267 research outputs found

    Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods

    Get PDF
    24 p.-4 fig.-6 tab.In the present study, we develop an efficient and reproducible in vitro regeneration system for two cultivars viz., Jamila and Tomaland of Solanum lycopersicum L., an economically important vegetable crop throughout the world. Sterilization of seeds with 2.5 % (v/v) NaOCl was found to be most effective, about 97 % of seeds germinated on cotton in magenta box moistened with sterile half strength (½)Murashige and Skoog (MS) medium. Regeneration efficiency of cotyledonary leaf (CL) and cotyledonary node (CN) explants derived from 08 days old aseptic seedling were assessed on MS medium supplemented with different concentrations of auxins and cytokinin. CL explants were found more responsive in comparison to CN in both the cultivars. Types of basal media were also assessed and found to have a significant effect on shoot regeneration. Highest regeneration frequency and maximum number of shoots were standardized from CL explants on MS medium supplied with 6- benzyl adenine (BA; 5.0 µM), indole-3-butyric acid (IBA; 2.5 µM) and Kinetin (Kin; 10.0 µM). In vitro regenerated microshoots were rooted on ½MS medium containing 0.5 µM indole-3-butyric acid (IBA). Regenerated plantlets with well-developed roots and shoot system were successfully acclimated to ex vitro condition. Genetic uniformity of tissue culture raised plantlets was first time evaluated using flow cytometry and single primer amplification reaction (SPAR) methods viz., DAMD and ISSR. No significant changes in ploidy level and nuclear DNA content profile were observed between in vitro propagated plants and normal plants of both the cultivars. Similarly, the SPAR analysis also revealed monomorphic banding patterns in regenerated plantlets of S. lycopersicum verifying their genetic uniformity and clonal fidelity. This efficient regeneration system can be used as a fast and reproducible method for genetic transformation of this important vegetable crop.This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdul Aziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number 12-BIO2919-02.Peer reviewe

    Bacterial resistance to arsenic protects against protist killing

    Get PDF
    Protists kill their bacterial prey using toxic metals such as copper. Here we hypothesize that the metalloid arsenic has a similar role. To test this hypothesis, we examined intracellular survival of Escherichia coli (E. coli) in the amoeba Dictyostelium discoideum (D. discoideum). Deletion of the E. coli ars operon led to significantly lower intracellular survival compared to wild type E. coli. This suggests that protists use arsenic to poison bacterial cells in the phagosome, similar to their use of copper. In response to copper and arsenic poisoning by protists, there is selection for acquisition of arsenic and copper resistance genes in the bacterial prey to avoid killing. In agreement with this hypothesis, both copper and arsenic resistance determinants are widespread in many bacterial taxa and environments, and they are often found together on plasmids. A role for heavy metals and arsenic in the ancient predator–prey relationship between protists and bacteria could explain the widespread presence of metal resistance determinants in pristine environments

    Route knowledge and configural knowledge in typical and atypical development: a comparison of sparse and rich environments

    Get PDF
    Background: Individuals with Down syndrome (DS) and individuals with Williams syndrome (WS) have poor navigation skills, which impact their potential to become independent. Two aspects of navigation were investigated in these groups, using virtual environments (VE): route knowledge (the ability to learn the way from A to B by following a fixed sequence of turns) and configural knowledge (knowledge of the spatial relationships between places within an environment). Methods: Typically developing (TD) children aged 5 to 11 years (N = 93), individuals with DS (N = 29) and individuals with WS (N = 20) were presented with a sparse and a rich VE grid maze. Within each maze, participants were asked to learn a route from A to B and a route from A to C before being asked to find a novel shortcut from B to C. Results: Performance was broadly similar across sparse and rich mazes. The majority of participants were able to learn novel routes, with poorest performance in the DS group, but the ability to find a shortcut, our measure of configural knowledge, was limited for all three groups. That is, 59 % TD participants successfully found a shortcut, compared to 10 % participants with DS and 35 % participants with WS. Differences in the underlying mechanisms associated with route knowledge and configural knowledge and in the developmental trajectories of performance across groups were observed. Only the TD participants walked a shorter distance in the last shortcut trial compared to the first, indicative of increased configural knowledge across trials. The DS group often used an alternative strategy to get from B to C, summing the two taught routes together. Conclusions: Our findings demonstrate impaired configural knowledge in DS and in WS, with the strongest deficit in DS. This suggests that these groups rely on a rigid route knowledge based method for navigating and as a result are likely to get lost easily. Route knowledge was also impaired in both DS and WS groups and was related to different underlying processes across all three groups. These are discussed with reference to limitations in attention and/or visuo-spatial processing in the atypical groups

    Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis

    Get PDF
    Hepatocellular carcinoma (HCC) is the fourth most common solid tumor worldwide. The chemokine interleukin-8 (IL-8) is overexpressed in HCC and is a potential target for therapy. Although the transcription factor NF-κB regulates IL-8 expression, and while thymoquinone (TQ; the most bioactive constituent of black seed oil) inhibits NF-κB activity, the precise mechanisms by which TQ regulates IL-8 and cancer cell growth remain to be clarified. Here, we report that TQ inhibited growth of HCC cells in a dose- and time-dependent manner, caused G2M cell cycle arrest, and stimulated apoptosis. Apoptosis was substantiated by activation of caspase-3 and -9, as well as cleavage of poly(ADP-ribose)polymerase. TQ treatments inhibited expression of NF-κB and suppressed IL-8 and its receptors. TQ treatments caused increased levels of reactive oxygen species (ROS) and mRNAs of oxidative stress-related genes, NQO1 and HO-1. Pretreatment of HepG2 cells with N-acetylcysteine, a scavenger of ROS, prevented TQ-induced cell death. TQ treatment stimulated mRNA expression of pro-apoptotic Bcl-xS and TRAIL death receptors, and inhibited expression of the anti-apoptotic gene Bcl-2. TQ enhanced TRAIL-induced death of HepG2 cells, in part by up-regulating TRAIL death receptors, inhibiting NF-κB and IL-8 and stimulating apoptosis. Altogether, these findings provide insights into the pleiotropic molecular mechanisms of TQ-dependent suppression of HCC cell growth and underscore potential of this compound as anti-HCC drug

    Verbesina encelioides: cytotoxicity, cell cycle arrest, and oxidative DNA damage in human liver cancer (HepG2) cell line

    Get PDF
    BACKGROUND: Cancer is a major health problem and exploiting natural products have been one of the most successful methods to combat this disease. Verbesina encelioides is a notorious weed with various pharmacological properties. The aim of the present investigation was to screen the anticancer potential of V. encelioides extract against human lung cancer (A-549), breast cancer (MCF-7), and liver cancer (HepG2) cell lines. METHODS: A-549, MCF-7, and HepG2 cells were exposed to various concentrations of (10–1000 μg/ml) of V. encelioides for 24 h. Further, cytotoxic concentrations (250, 500, and 1000 μg/ml) of V. encelioides induced oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage in HepG2 cells were studied. RESULTS: The exposure of cells to 10–1000 μg/ml of extract for 24 h, revealed the concentrations 250–1000 μg/ml was cytotoxic against MCF-7 and HepG2 cells, but not against A-549 cells. Moreover, the extract showed higher decrease in the cell viability against HepG2 cells than MCF-7 cells. Therefore, HepG2 cells were selected for further studies viz. oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage. The results revealed differential anticancer activity of V. encelioides against A-549, MCF-7 and HepG2 cells. A significant induction of oxidative stress, ROS generation, and MMP levels was observed in HepG2 cells. The cell cycle analysis and comet assay showed that V. encelioides significantly induced G2/M arrests and DNA damage. CONCLUSION: These results indicate that V. encelioides possess substantial cytotoxic potential and may warrant further investigation to develop potential anticancer agent. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12906-016-1106-0) contains supplementary material, which is available to authorized users

    IL-2 Stimulated but Not Unstimulated NK Cells Induce Selective Disappearance of Peripheral Blood Cells: Concomitant Results to a Phase I/II Study

    Get PDF
    In an ongoing clinical phase I/II study, 16 pediatric patients suffering from high risk leukemia/tumors received highly purified donor natural killer (NK) cell immunotherapy (NK-DLI) at day (+3) +40 and +100 post haploidentical stem cell transplantation. However, literature about the influence of NK-DLI on recipient's immune system is scarce. Here we present concomitant results of a noninvasive in vivo monitoring approach of recipient's peripheral blood (PB) cells after transfer of either unstimulated (NK-DLI(unstim)) or IL-2 (1000 U/ml, 9–14 days) activated NK cells (NK-DLI(IL-2 stim)) along with their ex vivo secreted cytokine/chemokines. We performed phenotypical and functional characterizations of the NK-DLIs, detailed flow cytometric analyses of various PB cells and comprehensive cytokine/chemokine arrays before and after NK-DLI. Patients of both groups were comparable with regard to remission status, immune reconstitution, donor chimerism, KIR mismatching, stem cell and NK-DLI dose. Only after NK-DLI(IL-2 stim) was a rapid, almost complete loss of CD56(bright)CD16(dim/−) immune regulatory and CD56(dim)CD16(+) cytotoxic NK cells, monocytes, dendritic cells and eosinophils from PB circulation seen 10 min after infusion, while neutrophils significantly increased. The reduction of NK cells was due to both, a decrease in patients' own CD69(−) NCR(low)CD62L(+) NK cells as well as to a diminishing of the transferred cells from the NK-DLI(IL-2 stim) with the CD56(bright)CD16(+/−)CD69(+)NCR(high)CD62L(−) phenotype. All cell counts recovered within the next 24 h. Transfer of NK-DLI(IL-2 stim) translated into significantly increased levels of various cytokines/chemokines (i.e. IFN-γ, IL-6, MIP-1β) in patients' PB. Those remained stable for at least 1 h, presumably leading to endothelial activation, leukocyte adhesion and/or extravasation. In contrast, NK-DLI(unstim) did not cause any of the observed effects. In conclusion, we assume that the adoptive transfer of NK-DLI(IL-2 stim) under the influence of ex vivo and in vivo secreted cytokines/chemokines may promote NK cell trafficking and therefore might enhance efficacy of immunotherapy

