2,026 research outputs found
Social Support and Attitudes to Aging in Later Life
Negative attitudes to aging are a risk factor for poor health and well-being. The current study sought to examine satisfaction with social support as a potentially modifiable factor that might facilitate the development of more positive attitudes to aging. A convenience sample of 501 older respondents (Mage = 72.06) reported on frequency of social support and their satisfaction with it, as well as completing a rating of attachment (model of the self and others), a measure of attitudes to aging, and a number of background measures. Results indicated that better subjective health, younger age, and greater satisfaction with social support were all significant predictors of more positive attitudes to aging, while frequency of social support was not. Model of the self accounted for some variation in satisfaction with social support. Interventions to increase satisfaction with social support in later life, recognizing individual differences and attachment styles, may improve attitudes to aging, and further support health and well-being.Data collection for this study was supported by the ESRC grant (RES-000-22-4117) awarded to S.M. Nelis (PI), L. Clare and C.J. Whitaker. We also acknowledge the support of the ESRC and NIHR through grant ES/L001853/1 ‘Improving the experience of dementia and enhancing active life: living well with dementia’ (Investigators: L. Clare, I.R. Jones, C.Victor, J.V. Hindle, R.W.Jones, M.Knapp, M.Kopelman, A.Martyr, F.Matthews, R.G.Morris, S.M.Nelis, J.Pickett, C.Quinn, J.Rusted, N.Savitch, J.Thom)
The Age of the Galactic Disk
I review different methods devised to derive the age of the Galactic Disk,
namely the Radio-active Decay (RD), the Cool White Dwarf Luminosity Function
(CWDLF), old opne clusters (OOC) and the Color Magnitude Diagram (CMD) of the
stars in the solar vicinity. I argue that the disk is likely to be 8-10 Gyr
old. Since the bulk of globulars has an age around 13 Gyr, the possibility
emerges that the Galaxy experienced a minimum of Star Formation at the end of
the halo/bulge formation. This minimum might reflect the time at which the
Galaxy started to acquire material to form the disk inside-out.Comment: 10 pages, 4 figure, invited review, in "The chemical evolution of the
Milky Way : Stars vs Clusters, Vulcano (Italy), 20-24 September 199
Bats Use Magnetite to Detect the Earth's Magnetic Field
While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals
Niche partitioning of a pathogenic microbiome driven by chemical gradients
© 2018 The Authors, some rights reserved. Environmental microbial communities are stratified by chemical gradients that shape the structure and function of these systems. Similar chemical gradients exist in the human body, but how they influence these microbial systems is more poorly understood. Understanding these effects can be particularly important for dysbiotic shifts in microbiome structure that are often associated with disease. We show that pH and oxygen strongly partition the microbial community from a diseased human lung into two mutually exclusive communities of pathogens and anaerobes. Antimicrobial treatment disrupted this chemical partitioning, causing complex death, survival, and resistance outcomes that were highly dependent on the individual microorganism and on community stratification. These effects were mathematically modeled, enabling a predictive understanding of this complex polymicrobial system. Harnessing the power of these chemical gradients could be a drug-free method of shaping microbial communities in the human body from undesirable dysbiotic states
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Nongenomic mechanisms of physiological estrogen-mediated dopamine efflux
<p>Abstract</p> <p>Background</p> <p>Neurological diseases and neuropsychiatric disorders that vary depending on female life stages suggest that sex hormones may influence the function of neurotransmitter regulatory machinery such as the dopamine transporter (DAT).</p> <p>Results</p> <p>In this study we tested the rapid nongenomic effects of several physiological estrogens [estradiol (E<sub>2</sub>), estrone (E<sub>1</sub>), and estriol (E<sub>3</sub>)] on dopamine efflux via the DAT in a non-transfected, NGF-differentiated, rat pheochromocytoma (PC12) cell model that expresses membrane estrogen receptors (ERs) α, β, and GPR30. We examined kinase, ionic, and physical interaction mechanisms involved in estrogenic regulation of the DAT function. E<sub>2</sub>-mediated dopamine efflux is DAT-specific and not dependent on extracellular Ca<sup>2+</sup>-mediated exocytotic release from vesicular monoamine transporter vesicles (VMATs). Using kinase inhibitors we also showed that E<sub>2</sub>-mediated dopamine efflux is dependent on protein kinase C and MEK activation, but not on PI3K or protein kinase A. In plasma membrane there are ligand-independent associations of ERα and ERβ (but not GPR30) with DAT. Conditions which cause efflux (a 9 min 10<sup>-9 </sup>M E<sub>2 </sub>treatment) cause trafficking of ERα (stimulatory) to the plasma membrane and trafficking of ERβ (inhibitory) away from the plasma membrane. In contrast, E<sub>1 </sub>and E<sub>3 </sub>can inhibit efflux with a nonmonotonic dose pattern, and cause DAT to leave the plasma membrane.</p> <p>Conclusion</p> <p>Such mechanisms explain how gender biases in some DAT-dependent diseases can occur.</p
Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus
BACKGROUND: Diabetic nephropathy is a serious complication of diabetes mellitus and is associated with considerable morbidity and high mortality. There is increasing evidence to suggest that dysregulation of the epigenome is involved in diabetic nephropathy. We assessed whether epigenetic modification of DNA methylation is associated with diabetic nephropathy in a case-control study of 192 Irish patients with type 1 diabetes mellitus (T1D). Cases had T1D and nephropathy whereas controls had T1D but no evidence of renal disease. METHODS: We performed DNA methylation profiling in bisulphite converted DNA from cases and controls using the recently developed Illumina Infinium(R) HumanMethylation27 BeadChip, that enables the direct investigation of 27,578 individual cytosines at CpG loci throughout the genome, which are focused on the promoter regions of 14,495 genes. RESULTS: Singular Value Decomposition (SVD) analysis indicated that significant components of DNA methylation variation correlated with patient age, time to onset of diabetic nephropathy, and sex. Adjusting for confounding factors using multivariate Cox-regression analyses, and with a false discovery rate (FDR) of 0.05, we observed 19 CpG sites that demonstrated correlations with time to development of diabetic nephropathy. Of note, this included one CpG site located 18 bp upstream of the transcription start site of UNC13B, a gene in which the first intronic SNP rs13293564 has recently been reported to be associated with diabetic nephropathy. CONCLUSION: This high throughput platform was able to successfully interrogate the methylation state of individual cytosines and identified 19 prospective CpG sites associated with risk of diabetic nephropathy. These differences in DNA methylation are worthy of further follow-up in replication studies using larger cohorts of diabetic patients with and without nephropathy
Two Earth-sized planets orbiting Kepler-20
Since the discovery of the first extrasolar giant planets around Sun-like
stars, evolving observational capabilities have brought us closer to the
detection of true Earth analogues. The size of an exoplanet can be determined
when it periodically passes in front of (transits) its parent star, causing a
decrease in starlight proportional to its radius. The smallest exoplanet
hitherto discovered has a radius 1.42 times that of the Earth's radius (R
Earth), and hence has 2.9 times its volume. Here we report the discovery of two
planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth
(0.87R Earth), orbiting the star Kepler-20, which is already known to host
three other, larger, transiting planets. The gravitational pull of the new
planets on the parent star is too small to measure with current
instrumentation. We apply a statistical method to show that the likelihood of
the planetary interpretation of the transit signals is more than three orders
of magnitude larger than that of the alternative hypothesis that the signals
result from an eclipsing binary star. Theoretical considerations imply that
these planets are rocky, with a composition of iron and silicate. The outer
planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011;
Published online 20 December 201
- …