 NS Natural vs. Chinese extension -0.94 0.349 NS 



Natural vs. Non-Asian translocation -1.64 0.100 NS 

Chinese extension vs. Non-Asian translocation -0.16 0.870 NS 

Occupancy rate Range GLMMs (B) 1487 2 0.83 0.661  Natural vs. Chinese extension 0.92 0.358 NS 

Natural vs. Non-Asian translocation 0.36 0.718 NS 

Chinese extension vs. Non-Asian translocation -0.71 0.478 NS 

Pollinator sex ratio Range GLMMs (B) 1487 2 2.33 0.312 NS Natural vs. Chinese extension 0.32 0.746 NS 

Natural vs. Non-Asian translocation -1.25 0.213 NS 

Chinese extension vs. Non-Asian translocation -1.26 0.206 NS 

P:S ratio Range GLMMs (B) 1487 2 13.81 0.001 **  Natural vs. Chinese extension -3.26 0.001 **  

Natural vs. Non-Asian translocation -3.99 <0.001 ***  

Chinese extension vs. Non-Asian translocation  0.66 0.507 NS 

 
  



Table S12. Comparisons of the prevalence, abundance and species richness of total NPFWs and three component categories of fig wasps among 
different ranges of F. microcarpa, using GLMMs that assumed either binomial (B) and Poisson (P) distributions of residuals. Bonferroni corrections 
were used to evaluate the significance of multiple pair-wise tests among different ranges, and the corrected significance was presented as ‘NS: not 
significant; *: p<0.05; ** : p<0.01 and *** : p<0.001’. 
 

Response variable Fixed effect Model df LR test Pair-wise comparison 

    df LR p Comparison pair z value p 

Prevalence of total 

NFPWs 

Range GLMMs (B) 1487 2 0.40 0.818 NS Natural vs. Chinese extension 0.35 0.725 NS 

Natural vs. Non-Asian translocation 0.64 0.522 NS 

Chinese extension vs. Non-Asian translocation 0.10 0.920 NS 

Prevalence of parasitoids 

of pollinator offspring 

Range GLMMs (B) 1487 2 12.02 0.002 **  Natural vs. Chinese extension 2.41 0.016 * 

Natural vs. Non-Asian translocation 3.38 0.001 **  

Chinese extension vs. Non-Asian translocation 0.06 0.956 NS 

Prevalence of seed 

predator 

Range GLMMs (B) 1487 2 9.93 0.007 **  Natural vs. Chinese extension 2.33 0.016 * 

Natural vs. Non-Asian translocation 2.60 0.009 * 

Chinese extension vs. Non-Asian translocation 0.12 0.906 NS 

Prevalence of ‘other 

NPFWs’ 

Range GLMMs (B) 1487 2 2.35 0.308 NS Natural vs. Chinese extension -1.35 0.178 NS 

Natural vs. Non-Asian translocation -1.27 0.205 NS 

Chinese extension vs. Non-Asian translocation 0.48 0.633 NS 

Abundance of total 

NFPWs 

Range GLMMs (P) 1487 2 0.78 0.678 NS Natural vs. Chinese extension -0.55 0.582 NS 

Natural vs. Non-Asian translocation 0.38 0.706 NS 

Chinese extension vs. Non-Asian translocation 0.87 0.387 NS 

Abundance of parasitoids 

of pollinator offspring 

Range GLMMs (P) 1487 2 11.28 0.004 **  Natural vs. Chinese extension 2.53 0.014 * 

Natural vs. Non-Asian translocation 3.28 0.001 **  

Chinese extension vs. Non-Asian translocation 0.08 0.935 NS 

Abundance of seed 

predator 

Range GLMMs (P) 1487 2 10.38 0.006 **  Natural vs. Chinese extension 2.52 0.014 * 

Natural vs. Non-Asian translocation 2.88 0.004 * 

Chinese extension vs. Non-Asian translocation 0.14 0.891 NS 



Abundance of ‘other 

NPFWs’ 

Range GLMMs (P) 1487 2 5.56 0.062 NS Natural vs. Chinese extension -2.20 0.028 NS 

Natural vs. Non-Asian translocation -2.01 0.042 NS 

Chinese extension vs. Non-Asian translocation 0.81 0.417 NS 

Species richness of total 

NFPWs 

Range GLMMs (P) 1487 2 2.82 0.244 NS Natural vs. Chinese extension 0.57 0.570 NS 

Natural vs. Non-Asian translocation 1.73 0.084 NS 

Chinese extension vs. Non-Asian translocation 0.73 0.463 NS 

Species richness of 

parasitoids of pollinator 

offspring 

Range GLMMs (P) 1487 2 12.31 0.002 **  Natural vs. Chinese extension 2.45 0.014 * 