    Distribution of Arsenic Resistance Genes in Prokaryotes

    Get PDF
    Arsenic is a metalloid that occurs naturally in aquatic and terrestrial environments. The high toxicity of arsenic derivatives converts this element in a serious problem of public health worldwide. There is a global arsenic geocycle in which microbes play a relevant role. Ancient exposure to arsenic derivatives, both inorganic and organic, has represented a selective pressure for microbes to evolve or acquire diverse arsenic resistance genetic systems. In addition, arsenic compounds appear to have been used as a toxin in chemical warfare for a long time selecting for an extended range of arsenic resistance determinants. Arsenic resistance strategies rely mainly on membrane transport pathways that extrude the toxic compounds from the cell cytoplasm. The ars operons, first discovered in bacterial R-factors almost 50 years ago, are the most common microbial arsenic resistance systems. Numerous ars operons, with a variety of genes and different combinations of them, populate the prokaryotic genomes, including their accessory plasmids, transposons, and genomic islands. Besides these canonical, widespread ars gene clusters, which confer resistance to the inorganic forms of arsenic, additional genes have been discovered recently, which broadens the spectrum of arsenic tolerance by detoxifying organic arsenic derivatives often used as toxins. This review summarizes the presence, distribution, organization, and redundance of arsenic resistance genes in prokaryotes

    The global biopharma industry and the rise of Indian drug multinationals: implications for Australian generics policy

    Get PDF
    This article provides a synopsis of the new dynamics of the global biopharma industry. The emergence of global generics companies with capabilities approximating those of 'big pharma' has accelerated the blurring of boundaries between the innovator and generics sectors. Biotechnology-based products form a large and growing segment of prescription drug markets and regulatory pathways for biogenerics are imminent. Indian biopharma multinationals with large-scale efficient manufacturing plants and growing R&D capabilities are now major suppliers of Active Pharmaceutical Ingredients (APIs) and generic drugs across both developed and developing countries. In response to generic competition, innovator companies employ a range of life cycle management techniques, including the launch of 'authorised generics'. The generics segment in Australia will see high growth rates in coming years but the prospect for local manufacturing is bleak. The availability of cheap generics in international markets has put pressure on Pharmaceutical Benefits Scheme (PBS) pricing arrangements, and a new policy direction was announced in November 2006. Lower generics prices will have a negative impact on some incumbent suppliers but industrial renewal policies for the medicines industry in Australia are better focused on higher value R&D activities and niche manufacturing of sophisticated products

    Genome Evolution and the Emergence of Fruiting Body Development in Myxococcus xanthus

    Get PDF
    BACKGROUND: Lateral gene transfer (LGT) is thought to promote speciation in bacteria, though well-defined examples have not been put forward. METHODOLOGY/PRINCIPLE FINDINGS: We examined the evolutionary history of the genes essential for a trait that defines a phylogenetic order, namely fruiting body development of the Myxococcales. Seventy-eight genes that are essential for Myxococcus xanthus development were examined for LGT. About 73% of the genes exhibit a phylogeny similar to that of the 16S rDNA gene and a codon bias consistent with other M. xanthus genes suggesting vertical transmission. About 22% have an altered codon bias and/or phylogeny suggestive of LGT. The remaining 5% are unique. Genes encoding signal production and sensory transduction were more likely to be transmitted vertically with clear examples of duplication and divergence into multigene families. Genes encoding metabolic enzymes were frequently acquired by LGT. Myxobacteria exhibit aerobic respiration unlike most of the delta Proteobacteria. M. xanthus contains a unique electron transport pathway shaped by LGT of genes for succinate dehydrogenase and three cytochrome oxidase complexes. CONCLUSIONS/SIGNIFICANCE: Fruiting body development depends on genes acquired by LGT, particularly those involved in polysaccharide production. We suggest that aerobic growth fostered innovation necessary for development by allowing myxobacteria access to a different gene pool from anaerobic members of the delta Proteobacteria. Habitat destruction and loss of species diversity could restrict the evolution of new bacterial groups by limiting the size of the prospective gene pool
    corecore