5,918 research outputs found

    On the Response of an OST to a Point-like Heat Source

    Full text link
    A new technique of superconducting cavity diagnostics has been introduced by D. Hartrill at Cornell University, Ithaca, USA. Oscillating Superleak Transducers (OST) detect the heat transferred from a cavity's quench point via "Second Sound" through the superfluid He bath, needed to cool the superconducting cavity. The observed response of an OST is a complex, but reproducible pattern of oscillations. A small helium evaporation cryostat was built which allows the investigation of the response of an OST in greater detail. The distance between a point-like electrical heater and the OST can be varied. The OST can be mounted either parallel or perpendicular to the plate, housing the heat source. If the artificial quench-point releases an amount of energy compatible to a real quench spot on a cavity's surface, the OST signal starts with a negative pulse, which is usually strong enough to allow automatic detection. Furthermore, the reflection of the Second Sound on the wall is observed. A reflection coefficient R = 0.39 +- 0.05 of the glass wall is measured. This excludes a strong influence of multiple reflections in the complex OST response. Fourier analyses show three main frequencies, found in all OST spectra. They can be interpreted as modes of an oscillating circular membrane.Comment: 10 pages, 16 figure

    Origin of Nepheline-normative High-K Ankaramites and the Evolution of Eastern Srednogorie Arc in SE Europe

    Get PDF
    Eastern Srednogorie is part of the Apuseni-Banat-Timok-Srednogorie magmatic belt in SE Europe, the main arc related to the Late Cretaceous subduction and closure of the Tethys Ocean between Africa and Europe. Extrusive and shallow intrusive magmatism in the Eastern Srednogorie is abundant and extremely diverse in composition, covering a wide range from ultramafic volcanic rocks to granites; this provides a unique opportunity to study processes of primitive melt formation and magma evolution in an arc environment. In contrast to other parts of the belt, relatively mafic lavas predominate here. Three magmatic regions are distinguished within Eastern Srednogorie from south to north: Strandzha, Yambol-Burgas and East Balkan. Systematic differences exist between these regions, notably the increased alkalinity of samples from the Yambol-Burgas region in the central part. All rocks display a clear subduction-like signature in their trace-element patterns, particularly the enrichment in large ion lithophile elements and light rare earth elements relative to high field strength elements. A distinct primitive nepheline-normative ankaramite magma type is recognized among the mafic volcanic rocks from the Yambol-Burgas region and melt inclusions entrapped in olivine and clinopyroxene from a cumulitic rock. Lower crustal clinopyroxene and amphibole cumulates carried to the surface as xenoliths in a mafic dike represent a possible source for the ankaramite. Modeling of the melting process suggests that low degrees of batch melting of a clinopyroxene-rich, amphibole-bearing source similar to the cumulate xenoliths at 1 GPa, temperatures of 1240-1300°C, oxidized conditions and a water content of 0·2 wt % reproduce accurately most of the observed major- and trace-element characteristics of the studied ankaramites. The elevated Rb, K2O, Th, Ba content and higher Pb isotope ratios of the predicted liquids compared with the ankaramites are explained by mixing of the ankaramite magma with lherzolite partial melts derived from the subduction-modified mantle wedge. Underplating of such mantle-derived magmas at the crust-mantle boundary in an extensional environment as a response to slab roll-back provides also the necessary heat to melt lower crustal cumulates. Fractional crystallization of mainly clinopyroxene plus olivine and Fe-Ti oxides in a deep (equivalent to 8 kbar pressure) magma chamber produced most of the observed range of shoshonitic basalts and basaltic andesites in Eastern Srednogorie. The more evolved intermediate varieties were probably formed by mixing and crystallization at lower temperatures in lower pressure magma chambers. Whole-rock Sr and Pb isotope compositions indicate variable degrees of admixing of basement rocks to generate the intermediate to acid Late Cretaceous magmas, but assimilation was minimal for magmas with less than 53 wt % SiO2. The proposed model for the evolution of the magmatism in Eastern Srednogorie involves initial formation of the calc-alkaline and high-K arc magmatism in the Strandzha and East Balkan regions, followed by roll-back induced intra-arc rifting and the formation of high-K, shoshonitic and ultra-high-K magmatism, including primitive ankaramites in the Yambol-Burgas regio

    HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results

    Get PDF
    In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given

    Adakite-like and Normal Arc Magmas: Distinct Fractionation Paths in the East Serbian Segment of the Balkan-Carpathian Arc