Natural vs. Non-Asian translocation 3.45 0.001 **  

Chinese extension vs. Non-Asian translocation 0.05 0.957 NS 

Species richness of seed 

predator 

Range GLMMs (P) 1487 2 9.39 0.009 **  Natural vs. Chinese extension 2.33 0.016 * 

Natural vs. Non-Asian translocation 2.56 0.011 * 

Chinese extension vs. Non-Asian translocation 0.12 0.906 NS 

Species richness of ‘other 

NPFWs’ 

Range GLMMs (P) 1487 2 2.50 0.287 NS Natural vs. Chinese extension -1.53 0.125 NS 

Natural vs. Non-Asian translocation -1.06 0.289 NS 

Chinese extension vs. Non-Asian translocation  0.82 0.411 NS 



Table S13. Comparisons of the strengths of effects of different categories of fig wasps on pollinator abundance, seed number and the P:S ratio 
among different ranges of F. microcarpa, using GLMMs that assumed either binomial (B) and Poisson (P) distributions of residuals. Note that we 
only compared the strengths of effects of the seed predator between the Natural and the Non-Asian translocation ranges because only 8 figs 
contained the seed predator in the extension to the Chinese range. Bonferroni corrections were used to evaluate the significance of multiple pair-
wise tests among different ranges, and the corrected significance was presented as ‘NS: not significant; *: p<0.05; ** : p<0.01 and *** : p<0.001’. 
 

Response variable Fixed effect Model df LR test Pair-wise comparison 

    df LR p Comparison pair (slope (mean ± S.E.)) z value p 

Pollinator abundance Abundance of the 

parasitoids of pollinator 

offspring × Range 

GLMMs (P) 1115 2 94.67 <0.001 ***  Natural (-0.07 ± 0.01 *** ) vs. Chinese extension (0.04 ± 0.04 NS) -3.01 0.003 **  

Natural vs. Non-Asian translocation (0.11 ± 0.02 *** ) -9.68  <0.001 ***  

Chinese extension vs. Non-Asian translocation  -1.87 0.061 NS 

Seed number Abundance of the 

parasitoids of pollinator 

offspring × Range 

GLMMs (P) 1115 2 1.86 0.394 NS Natural (-0.02 ± 0.01 NS) vs. Chinese extension (-0.09 ± 0.05 NS) 1.34 0.181 NS 

Natural vs. Non-Asian translocation (-0.02 ± 0.02 NS) 0.24 0.808 NS 

Chinese extension vs. Non-Asian translocation  -1.17 0.244 NS 

P:S ratio Abundance of the 

parasitoids of pollinator 

offspring × Range 

GLMMs (B) 1115 2 41.95 <0.001 ***  Natural (-0.07 ± 0.01 *** ) vs. Chinese extension (0.10 ± 0.06 NS) -2.52 0.012 * 

Natural vs. Non-Asian translocation (0.12 ± 0.03 *** ) -6.14 <0.001 ***  

Chinese extension vs. Non-Asian translocation -0.38 0.703 NS 

Pollinator abundance Abundance of the seed 

predator × Range 

GLMMs (P) 842 1 1.42 0.234 NS Natural (-0.01 ± 0.01 NS) vs. Non-Asian translocation (-0.02 ± 0.02 NS) 1.19 0.235 NS 

Seed number Abundance of the seed 

predator × Range 

GLMMs (P) 842 1 1.63 0.202 NS Natural (-0.02 ± 0.01 *) vs. Non-Asian translocation (-0.01 ± 0.02 NS) -1.28 0.201 NS 

P:S ratio Abundance of the seed 

predator × Range 

GLMMs (B) 842 1 2.29 0.130 NS Natural (0.03 ± 0.01 NS) vs. Non-Asian translocation (-0.02 ± 0.03 NS) 1.51 0.130 NS 

Pollinator abundance Abundance of ‘other 

NPFWs’ × Range 

GLMMs (P) 1434 2 3.48 0.175 NS Natural (-0.16 ± 0.01 *** ) vs. Chinese extension (-0.17 ± 0.01 *** ) 0.46 0.647 NS 

