40 research outputs found

    Protecting Forests in Switzerland – Science and Policy (Abstract)

    Get PDF
    In Switzerland, forests cover a surface area of 1.3 million hectares, i.e. nearly 30% of the territory. Due to the topography of the country, half the forests play a protective role against natural hazards. Climate change together with international trade and changes in forest management challenge the fragile balance between forests and their associated pathogens and pests. The various invasive forest species that have appeared in recent years such as ash dieback, pinewood nematode, Asian longhorned beetle have compelled many countries to buttress their plant protection systems. This applies to Switzerland too where many new measures have been implemented in recent years both on the policy and legislation side and at the scientific level for detecting invasive species

    Population structure and diversity of the needle pathogen Dothistroma pini suggests human-mediated movement in Europe

    Get PDF
    Dothistroma needle blight (DNB) is an important disease of Pinus species that can be caused by one of two distinct but closely related pathogens; Dothistroma septosporum and Dothistroma pini. Dothistroma septosporum has a wide geographic distribution and is relatively well-known. In contrast, D. pini is known only from the United States and Europe, and there is a distinct lack of knowledge regarding its population structure and genetic diversity. The recent development of 16 microsatellite markers for D. pini provided an opportunity to investigate the diversity, structure, and mode of reproduction for populations collected over a period of 12 years, on eight different hosts in Europe. In total, 345 isolates from Belgium, the Czech Republic, France, Hungary, Romania, Western Russia, Serbia, Slovakia, Slovenia, Spain, Switzerland, and Ukraine were screened using microsatellite and species-specific mating type markers. A total of 109 unique multilocus haplotypes were identified and structure analyses suggested that the populations are influenced by location rather than host species. Populations from France and Spain displayed the highest levels of genetic diversity followed by the population in Ukraine. Both mating types were detected in most countries, with the exception of Hungary, Russia and Slovenia. Evidence for sexual recombination was supported only in the population from Spain. The observed population structure and several shared haplotypes between non-bordering countries provides good evidence that the movement of D. pini in Europe has been strongly influenced by human activity in Europe

    Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells

    Get PDF
    Defects of metal-halide perovskites detrimentally influence the optoelectronic properties of the thin film and, ultimately, the photovoltaic performance of perovskite solar cells (PSCs). Especially, defect-mediated nonradiative recombination that occurs at the perovskite interface significantly limits the power conversion efficiency (PCE) of PSCs. In this regard, interfacial engineering or surface treatment of perovskites has become a viable strategy for reducing the density of surface defects, thereby improving the PCE of PSCs. Here, an organic molecule, tris(5-((tetrahydro-2H-pyran-2-yl)oxy)pentyl)phosphine oxide (THPPO), is synthesized and introduced as a defect passivation agent in PSCs. The P=O terminal group of THPPO, a Lewis base, can passivate perovskite surface defects such as undercoordinated Pb2+. Consequently, improvement of PCEs from 19.87 to 20.70% and from 5.84 to 13.31% are achieved in n−i−p PSCs and hole-transporting layer (HTL)-free PSCs, respectively

    Fashioning Fluorous Organic Spacers for Tunable and Stable Layered Hybrid Perovskites

    Get PDF
    Two dimensional (2D) organic-inorganic hybrid perovskites have recently attracted enormous attention due to their higher environmental stability with respect to three-dimensional (3D) perovskites and larger structural tunability. The layered structure relaxes constraints on the dimensions of the organic cations that alternate the inorganic sheets, opening up a large choice on the organics, ultimately enabling the creation of tunable layered perovskites. Here, we report on a series of fluorous cations, varying in size and shape, as building blocks for a new family of fluorous 2D lead-iodide perovskites. These display a large tunability in the optical and dielectric properties depending on the structure of the fluorous cations. Importantly, despite the invariant inorganic framework, the 2D perovskite electronic structure is strongly affected by the cation size. The longer the cation, the smaller the 2D perovskite band gap and the exciton binding energy (reducing from 400 meV down to 130 meV). Such variation is induced by the strain in the inorganic sheet, resulting in a more dispersed valence and conduction bands, in turn yielding a smaller band gap. In addition, a smaller effective mass for the 2D perovskite with the longest cation is calculated, for which improved transport properties are anticipated. Importantly, the fluorous moiety confers extreme stability to the 2D perovskite and enhances the hydrophobic character of the perovskite surface, which remains perfectly stable for more than one month in ambient conditions

