783 research outputs found

    Performance optimization for rotors in hover and axial flight

    Get PDF
    Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis

    A High-Throughput DNA Sequence Aligner for Microbial Ecology Studies

    Get PDF
    As the scope of microbial surveys expands with the parallel growth in sequencing capacity, a significant bottleneck in data analysis is the ability to generate a biologically meaningful multiple sequence alignment. The most commonly used aligners have varying alignment quality and speed, tend to depend on a specific reference alignment, or lack a complete description of the underlying algorithm. The purpose of this study was to create and validate an aligner with the goal of quickly generating a high quality alignment and having the flexibility to use any reference alignment. Using the simple nearest alignment space termination algorithm, the resulting aligner operates in linear time, requires a small memory footprint, and generates a high quality alignment. In addition, the alignments generated for variable regions were of as high a quality as the alignment of full-length sequences. As implemented, the method was able to align 18 full-length 16S rRNA gene sequences and 58 V2 region sequences per second to the 50,000-column SILVA reference alignment. Most importantly, the resulting alignments were of a quality equal to SILVA-generated alignments. The aligner described in this study will enable scientists to rapidly generate robust multiple sequences alignments that are implicitly based upon the predicted secondary structure of the 16S rRNA molecule. Furthermore, because the implementation is not connected to a specific database it is easy to generalize the method to reference alignments for any DNA sequence

    Plastics from Soybean Meal and Furfural

    Get PDF
    It is well known that most protein substances may be hardened to form relatively hard, tough, and water resistant materials by suitable chemical treatment. Perhaps the oldest application of this type is the tanning of leather. Much more modern and of much more popular appeal is the production of some 10,000 tons casein annually to be made into such items as buttons, buckles, fountain pens, and various novelties in an attractive array of pastel colors. While milk casein, hardened by formaldehyde, makes excellent plastics the casein is higher in cost than some available proteins so that the possibility of using other proteins has been given considerable study

    A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution.</p> <p>Results</p> <p>We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket <it>Laupala kohalensis</it>. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page</p> <p>Conclusion</p> <p>Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus <it>Laupala </it>have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will provide much needed genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and molecular evolution.</p

    Predicting growth rates of adult working boars in a commercial boar stud

    Get PDF
    There is almost no information on ideal growth rates for adult boars, but estimates can be made if the relationship between boar weight and age is known. Therefore, this study was aimed to predict growth rates in adult working boars in a commercial boar stud. A total of 214 adult working boars from two genetic lines in a commercial boar stud were individually weighed on a platform scale. Age of the boar was recorded at the time of weighing. A regression equation to predict boar weight as a function of age was developed by using PROC REG of SAS. The model was used to predict BW on a daily basis, and ADG was derived as the difference between two predicted BW values. Factorial estimates of daily ME requirement and feeding rates were determined. The energy requirement for weight gain was computed by using the predicted ADG as a guide in setting target weight gains. Results showed a positive curvilinear response (P\u3c0.01) to describe the relationship between boar weight and age. Predicted ADG decreased in a curvilinear manner as the boars aged. In conclusion, on-farm growth rates can be predicted effectively by relating weight with age, taken from a representative number of boars in a given farm population. These data can then be used to develop farm specific feeding programs or to set different growth curves for experimental purposes.; Swine Day, 2006, Kansas State University, Manhattan, KS, 200

    Interpreting microarray experiments via co-expressed gene groups analysis

    Get PDF
    International audienceMicroarray technology produces vast amounts of data by measuring simultaneously the expression levels of thousands of genes under hundreds of biological conditions. Nowadays, one of the principal challenges in bioinformatics is the interpretation of huge data using different sources of information. We propose a novel data analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically finds groups of genes that are functionally enriched, i.e. have the same functional annotations, and are co- expressed. CGGA automatically integrates the information of microarrays, i.e. gene expression profiles, with the functional annotations of the genes obtained by the genome-wide information sources such as Gene Ontology (GO)1. By applying CGGA to well-known microarray experiments, we have identified the principal functionally enriched and co-expressed gene groups, and we have shown that this approach enhances and accelerates the interpretation of DNA microarray experiments

    Next-generation sequencing and microarray-based interrogation of microRNAs from formalin-fixed, paraffin-embedded tissue: Preliminary assessment of cross-platform concordance

    Get PDF
    AbstractNext-generation sequencing is increasingly employed in biomedical investigations. Strong concordance between microarray and mRNA-seq levels has been reported in high quality specimens but information is lacking on formalin-fixed, paraffin-embedded (FFPE) tissues, and particularly for microRNA (miRNA) analysis. We conducted a preliminary examination of the concordance between miRNA-seq and cDNA-mediated annealing, selection, extension, and ligation (DASL) miRNA assays. Quantitative agreement between platforms is moderate (Spearman correlation 0.514–0.596) and there is discordance of detection calls on a subset of miRNAs. Quantitative PCR (q-RT-PCR) performed for several discordant miRNAs confirmed the presence of most sequences detected by miRNA-seq but not by DASL but also that miRNA-seq did not detect some sequences, which DASL confidently detected. Our results suggest that miRNA-seq is specific, with few false positive calls, but it may not detect certain abundant miRNAs in FFPE tissue. Further work is necessary to fully address these issues that are pertinent for translational research

    Knowledge-based gene expression classification via matrix factorization

    Get PDF
    Motivation: Modern machine learning methods based on matrix decomposition techniques, like independent component analysis (ICA) or non-negative matrix factorization (NMF), provide new and efficient analysis tools which are currently explored to analyze gene expression profiles. These exploratory feature extraction techniques yield expression modes (ICA) or metagenes (NMF). These extracted features are considered indicative of underlying regulatory processes. They can as well be applied to the classification of gene expression datasets by grouping samples into different categories for diagnostic purposes or group genes into functional categories for further investigation of related metabolic pathways and regulatory networks. Results: In this study we focus on unsupervised matrix factorization techniques and apply ICA and sparse NMF to microarray datasets. The latter monitor the gene expression levels of human peripheral blood cells during differentiation from monocytes to macrophages. We show that these tools are able to identify relevant signatures in the deduced component matrices and extract informative sets of marker genes from these gene expression profiles. The methods rely on the joint discriminative power of a set of marker genes rather than on single marker genes. With these sets of marker genes, corroborated by leave-one-out or random forest cross-validation, the datasets could easily be classified into related diagnostic categories. The latter correspond to either monocytes versus macrophages or healthy vs Niemann Pick C disease patients.Siemens AG, MunichDFG (Graduate College 638)DAAD (PPP Luso - Alem˜a and PPP Hispano - Alemanas
    corecore