448 research outputs found

    Reconstructing a Z' Lagrangian using the LHC and low-energy data

    Full text link
    We study the potential of the LHC and future low-energy experiments to precisely measure the underlying model parameters of a new Z' boson. We emphasize the complimentary information obtained from both on- and off-peak LHC dilepton data, from the future Q-weak measurement of the weak charge of the proton, and from a proposed measurement of parity violation in low-energy Moller scattering. We demonstrate the importance of off-peak LHC data and Q-weak for removing sign degeneracies between Z' couplings that occur if only on-peak LHC data is studied. A future precision measurement of low-energy Moller scattering can resolve a scaling degeneracy between quark and lepton couplings that remains after analyzing LHC dilepton data, permitting an extraction of the individual Z' couplings rather than combinations of them. We study how precisely Z' properties can be extracted for LHC integrated luminosities ranging from a few inverse femtobarns to super-LHC values of an inverse attobarn. For the several example cases studied with M_Z'=1.5 TeV, we find that coupling combinations can be determined with relative uncertainties reaching 30% with 30 fb^-1 of integrated luminosity, while 50% is possible with 10 fb^-1. With SLHC luminosities of 1 ab^-1, we find that products of quark and lepton couplings can be probed to 10%.Comment: 36 pages, 17 figure

    Detection of Perturbation Phases and Developmental Stages in Organisms from DNA Microarray Time Series Data

    Get PDF
    Available DNA microarray time series that record gene expression along the developmental stages of multicellular eukaryotes, or in unicellular organisms subject to external perturbations such as stress and diauxie, are analyzed. By pairwise comparison of the gene expression profiles on the basis of a translation-invariant and scale-invariant distance measure corresponding to least-rectangle regression, it is shown that peaks in the average distance values are noticeable and are localized around specific time points. These points systematically coincide with the transition points between developmental phases or just follow the external perturbations. This approach can thus be used to identify automatically, from microarray time series alone, the presence of external perturbations or the succession of developmental stages in arbitrary cell systems. Moreover, our results show that there is a striking similarity between the gene expression responses to these a priori very different phenomena. In contrast, the cell cycle does not involve a perturbation-like phase, but rather continuous gene expression remodeling. Similar analyses were conducted using three other standard distance measures, showing that the one we introduced was superior. Based on these findings, we set up an adapted clustering method that uses this distance measure and classifies the genes on the basis of their expression profiles within each developmental stage or between perturbation phases

    Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of gene expression profiling in both clinical and laboratory settings would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies could yield useful information on baseline fluctuations in gene expression, although control animal data has not been available on a scale and in a form best served for data-mining.</p> <p>Results</p> <p>A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques.</p> <p>Conclusion</p> <p>The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selective, or altered by fasting were also identified and functionally categorized. Better characterization of gene expression variability in control animals will aid in the design of toxicogenomics studies and in the interpretation of their results.</p

    Constitutive gene expression profile segregates toxicity in locally advanced breast cancer patients treated with high-dose hyperfractionated radical radiotherapy

    Get PDF
    Breast cancer patients show a wide variation in normal tissue reactions after radiotherapy. The individual sensitivity to x-rays limits the efficiency of the therapy. Prediction of individual sensitivity to radiotherapy could help to select the radiation protocol and to improve treatment results. The aim of this study was to assess the relationship between gene expression profiles of ex vivo un-irradiated and irradiated lymphocytes and the development of toxicity due to high-dose hyperfractionated radiotherapy in patients with locally advanced breast cancer. Raw data from microarray experiments were uploaded to the Gene Expression Omnibus Database (GEO accession GSE15341). We obtained a small group of 81 genes significantly regulated by radiotherapy, lumped in 50 relevant pathways. Using ANOVA and t-test statistical tools we found 20 and 26 constitutive genes (0 Gy) that segregate patients with and without acute and late toxicity, respectively. Non-supervised hierarchical clustering was used for the visualization of results. Six and 9 pathways were significantly regulated respectively. Concerning to irradiated lymphocytes (2 Gy), we founded 29 genes that separate patients with acute toxicity and without it. Those genes were gathered in 4 significant pathways. We could not identify a set of genes that segregates patients with and without late toxicity. In conclusion, we have found an association between the constitutive gene expression profile of peripheral blood lymphocytes and the development of acute and late toxicity in consecutive, unselected patients. These observations suggest the possibility of predicting normal tissue response to irradiation in high-dose non-conventional radiation therapy regimens. Prospective studies with higher number of patients are needed to validate these preliminary results