    Sex in the PAC: A hidden affair in dark septate endophytes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or <it>in vitro </it>and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the <it>Phialocephala fortinii </it>s. l. - <it>Acephala applanata </it>species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (<it>MAT</it>) genes involved in reproductive processes.</p> <p>Results</p> <p>The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas <it>A. applanata </it>had a homothallic (self-fertile) <it>MAT </it>locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. <it>MAT </it>genes were shown to evolve under strong purifying selection.</p> <p>Conclusions</p> <p>The signature of sex was found in worldwide populations of PAC species and functionality of <it>MAT </it>genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and <it>in vitro </it>crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.</p

    Search for top-down and bottom-up drivers of latitudinal trends in insect herbivory in oak trees in Europe

    Get PDF
    International audienceAim: The strength of species interactions is traditionally expected to increase toward the Equator. However, recent studies have reported opposite or inconsistent latitudinal trends in the bottom-up (plant quality) and top-down (natural enemies) forces driving herbivory. In addition, these forces have rarely been studied together thus limiting previous attempts to understand the effect of large-scale climatic gradients on herbivory. Location: Europe. Time period: 2018–2019. Major taxa studied: Quercus robur. Methods: We simultaneously tested for latitudinal variation in plant–herbivore–natural enemy interactions. We further investigated the underlying climatic factors associated with variation in herbivory, leaf chemistry and attack rates in Quercus robur across its complete latitudinal range in Europe. We quantified insect leaf damage and the incidence of specialist herbivores as well as leaf chemistry and bird attack rates on dummy caterpillars on 261 oak trees. Results: Climatic factors rather than latitude per se were the best predictors of the large-scale (geographical) variation in the incidence of gall-inducers and leaf-miners as well as in leaf nutritional content. However, leaf damage, plant chemical defences (leaf phenolics) and bird attack rates were not influenced by climatic factors or latitude. The incidence of leaf-miners increased with increasing concentrations of hydrolysable tannins, whereas the incidence of gall-inducers increased with increasing leaf soluble sugar concentration and decreased with increasing leaf C : N ratios and lignins. However, leaf traits and bird attack rates did not vary with leaf damage. Main conclusions: These findings help to refine our understanding of the bottom-up and top-down mechanisms driving geographical variation in plant–herbivore interactions, and indicate the need for further examination of the drivers of herbivory on trees

    Search for top-down and bottom-up drivers of latitudinal trends in insect herbivory in oak trees in Europe

    Get PDF
    AimThe strength of species interactions is traditionally expected to increase toward the Equator. However, recent studies have reported opposite or inconsistent latitudinal trends in the bottom‐up (plant quality) and top‐down (natural enemies) forces driving herbivory. In addition, these forces have rarely been studied together thus limiting previous attempts to understand the effect of large‐scale climatic gradients on herbivory.LocationEurope.Time period2018–2019.Major taxa studiedQuercus robur.MethodsWe simultaneously tested for latitudinal variation in plant–herbivore–natural enemy interactions. We further investigated the underlying climatic factors associated with variation in herbivory, leaf chemistry and attack rates in Quercus robur across its complete latitudinal range in Europe. We quantified insect leaf damage and the incidence of specialist herbivores as well as leaf chemistry and bird attack rates on dummy caterpillars on 261 oak trees.ResultsClimatic factors rather than latitude per se were the best predictors of the large‐scale (geographical) variation in the incidence of gall‐inducers and leaf‐miners as well as in leaf nutritional content. However, leaf damage, plant chemical defences (leaf phenolics) and bird attack rates were not influenced by climatic factors or latitude. The incidence of leaf‐miners increased with increasing concentrations of hydrolysable tannins, whereas the incidence of gall‐inducers increased with increasing leaf soluble sugar concentration and decreased with increasing leaf C : N ratios and lignins. However, leaf traits and bird attack rates did not vary with leaf damage.Main conclusionsThese findings help to refine our understanding of the bottom‐up and top‐down mechanisms driving geographical variation in plant–herbivore interactions, and indicate the need for further examination of the drivers of herbivory on trees.</p

