21 research outputs found

    Condition monitoring wind turbine gearboxes using on-line/in-line oil analysis techniques

    Get PDF
    Paper examining condition monitoring wind turbine gearboxes using on-line/in-line oil analysis techniques

    Efficient use of energy

    Get PDF
    World energy demand is projected to grow by more than 50% by 2030.[21] Improving energy efficiency is one of the most economical and short to medium term ways Scotland can reduce its dependence on fossil fuels and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two thirds of energy usage [16], consume far more than they need to, but even though there are many affordable energy efficient technologies that can save consumers money, current utilisation is small. To overcome this, the government must adopt policies that invest in research and development programs that target energy efficiency. Incentives schemes if properly implemented can stimulate and encourage energy efficiency which is one of Scotland's great hidden energy opportunities. This paper outlines the position of the Institution of Engineers and Shipbuilders in Scotland and makes recommendations for the Scottish Government by two separate means of improving energy efficiency; reducing wastage and providing the same end need using less energy

    Development of a regenerative pump impeller using rapid manufacturing techniques

    Get PDF
    This paper presents a method of rapid manufacture used in the development of a regenerative pump impeller. Rapid manufacturing technology was used to create complex impeller blade profiles for testing as part of a regenerative pump optimisation process. Regenerative pumps are the subject of increased interest in industry. Ten modified impeller blade profiles, relative to the standard radial configuration, were evaluated with the use of computational fluid dynamics and experimental testing. Prototype impellers were needed for experimental validation of the CFD results. The manufacture of the complex blade profiles, using conventional milling techniques, is a considerable challenge for skilled machinists. The complexity of the modified blade profiles would normally necessitate the use of expensive CNC machining with 5 asis capability. With an impeller less than 75mm in diameter and a maximum blade thickness of 1.3mm, a rapid manufacturing technique enabled production of complex blade profiles that were dimensionally accurate and structurally robust enough for testing. As more advanced rapid prototyping machines become available in the study in the future, e.g. 3D photopolymer jetting machine, the quality of the parts, particularly in terms of surface finish, will improve and the amount of post processing operations will reduce. This technique offers the possibility to produce components of increased complexity whilst ensuring quality, strength, performance and speed of manufacture. The ability to manufacture complex blade profiles that are robust enough for testing, in a rapid and cost effective manner is proving essential in the overall design optimisation process for the pump

    Design study of a regenerative pump using one-dimensional and three-dimensional numerical techniques

    Get PDF
    Regenerative pumps are low cost, compact, able to deliver high heads at low flow rates. Furthermore with stable performance characteristics they can operate with very small NPSH. The complexity of the flow field is a serious challenge for any kind of mathematical modelling. This paper compares an analytical and numerical technique of resolving the performance for a new regenerative pump design. The performance characteristics computed by a CFD approach and a new one-dimensional model are compared and matched to experimental test results. The approaches of both modelling techniques are assessed as potential design tools. The approaches are shown to not only successfully resolve the complex flow field within the pump; the CFD is also capable of resolving local flow properties to conduct further refinements. The flow field is represented by the CFD as it has never been before. A new design process is suggested. The new regenerative pump design is considered with a comparable duty centrifugal pump, proving that for many high head low flow rate applications the regenerative pump is a better choice

    Numerical and experimental design study of a regenerative pump

    Get PDF
    This paper presents the use of a commercial CFD code to simulate the flow-field within the regenerative pump and compare the CFD results with new experimental data. Regenerative pumps are the subject of increased interest in industry as these pumps are low cost, low specific speed, compact and able to deliver high heads with stable performance characteristics. The complex flow-field within the regenerative pump represents a considerable challenge to detailed mathematical modelling. This paper also presents a novel rapid manufacturing process used to consider the effect of impeller geometry changes on the pump efficiency. Ten modified impeller blade profiles, relative to a standard radial configuration, were evaluated. The CFD performance results demonstrate reasonable agreement with the experimental tests. The CFD results also demonstrate that it is possible to represent the helical flow field for the pump which has been witnessed only in experimental flow visualisation until now. The ability to use CFD modelling in conjunction with rapid manufacturing techniques has meant that more complex impeller geometry configurations can now be assessed with better understanding of the flow-field and resulting efficiency

    Design study of a novel regenerative pump using experimental and numerical techniques

    Get PDF
    This paper presents a numerical and experimental analysis of a new regenerative pump design. The complex flow-field within regenerative pumps represents a significant challenge to previous published mathematical models. The new pump design incorporates a new axial inlet and outlet port. The experimental and numerical results demonstrate that it is not only possible to resolve the flowfield for this pump type but also demonstrates this pump as a viable alternative to other kinetic rotodynamic machines. The use of the latest rapid manufacturing techniques have enabled the production of the complex geometry of the axial ports required for the new configuration

    A one-dimensional numerical model for the momentum exchange in regenerative pumps

    Get PDF
    The regenerative pump is a rotor-dynamic turbomachine capable of developing high heads at low flow rates and low specific speeds. In spite of their low efficiency, usually less than 50 %, they have found a wide range of applications as compact single-stage pumps with other beneficial features. The potential of a modified regenerative pump design is presented for consideration of the performance improvements. In this paper the fluid dynamic behaviour of the novel design was predicted using a one-dimensional model developed by the authors. Unlike most one-dimensional models previously published for regenerative pumps, the momentum exchange is computed numerically. Previous one-dimensional models relied on experimental data and correction factors; the model presented in this paper demonstrates accurate prediction of the pump performance characteristics without the need for correction with experimental data. The validity of this approach is highlighted by the comparison of computed and measured results for two different regenerative pump standards. The pump performance is assessed numerically without the need of correction factors or other experimental data. This paper presents an approach for regenerative pumps using a physically valid geometry model and by resolving the circulatory velocity in peripheral direction

    Single-cell analysis tools for drug discovery and development

    Get PDF
    The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genomic reconstruction of the SARS-CoV-2 epidemic in England.

    Get PDF
    The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021
    corecore