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Next-generation sequencing is increasingly employed in biomedical investigations. Strong concordance between
microarray and mRNA-seq levels has been reported in high quality specimens but information is lacking on
formalin-fixed, paraffin-embedded (FFPE) tissues, and particularly formicroRNA (miRNA) analysis.We conducted
a preliminary examination of the concordance betweenmiRNA-seq and cDNA-mediated annealing, selection, ex-
tension, and ligation (DASL) miRNA assays. Quantitative agreement between platforms is moderate (Spearman
correlation 0.514–0.596) and there is discordance of detection calls on a subset of miRNAs. Quantitative PCR
(q-RT-PCR) performed for several discordant miRNAs confirmed the presence of most sequences detected by
miRNA-seq but not by DASL but also that miRNA-seq did not detect some sequences, which DASL confidently
detected. Our results suggest that miRNA-seq is specific, with few false positive calls, but it may not detect certain
abundantmiRNAs in FFPE tissue. Furtherwork is necessary to fully address these issues that are pertinent for trans-
lational research.

© 2013 Published by Elsevier Inc.
1. Introduction

Next-generation sequencing (NGS) technologies have become faster,
more accurate, and less expensive in recent years, leading to their wide-
spread application in diverse fields [1,2]. Before the development of
next-generation RNA-sequencing (RNA-seq) platforms, probe-based
microarrays were widely utilized high-throughput transcriptomic pro-
filing technologies and have yielded numerous significant findings in
clinical and basic research [3,4]. Despite the obvious contributions that
microarrays have made – and continue to make – to understanding
the human genome, NGS methods are becoming increasingly prevalent
technologies, which have certain advantages (and disadvantages) rela-
tive to microarrays [5–7]. While microarray technologies have been
developed that require lower amounts of input RNA and can reliably
detect low abundance transcripts, RNA-seq has the capacity to uncover
novel transcript variants and is not limited by the potential for cross-
hybridization [7].
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A major challenge in clinical and translational research has been
obtaining reliable genomic data from the degraded RNA present in
formalin-fixed, paraffin-embedded (FFPE) tissue specimens. Because
these samples are collected and archived in the process of routinemed-
ical care, robust methods of interrogating their genomes would greatly
accelerate the rate of health-improving discovery. This unmet needwas
partially tackled – at least for transcriptome profiling – with the devel-
opment of the cDNA-mediated annealing, selection, extension, and
ligation (DASL) assay. This platform has been shown to reproducibly
quantitate the expression levels of known genes and microRNAs
(miRNAs) in FFPE tissue [8,9]. Furthermore, microarray-based expres-
sion profiling methods exhibit a substantial degree of concordance
with RNA-sequencing when using high quality RNA [10]. However, to
our knowledge, no study has reported findings on the concordance be-
tween the DASL assay andNGSwhen profiling the highly degraded RNA
extracted from FFPE tissue. Because of the increasing utilization of NGS
methods and the importance of research utilizing archival specimens,
the question of cross-platform accuracy and agreement is critically
important.

In this preliminary study we examine the consistency across a
miRNA-seqplatformand themiRNADASL assaywith respect to detecting
the presence (or absence) of known miRNAs in five FFPE tissue samples.
We demonstrate that both technologies are internally reproducible,
and that quantitative expression levels are moderately correlated for
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sequences detected by both technologies. There are, however, a
number of sequences we identified that are detected by only one of
the two platforms. To explore this discrepancy, we performed quan-
titative real-time-polymerase chain reaction (q-RT-PCR) amplifica-
tion of discordantly detected miRNAs. This analysis indicated that
the miRNA-seq method reports few false-positive detections; how-
ever, it potentially misses the detection of some sequences which
are robustly picked up by the DASL assay. There are several plausible
explanations for the observed discrepancies, which merit further in-
vestigation to improve the reliability of miRNA sequencing methods
applied to FFPE tissue.
2. Materials and methods