Natural vs. Non-Asian translocation (-0.18 ± 0.01 *** ) 1.83 0.068 NS 

Chinese extension vs. Non-Asian translocation  0.90 0.370 NS 

Seed number Abundance of ‘other 

NPFWs’ × Range 

GLMMs (P) 1434 2 6.09 0.055 NS Natural (-0.14 ± 0.01 *** ) vs. Chinese extension (-0.18 ± 0.01 *** ) 1.94 0.041 NS 

Natural vs. Non-Asian translocation (-0.16 ± 0.01 *** ) 1.82 0.068 NS 

Chinese extension vs. Non-Asian translocation  -1.37 0.171 NS 

P:S ratio Abundance of ‘other 

NPFWs’ × Range 

GLMMs (B) 1434 2 0.62 0.734 NS Natural (-0.01 ± 0.01 NS) vs. Chinese extension (0.01 ± 0.02 NS) -0.55 0.581 NS 

Natural vs. Non-Asian translocation (0.01 ± 0.01 NS) -0.73 0.464 NS 

Chinese extension vs. Non-Asian translocation 0.07  0.947 NS 



Table S14. Contents in the figs where pedicel lengths of all ovules were measured for analysing the oviposition preferences of fig wasps. Order 
and abbreviations of species are as in Table S2, and clustering of fig wasps are as in Table S5. 
 

Content Unused 

ovules 

Failed 

galls 

Seeds Pollinating 

agaonids 

Parasitoids of pollinators Seed 

predator 

‘Other NPFWs’ Total 

ovules 

Species    Ev Pe Po Srm Srs Scg Sum Pt Es Oc Og Oi Md Wm Sm Smp Sp Sum  

Natural 4778 468 1500 1772 71 17 55 21 73 237 250 130 71 66 114 12 52 18 11 9 483 9488 

Chinese extension 1555 104 891 1044 0 0 0 0 0 0 0 0 73 109 0 21 87 23 19 16 348 3942 

Non-Asian translocation 3857 383 1122 1603 0 5 0 0 7 12 0 0 0 462 0 77 12 11 0 0 562 7539 

Total 10190 955 3513 4419 71 22 55 21 80 249 250 130 144 637 114 110 151 52 30 25 1393 20969 

 
  



Table S15. Comparisons of lengths of ovule pedicels and pollinator ovipositors (mm) and trends in the proportions of ovules containing different 
contents in relation to increasing pedicel lengths in the figs used in the oviposition preference study among different ranges of F. microcarpa, using 
LMMs and GLMMs assuming binomial distributions of residuals. Bonferroni corrections were used to evaluate the significance of multiple pair-
wise tests among different ranges, and the corrected significance was presented as ‘NS: not significant; *: p<0.05; ** : p<0.01 and *** : p<0.001’. 
 

Response variable Fixed effect Model df LR test Pair-wise comparison 

    df LR p Comparison pair (mean value/slope (mean ± S.E.)) t/z value p 

Pedicel lengths of all ovules Range LMMs 2, 20833 2 3.29 0.193 NS Natural (0.246 ± 0.003) vs. Chinese extension (0.243 ± 0.004) 1.76 0.093 NS 

Natural vs. Non-Asian translocation (0.250 ± 0.003) 1.55 0.137 NS 

Chinese extension vs. Non-Asian translocation -0.41 0.690 NS 

Pedicel lengths of ovules becoming 

galls of pollinators and parasitoids of 

pollinator offspring and failed galls 

Range LMMs 2, 5487 2 10.68 0.005 **  Natural (0.484 ± 0.006) vs. Chinese extension (0.396 ± 0.008) 4.67 0.002 **  

Natural vs. Non-Asian translocation (0.445 ± 0.007) 3.54 0.008 * 

Chinese extension vs. Non-Asian translocation -1.60 0.149 NS 

Ovipositor lengths of pollinators Range LMMs 2, 366 2 4.08 0.130 NS Natural (0.681 ± 0.011) vs. Chinese extension (0.725 ± 0.010) -1.37 0.184 NS 

Natural vs. Non-Asian translocation (0.736 ± 0.008) -2.04 0.054 NS 

Chinese extension vs. Non-Asian translocation  -0.49 0.631 NS 

Proportion of ovules becoming galls 

of pollinators, parasitoids of 

pollinator offspring and failed galls 

Pedicel 

length × 

Range 

GLMMs (B) 20960 2 108.29 <0.001 ***  Natural (7.22 ± 0.16 *** ) vs. Chinese extension (5.01 ± 0.22 *** ) 8.14 <0.001 ***  