    Data from: Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus

    No full text
    Understanding the genetic diversity and structure of invasive pathogens in source and introduced areas is crucial to reveal hidden biological aspects of an organism, to reconstruct the course of invasions and to establish effective control measures. Hymenoscyphus pseudoalbidus (anamorph: Chalara fraxinea) is an invasive and highly destructive fungal pathogen on common ash Fraxinus excelsior in Europe and occurs natively in east Asia. To get insights into the dispersal mechanism and the history of invasion, we used microsatellite markers and characterized the genetic structure and diversity of H. pseudoalbidus populations at three spatial levels: (i) in Europe; (ii) at the epidemic front and (iii) between Europe and Japan. The 1208 European strains form one large population as no evident structure was detected using Bayesian and multivariate clustering analysis. Only the distribution of genetic diversity in space, pairwise population differentiation (GST) and the spatial analysis of principal components revealed a faint geographic pattern around Europe. A significant allele deficiency in most European populations pointed to a recent genetic bottleneck whereas no pattern of isolation by distance was found. Populations from Japan harbored a higher genetic diversity and were genetically differentiated from European ones. Nevertheless, phylogenetic and network analysis clearly demonstrated that individuals from both regions are conspecific. Our data suggest that H. pseudoalbidus was introduced only once by a minimum of two individuals. The potential source region of H. pseudoalbidus is huge and further investigations are required for a more accurate localization of the source population

    The Endophytic Mycobiome of European Ash and Sycamore Maple Leaves – Geographic Patterns, Host Specificity and Influence of Ash Dieback

    Get PDF
    The European ash (Fraxinus excelsior) is threatened by the introduced ascomycete Hymenoscyphus fraxineus, the causal agent of ash dieback. Endophytic fungi are known to modulate their host’s resistance against pathogens. To understand possible consequences of ash dieback on the endophytic mycobiome, F. excelsior leaves were collected in naturally regenerated forests and the fungal communities analyzed by classic culture and Illumina amplicon sequencing using a newly developed and validated fungal-specific primer. Collections were done in the area infested by ash dieback north of the Alps, and in the disease free area on the south side. Sycamore maple (Acer pseudoplatanus) was additionally collected, as well as the flowering ash (F. ornus), which occurs naturally in the south and shows tolerance to ash dieback. Both cultivation and amplicon sequencing revealed characteristic endophytic fungal communities dominated by several strictly host specific Venturia species. On A. pseudoplatanus, a hitherto undescribed Venturia species was identified. Due to its dominance on F. excelsior, V. fraxini is unlikely to go extinct in case of reduced host densities. A majority of species was not strictly host specific and is therefore likely less affected by ash dieback in the future. Still, shifts in community structure and loss of genetic diversity cannot be excluded. The potentially endangered endophyte Hymenoscyphus albidus was rarely found. In addition to host specificity, species with preferences for leaf laminae or petioles were found. We also detected considerable geographical variation between sampling sites and clear differences between the two sides of the Alps for endophytes of F. excelsior, but not A. pseudoplatanus. Since sycamore maple is not affected by an epidemic, this could point toward an influence of ash dieback on ash communities, although firm conclusions are not possible because of host preferences and climatic differences. Furthermore, the mycobiota of F. excelsior trees with or without dieback symptoms were compared, but no clear differences were detected. Besides methodical refinement, our study provides comprehensive data on the ash mycobiome that we expect to be subject to changes caused by an emerging disease of the host tree

    Spatial and temporal dynamics in the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC)

    No full text
    Background and aims Dark septate endophytes of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC) are abundant root colonizers of woody plants in boreal and temperate forest ecosystems where they form complex communities. Community structure was spatially stable for 3 years in a previous experiment, suggesting PAC’s inability to disperse or mutual inhibition of neighboring PAC genotypes. The aim of this study was to test whether changes in PAC community structure occur at all. Methods The community structure originally determined in 2004 was reassessed in 2014 in a Norway-spruce plantation using microsatellite genotyping. Results Most isolates belonged to Phialocephala turicensis, P. letzii, P. europaea, and P. helvetica in both years. P. uotilensis and Acephala applanata were rare. PAC species were the same at only two grid points in both years. P. europaea was more frequent than P. turicensis in 2004 whereas the situation was opposite in 2014. Only four of the 22 genotypes in 2004 were found in 2014. Interestingly, none of the genotypes was detected at the same grid points in both years. Extended sampling in 2014 led to a significantly higher number of grid points testing positive for the presence of P. turicensis and P. helvetica. Conclusions More than 3 years are required to detect shifts in PAC community structures. The observed shifts suggest that PAC are able to disperse in soil or via root networks, though very slowly.ISSN:0032-079XISSN:1573-503
    corecore