2.1. FFPE tissue collection

FFPE tissue samples were retrieved from the pathology archives of
Beth Israel Deaconess Medical Center and Boston Children's Hospital.
A protocol for archival tissue collection was approved by Institutional
Review Board at both institutionswith awaiver of consent. The five FFPE
blocks contained tissue from one liposarcoma of the thigh (5y-old), one
leiomyosarcoma of the abdomen (4y-old), and three osteosarcomas
(8y-old, 4y-old, and 17y-old, respectively). The first two samples
(Leiomyosarcoma and liposarcoma) were run in duplicate. Each of the
additional 3 osteosarcoma samples was run as a single assay.
2.2. RNA extraction procedure and miRNA DASL assay protocol

FFPE samples were cut into 1–3 mm cores. Total RNA was isolated
using the Qiagen RNeasy FFPE protocol according to manufacturer in-
structions. RNA purity was assessed by spectrophotometer readings; the
A260/A280 ratioswere 2.03, 1.87, 1.71, 1.75, and 1.77 for thefive samples,
which indicates a high level of purity. miRNA DASL (c-DNA-mediated,
Annealing, Selection and Ligation) arrays, (Illumina, CA) containing
probes for 1146 miRNAs were used for profiling. The DASL assay is
a bead-based method for expression profiling of degraded RNA, such as
that found in FFPE samples [8,9]. The expression profiling experiments
were performed at theMolecular Genetics Core, BostonChildren'sHospi-
tal and HarvardMedical School. Raw datawere processed using the lumi
package in R [11,12]. A variance-stabilizing transformation and quantile
normalizationwere applied before data were analyzed. After processing,
signal intensities were averaged for miRNAs with p-values smaller than
0.01 in both replicates. The raw data from these experiments have
been deposited in the GEO repository (GSE35851 and GSE39040) [13].
2.3. miRNA-sequencing protocol

Total RNA samples were prepared for smRNA sequencing using
Illumina's Small RNA v1.5 Sample Preparation Guide. Total RNA
input ranged from 1 to 10 μg and first underwent 3′ and 5′ adaptor
ligation followed by reverse transcription and 12 cycles of amplifica-
tion on a Bio-Rad iCycler. cDNA constructs were then purified using a
6% Novex TBE PAGE gel on Invitrogen's XCell SureLock NovexMini-Cell
System. Band sizes ranging from 80 to 100 bpwere cut from the gel and
purified. cDNA constructs were eluted from the gel and purified by
ethanol precipitation according to Illumina's protocol. Libraries were
analyzed on Agilent's 2100 Bioanalyzer with a High Sensitivity DNA
Chip specific for next generation sequencing. Final libraries were
immobilized onto a single read Illumina flowcell at a concentration
of 12 pM and underwent cluster amplification on Illumina's Cluster
Station using their DGE Small RNA Cluster Generation Kit. The ampli-
fied flowcell was then sequenced on Illumina's GAIIx with 36 cycles
of sequencing.
2.4. MiRNA read mapping and quantification

The leading 21 bases were trimmed from the 36-bp reads based on
the quality score and the length of mature miRNAs. The trimmed
reads were mapped to miRNA precursor sequences using the soft-
ware miRExpress [14,15]. The first two specimens were mapped to
miRBase 16.0 and the three subsequent samples were mapped to
miRBase 19.0. The two different versions of the database did not ma-
terially affect the output as the number of sequences on miRBase 16.0
that were “dead sequences” on miRBase 19.0 was only 19. No differ-
ences between the reads and the miRNA precursor sequences were
allowed, which indicates exact matches only. The number of reads
mapped to a miRNA sequence was taken to represent the expression
level of that particular miRNA. Raw data were log2 transformed be-
fore performing analysis. miRNAseq count data from these experi-
ments have been deposited in the GEO repository (GSE36147) [13].