    D-MaPs - DNA-microarray projects: Web-based software for multi-platform microarray analysis

    Get PDF
    The web application D-Maps provides a user-friendly interface to researchers performing studies based on microarrays. The program was developed to manage and process one- or two-color microarray data obtained from several platforms (currently, GeneTAC, ScanArray, CodeLink, NimbleGen and Affymetrix). Despite the availability of many algorithms and many software programs designed to perform microarray analysis on the internet, these usually require sophisticated knowledge of mathematics, statistics and computation. D-maps was developed to overcome the requirement of high performance computers or programming experience. D-Maps performs raw data processing, normalization and statistical analysis, allowing access to the analyzed data in text or graphical format. An original feature presented by D-Maps is GEO (Gene Expression Omnibus) submission format service. The D-MaPs application was already used for analysis of oligonucleotide microarrays and PCR-spotted arrays (one- and two-color, laser and light scanner). In conclusion, D-Maps is a valuable tool for microarray research community, especially in the case of groups without a bioinformatic core

    A Normalized Tree Index for identification of correlated clinical parameters in microarray experiments

    Get PDF
    Martin C, Tauchen A, Becker A, Nattkemper TW. A Normalized Tree Index for identification of correlated clinical parameters in microarray data. BioData Mining. 2011;4(1): 2.BACKGROUND: Measurements on gene level are widely used to gain new insights in complex diseases e.g. cancer. A promising approach to understand basic biological mechanisms is to combine gene expression profiles and classical clinical parameters. However, the computation of a correlation coefficient between high-dimensional data and such parameters is not covered by traditional statistical methods. METHODS: We propose a novel index, the Normalized Tree Index (NTI), to compute a correlation coefficient between the clustering result of high-dimensional microarray data and nominal clinical parameters. The NTI detects correlations between hierarchically clustered microarray data and nominal clinical parameters (labels) and gives a measurement of significance in terms of an empiric p-value of the identified correlations. Therefore, the microarray data is clustered by hierarchical agglomerative clustering using standard settings. In a second step, the computed cluster tree is evaluated. For each label, a NTI is computed measuring the correlation between that label and the clustered microarray data. RESULTS: The NTI successfully identifies correlated clinical parameters at different levels of significance when applied on two real-world microarray breast cancer data sets. Some of the identified highly correlated labels confirm the actual state of knowledge whereas others help to identify new risk factors and provide a good basis to formulate new hypothesis. CONCLUSIONS: The NTI is a valuable tool in the domain of biomedical data analysis. It allows the identification of correlations between high-dimensional data and nominal labels, while at the same time a p-value measures the level of significance of the detected correlations

    GeneSigDB: a manually curated database and resource for analysis of gene expression signatures

    Get PDF
    GeneSigDB (http://www.genesigdb.org or http://compbio.dfci.harvard.edu/genesigdb/) is a database of gene signatures that have been extracted and manually curated from the published literature. It provides a standardized resource of published prognostic, diagnostic and other gene signatures of cancer and related disease to the community so they can compare the predictive power of gene signatures or use these in gene set enrichment analysis. Since GeneSigDB release 1.0, we have expanded from 575 to 3515 gene signatures, which were collected and transcribed from 1604 published articles largely focused on gene expression in cancer, stem cells, immune cells, development and lung disease. We have made substantial upgrades to the GeneSigDB website to improve accessibility and usability, including adding a tag cloud browse function, facetted navigation and a ‘basket’ feature to store genes or gene signatures of interest. Users can analyze GeneSigDB gene signatures, or upload their own gene list, to identify gene signatures with significant gene overlap and results can be viewed on a dynamic editable heatmap that can be downloaded as a publication quality image. All data in GeneSigDB can be downloaded in numerous formats including .gmt file format for gene set enrichment analysis or as a R/Bioconductor data file. GeneSigDB is available from http://www.genesigdb.org
    corecore