    Get PDF
    New age and whole-rock 87Sr/86Sr and 143Nd/144Nd isotopic data are used to assess petrogenetic and regional geodynamic processes associated with Late Cretaceous subvolcanic intrusions within the sparsely studied Timok Magmatic Complex (TMC) and Ridanj-Krepoljin Zone (RKZ) of eastern Serbia. The TMC and RKZ form part of the Apuseni-Banat-Timok-Srednogorie (ABTS) magmatic belt, a Cu-Au mineralized calc-alkaline magmatic arc related to closure of the Tethys Ocean that extends through Romania, Serbia, and Bulgaria in SE Europe. Zircon ages based on U-Pb laser ablation inductively coupled plasma mass spectrometry supplemented by existing isotope dilution thermal ionization mass spectrometry data respectively range from 89 to 79 Ma and from 76 to 71 Ma for the TMC and RKZ. This age pattern corresponds to cross-arc younging away from the European continent. Adakite-like trace element signatures (Y ≤18 ppm) are linked with samples that extend across the arc. These overlap in space and time with samples that conform to a normal arc differentiation trend. We performed energy-constrained assimilation-fractional crystallization (EC-AFC) modeling of Sr-La-Nd-Yb concentrations and Sr and Nd isotopic data. Results suggest that the two distinct fractionation trends may be explained in terms of a common mantle-derived parental magma but distinct fractionation and assimilation paths in the lower and upper crust. Petrogenesis of the adakite-like magmas is consistent with extensive high-pressure amphibole fractionation in the lower crust followed by ascent and plagioclase-dominant fractionation and assimilation in the upper crust. In contrast, normal arc signatures appear to have evolved exclusively via an upper-crustal differentiation process. Overall, our interpretation supports mantle wedge melting related to weak extension during progressive rollback of a subducting sla

    State determination in continuous measurement

    Full text link
    The possibility of determining the state of a quantum system after a continuous measurement of position is discussed in the framework of quantum trajectory theory. Initial lack of knowledge of the system and external noises are accounted for by considering the evolution of conditioned density matrices under a stochastic master equation. It is shown that after a finite time the state of the system is a pure state and can be inferred from the measurement record alone. The relation to emerging possibilities for the continuous experimental observation of single quanta, as for example in cavity quantum electrodynamics, is discussed.Comment: 12 pages, 4 figures, Revte

    Radiation Campaign of HPK Prototype LGAD sensors for the High-Granularity Timing Detector (HGTD)

    Full text link
    We report on the results of a radiation campaign with neutrons and protons of Low Gain Avalanche Detectors (LGAD) produced by Hamamatsu (HPK) as prototypes for the High-Granularity Timing Detector (HGTD) in ATLAS. Sensors with an active thickness of 50~μ\mum were irradiated in steps of roughly 2×\times up to a fluence of 3×1015 neqcm23\times10^{15}~\mathrm{n_{eq}cm^{-2}}. As a function of the fluence, the collected charge and time resolution of the irradiated sensors will be reported for operation at 30-30^{\circ}

    Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV

    Full text link
    The effects of the final state interaction phenomenon known as colour reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~ 189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to affect observables based on charged particles in hadronic decays of W+W-. Measurements of inclusive charged particle multiplicities, and of their angular distribution with respect to the four jet axes of the events, are used to test models of colour reconnection. The data are found to exclude extreme scenarios of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other models, both with and without colour reconnection effects. In the context of the SK-I model, the best agreement with data is obtained for a reconnection probability of 37%. Assuming no colour reconnection, the charged particle multiplicity in hadronically decaying W bosons is measured to be (nqqch) = 19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.

    Search for a Narrow ttbar Resonance in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We report a search for a narrow ttbar resonance that decays into a lepton+jets final state based on an integrated luminosity of 5.3/fb of proton-antiproton collisions at sqrt{s}=1.96 TeV collected by the D0 Collaboration at the Fermilab Tevatron Collider. We set upper limits on the production cross section of such a resonance multiplied by its branching fraction to ttbar which we compare to predictions for a leptophobic topcolor Z' boson. We exclude such a resonance at the 95% confidence level for masses below 835 GeV.Comment: 7 pages, 3 figures, submitted to Physical Review Letter

    Search for the Higgs boson in lepton, tau and jets final states

    Get PDF
    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9.7 fb^{-1} of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H -> tau tau decays or H -> WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0 respectively
    corecore