2.5. q-RT-PCR protocol

Two small RNA samples were reverse transcribed using the TaqMan
microRNA Reverse Transcription Kit (Applied Biosystems) according to
the manufacturer's protocol. A total of 10 ng for each RNA sample was
used as input in a total reaction volume of 15 μL. Reverse transcription
was performed at 16 °C for 30 min, 42 °C for 30 min and 85 °C for
5 min followed by a 4 °C hold on an iCycler thermal cycler (BioRad).
Each cDNA sample was then assayed against 9 TaqMan Small RNA
Assays (Applied Biosystems) according to the manufacturer's protocol.
Two control small RNA assays were also included as well as an 18S en-
dogenous control for each cDNA sample. For each cDNA sample, a total
of 1.33 μL was used in a total reaction volume of 20 μL, and each reac-
tionwas performed in triplicate for the first two samples and in quadru-
plicate for the last three specimens. qPCR assayswere run using Relative
Quantification on a 7900HT Fast instrument (Applied Biosystems) with
a 95 °C hold for 10 min followedby40 cycles of 95 °C for 15 s and 60 °C
for 60 s. None of the discordant miRNAs that we chose to study with
RTPCR was one of the 19 defunct entries (“dead sequences”) between
the two different miRbase versions.

2.6. Analytical methods

For the cross-platform concordance analysis we considered a
miRNA to be detected by the DASL assay if the detection p-value
was smaller than 0.01 in both technical replicates. Detection by se-
quencing was defined as mapping an average of at least six reads to
a known miRNA in the human genome with both replicates reporting
positive counts. We chose six reads as the cutoff because six was the
highest number of reads in one replicate which gave zero reads in the
other replicate from the same sample. We computed two correlation co-
efficients across the platforms for each sample (Pearson and Spearman).
The Spearman correlation coefficient (non-parametric) measures the
similarity between rankings of miRNA expression levels across the plat-
forms and therefore does not depend on absolute numerical values. The
Pearson coefficient (parametric) does depend on absolute numerical
values.

3. Results

3.1. Reproducibility assessment and sequencing yield

We ran the miRNA DASL assay and miRNA-seq on five FFPE tissue
specimens (two soft tissue sarcoma specimens, each in duplicate, and
three additional osteosarcoma single specimens). Technical reproduc-
ibility of DASL has been previously demonstrated by Chen et al. [9].
However, to confirm reproducibility in our dataset, we computed corre-
lation coefficients for the replicates of the two of the aforementioned
samples (Pearson correlations: 0.880 and 0.818). These values were
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lower than those previously reported in the literature, although for 80%
of DASL probes the correlation coefficients were very high (0.971 and
0.970). The internal reproducibility of the sequencing platform was
exceptional for both samples (Pearson correlations: 0.983 and 0.990).
For each duplicate of the first two samples, there were respectively
26,456,978; 26,804,099; 24,001,082; and 24,022,445 sequencing reads
generated. For samples 3, 4, and 5, the sequencing reads generated
were 34,611,338, 44,201,733, and 36,109,739, respectively. After re-
moving Illumina adaptor-dimer sequences and other “too short to
read” sequences, the remaining totals were respectively 15,305,718;
15,065,728; 10,925,885; and 10,715,805. The remaining totals for sam-
ples 3, 4, and 5 were 19,211,152, 39,017,723, and 13,418,289. The
percentages of these reads that could be quantified by mapping to
miRBase 16.0were 6.4% and 6.8% for sample 1, 16.1% and 16.9% for sam-
ple 2, 13.5% for sample 3, 14.1% for sample 4, and 6.5% for sample 5 (the
three later samples mapped to miRBase 19.0). These percentages were
expected because we mapped reads only to known miRNAs, and be-
cause we sequenced RNA derived from FFPE tissue.

3.2. Cross-platform concordance

Next we assessed the cross-platform concordance by computing
correlation coefficients between miRNA levels for sequences detected
by both technologies. First, we computed Pearson correlations between
DASL signal intensities (averaged for the first two samples that were
run in duplicate) and miRNA-seq reads for miRNAs expressed in the
bottom third, middle third, and top third of measurements as ranked
by each platform. We also computed non-parametric Spearman rank
correlation coefficients which do not depend on absolute numerical
values (Table 1). Lastly, we computed summary correlations, which ag-
gregate all miRNAs detected on both platforms. The summary Pearson
correlations between DASL signal intensities and miRNA-seq reads
ranged from 0.524 to 0.594. The Spearman rank correlations ranged
from 0.514 to 0.596 (Table 2).

