147 research outputs found

    Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application for Adsorption of Metal Ions.

    Get PDF
    Polyacrylonitrile (PAN) nanofibers were prepared by electrospinning and they were modified with hydroxylamine to synthesize amidoxime polyacrylonitrile (AOPAN) chelating nanofibers, which were applied to adsorb copper and iron ions. The conversion of the nitrile group in PAN was calculated by the gravimetric method. The structure and surface morphology of the AOPAN nanofiber were characterized by a Fourier transform infrared spectrometer (FT-IR) and a scanning electron microscope (SEM), respectively. The adsorption abilities of Cu2+ and Fe3+ ions onto the AOPAN nanofiber mats were evaluated. FT-IR spectra showed nitrile groups in the PAN were partly converted into amidoxime groups. SEM examination demonstrated that there were no serious cracks or sign of degradation on the surface of the PAN nanofibers after chemical modification. The adsorption capacities of both copper and iron ions onto the AOPAN nanofiber mats were higher than those into the raw PAN nanofiber mats. The adsorption data of Cu2+ and Fe3+ ions fitted particularly well with the Langmuir isotherm. The maximal adsorption capacities of Cu2+ and Fe3+ ions were 215.18 and 221.37 mg/g, respectively

    Electrospinning Synthesis and Photocatalytic Activity of Mesoporous TiO2 Nanofibers

    Get PDF
    Titanium dioxide (TiO2) nanofibers in the anatase structure were successfully prepared via electrospinning technique followed by calcination process. The morphologies, crystal structure, surface area, and the photocatalytic activity of resulting TiO2 nanofibers were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen sorption, and UV-vis spectroscopy. The results revealed that calcination temperature had greatly influenced the morphologies of TiO2 nanofibers, but no obvious effect was noticed on the crystal structure of TiO2 nanofibers. The photocatalytic properties of TiO2 nanofibers were evaluated by photocatalytic degradation of rhodamine B (RhB) in water under visible light irradiation. It was observed that TiO2 nanofibers obtained by calcination at 500°C for 3 hours exhibited the most excellent photocatalytic activity. We present a novel and simple method to fabricate TiO2 nanofibers with high-photocatalytic activity

    PAN Nanofibers Reinforced with MMT/GO Hybrid Nanofillers

    Get PDF
    Single component nanofiller has shown some limitations in its performance, which can be overcome by hybrid nanofillers with two different components. In this work, montmorillonite (MMT)/graphene oxide (GO) hybrid nanofillers were formed by self-assembly and then incorporated into the polyacrylonitrile (PAN) nanofibers by electrospinning process. X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) were utilized to analyze the structures of MMT/GO hybrid nanofillers. And the effects of MMT/GO hybrid nanofillers on the morphology, thermal stability, and mechanical properties of PAN/MMT/GO composite nanofibrous membrane were examined by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and tensile test machine, respectively. The incorporation of MMT/GO hybrid nanofillers into PAN nanofibers showed a noticeable increase up to 30°C for the onset decomposition temperature and 1.32 times larger tensile strength than the pure PAN, indicating that the hybrid nanofiller is a promising candidate in improving thermal and mechanical properties of polymers

    Removal of a Cationic Dye by Adsorption/Photodegradation Using Electrospun PAN/O-MMT Composite Nanofibrous Membranes Coated with TiO

    Get PDF
    Polyacrylonitrile (PAN)/organic-modified montmorillonite (O-MMT) composite nanofibrous membranes were firstly prepared by electrospinning and then coated with titanium dioxide (TiO2) using spin coating technique. The structural morphology of the nanofibrous membranes with different mass ratio of O-MMT before and after spin coating was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The chemical property of adsorbed methylene blue (MB) was analyzed by infrared spectroscopy (IR). The adsorption and photodegradation capability of the TiO2-coated PAN/O-MMT composite nanofibrous membranes were evaluated by adsorption rate of MB and K/S values of the membranes before and after UV irradiation. The experimental results indicated that with the increase of O-MMT amount, the diameters of the nanofibers decreased and the adsorption rate of MB was evidently improved. Besides, with the increase of TiO2 film layers, the photocatalytic properties were enhanced while the adsorption process was slowed down

    Plasma treatment in textile industry

    Get PDF
    Plasma technology applied to textiles is a dry, environmentally- and worker-friendly method to achieve surface alteration without modifying the bulk properties of different materials. In particular, atmospheric non-thermal plasmas are suited because most textile materials are heat sensitive polymers and applicable in a continuous processes. In the last years plasma technology has become a very active, high growth research field, assuming a great importance among all available material surface modifications in textile industry. The main objective of this review is to provide a critical update on the current state of art relating plasma technologies applied to textile industryFernando Oliveira (SFRH/BD/65254/2009) acknowledges Fundacao para a Cioncia e Tecnologia, Portugal, for its doctoral grant financial support. Andrea Zille (C2011-UMINHO-2C2T-01) acknowledges funding from Programa Compromisso para a Cioncia 2008, Portugal

    Surface Modification of Electrospun PAN Nanofibers and Its Application for Adsorption of Lead Ions

    No full text

    Microwave-Assisted Rapid Preparation of Nano-ZnO/Ag Composite Functionalized Polyester Nonwoven Membrane for Improving Its UV Shielding and Antibacterial Properties

    No full text
    The cost and efficiency of preparing ZnO/Ag composite functional polyester membrane affect their application, for which a rapid microwave-assisted method was studied for coating ZnO/Ag composite nanoparticles on polyester nonwoven. The surface morphology, crystalline structure, and surface chemistry of the uncoated and coated polyester nonwoven was investigated by X-ray diffractometer (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and thermogravimetric (TG), respectively. Washing stability, ultraviolet properties, and antibacterial properties of before and after treatment polyester nonwoven were also investigated. The results indicated that Ag/ZnO composite nanoparticles were successfully deposited on polyester nonwoven surface. The amount of silver nitrate added in reaction has an important effect on the morphology and structure of Ag/ZnO composite on the surface of polyester fiber. The washing experiment results show that the ZnO/Ag composite functional polyester nonwoven fabric prepared by this method exhibits good washing durability after 90 min of washing. The results of UV transmission analysis showed that polyester nonwoven has an obvious increase in ultraviolet resistant properties after Ag/ZnO composite coating. When 0.2 g of silver nitrate was added into 100 mL of the reaction solution, the mean ultraviolet protection factor (UPF) of the treated polyester nonwoven reached a maximum of 219.8. The antibacterial results showed that the coated nonwoven against Escherichia coli and Staphylococcus aureus was about 94.5% and 96.6%, respectively, showing very good antibacterial properties
    corecore