Natural vs. Non-Asian translocation (5.20 ± 0.15 *** ) 9.91 <0.001 ***  

Chinese extension vs. Non-Asian translocation -0.69 0.489 NS 

Proportion of ovules becoming seeds 

and galls of seed predator 

Pedicel 

length × 

Range 

GLMMs (B) 20960 2 181.37 <0.001 ***  Natural (-0.50 ± 0.14 *** ) vs. Chinese extension (-2.96 ± 0.25 *** ) 8.45 <0.001 ***  

Natural vs. Non-Asian translocation (-3.67 ± 0.22 *** ) 12.08 <0.001 ***  

Chinese extension vs. Non-Asian translocation 2.12 0.034 NS 

Proportion of ovules containing 

pollinating agaonids 

Pedicel 

length × 

Range 

GLMMs (B) 20960 2 114.56 <0.001 ***  Natural (6.95 ± 0.17 *** ) vs. Chinese extension (4.82 ± 0.22 *** ) 7.65 <0.001 ***  

Natural vs. Non-Asian translocation (4.67 ± 0.15 *** ) 9.92 <0.001 ***  

Chinese extension vs. Non-Asian translocation 0.57 0.567 NS 

Proportion of ovules becoming seeds Pedicel 

length × 

Range 

GLMMs (B) 20960 2 183.75 <0.001 ***  Natural (-0.42 ± 0.15 *) vs. Chinese extension (-2.97 ± 0.25 *** ) 8.67 <0.001 ***  

Natural vs. Non-Asian translocation (-3.68 ± 0.22 *** ) 12.25 <0.001 ***  

Chinese extension vs. Non-Asian translocation 2.12 0.034 NS 

 



 

 
 
Figure S4. Comparisons of fig contents, gall failure rates, occupancy rates, pollinator 
sex ratios and the P:S ratio among different ranges of F. microcarpa (a-c). Different 
letters indicate significant differences (see table S11). 
 
  



 

 
 
Figure S5. Comparisons of the prevalence, abundance and species richness of all NPFW 
species and the three categories of NPFWs in different ranges (a-c). Groupings of 
NPFW species are as shown in Table S5, and different letters indicate significant 
differences (see table S12). 
 
  



 

 
 
Figure S6. Relationships between the abundance of parasitoids of pollinator offspring 
and pollinator abundance, seed number and the P:S ratio in different ranges (a-c). Solid 
and dashed lines represent significant and nonsignificant relationships, with different 
letters indicating significant differences in the strength of relationships (as reflected by 
the slopes of GLMMs) among different ranges (see table S13). 
 



 

 
 
Figure S7. Effects of the seed predator (a-c) and ‘other NPFWs’ (d-f) on pollinator 
abundance, seed number and the pollinator abundance : seed number ratio (P:S) in 
different ranges of F. microcarpa. Solid and dashed curves represent significant and 
nonsignificant relationships, respectively (see Table S13). We only tested and compared 
the effects of the seed predator in the natural and the non-Asian translocation ranges 
because only 8 figs contained seed predators in the Chinese extension range. 
  



 

 
 
Figure S8. The relationships between pedicel length and the proportions of ovules 
developing as galls of pollinator fig wasps and their parasitoids (a), and those becoming 
seeds or containing seed predators (b). Trends in different ranges are displayed 
separately, and the proportions of total ovules with different contents (means ± SE) are 
shown for every 0.1 unit of LN(x+1)-transformed pedicel length. Different letters 
indicate significant differences in the strength of relationships (as reflected by the slopes 
of GLMMs) among different ranges (see table S15). 
  



 

 

 
Figure S9. Trends of the proportions of ovules containing pollinator offspring (a) 
becoming seeds (b) and those containing ‘other NPFWs’ (c) towards increasing pedicel 
lengths in different ranges of F. microcarpa. The proportion of ovules containing each 
content to total ovules (mean ± S.E.) is shown for every 0.1 unit of LN(x+1)-
transformed pedicel length except for the last one, which includes all ovules with 
pedicel lengths larger than 0.6 unit (shown at 0.65 unit). Different letters indicate 
significant differences in the strength of effects (as reflected by the slopes of GLMMs) 
among different ranges (see table S15). We did not test the trends of ‘other NPFWs’ 
because the overall proportion (6.64%) of ovules containing this category was very low, 
and it also is composed of many NPFW species with contrasting differences in 
oviposition time and behaviour.  
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