We then assessed the pair-wise correlation between fold change
(sample1/sample2, sample3/sample4, etc.) values for miRNAs present
in both samples of each pair. There were 139 miRNAs detected in sam-
ples 1 and 2 by both platforms, 236 in samples 3 and 4, 219 in samples
3 and 5, and 221 in samples 4 and 5. These overlapping miRNAs yielded
fold-change correlations that ranged from 0.268 to 0.651 (Pearson) and
0.397 to 0.646 (Table 2). The two technologies agreed on the direction
Table 1
Cross-platform concordance at different miRNA expression levels. For all samples the
cross-platform Pearson (parametric) and Spearman (non-parametric) correlation coef-
ficients are presented for miRNAs expressed in the bottom, middle, and top third as
determined by each platform.

Ranked by DASL intensities Ranked by RNA-seq reads

Bottom 33% Middle 33% Top 33% Bottom 33% Middle 33% Top 33%

Sample 1
Pearson 0.000 −0.014 0.109 −0.001 0.258 0.287
Spearman 0.010 0.011 0.214 −0.043 0.233 0.335

Sample 2
Pearson 0.196 0.184 0.181 0.059 −0.011 0.485
Spearman 0.186 0.143 0.329 0.118 −0.042 0.536

Sample 3
Pearson 0.336 0.322 0.274 0.115 0.156 0.330
Spearman 0.329 0.312 0.286 0.150 0.186 0.364

Sample 4
Pearson 0.332 0.287 0.314 0.136 0.097 0.478
Spearman 0.328 0.265 0.307 0.132 0.084 0.509

Sample 5
Pearson 0.311 0.331 0.284 0.192 0.218 0.335
Spearman 0.355 0.312 0.281 0.178 0.227 0.370
of the cross-sample fold-change for 68.3% of miRNAs in samples 1 and
2, 75.8% of miRNAs in samples 3 and 4, 68.9% of miRNAs in samples 3
and 5, and 76.9% in samples 4 and 5. Given that we are restricting
our analysis to only miRNAs that were robustly detected by both
technologies, the correlations obtained likely reflect true non-trivial
cross-platform discordance.

In addition to the moderate degree of quantitative discordance
observed, we examined whether there were substantial differences
between the platforms with respect to “present versus absent” calls
of miRNAs according to our detection criteria. We compared the
miRNAs detected by sequencing – for which there are probes on the
DASL array – to the set of miRNAs detected by the DASL assay. For
sample 1 there were 449 miRNAs detected by DASL, 334 detected
by miRNA-seq, and 169 detected on both platforms. For sample 2,
DASL detected 473 miRNAs, miRNA-seq detected 366, and 205 miRNAs
were detected by both. For sample 3, DASL detected 501 miRNAs,
miRNA-seq detected 454, and 263 were detected by both. Sample 4
had 568 detected by DASL, 417 detected by miRNA-seq, and 277
detected by both. Lastly, for Sample 5 there were 528miRNAs detected
by DASL, 393 by miRNA-seq, and 236 detected by both. These results –
summarized in Table 2 – suggested a moderate degree of discordance
with respect to simply calling a miRNA species present or absent from
a given sample. Upon further analysis, we determined that the large
majority of these discordantly detected miRNAs (although not all)
were clustered at the low to very low expression range on the platform
where they were called “present”. In addition, we found that 146
miRNAs included on the DASL array were non-human or could not be
attributed to a known miRNA, and that a small number of miRNAs
called “present” by miRNA-seq, did not have representative probes on
the DASL array. Given these confounders, the moderate degree of de-
tection discordance, and the ambiguity regarding which platform is
correct, we further investigated this phenomenon with q-RT-PCR
amplification of a small subset of miRNAs.

3.3. q-RT-PCR analysis confirmation and quantitative comparison

From each sample, we examined three possible scenarios. We
selected five miRNA sequences for which both DASL and miRNA-seq
reported very high abundance levels to serve as positive controls.
Then, for both platforms, we chose miRNA sequences which were
detected at high or middle expression levels by one of the two tech-
nologies and not detected by the other. We performed q-RT-PCR
quantitation of these sequences in each sample (results presented
in Table 3 and the q-RT-PCR data available online). For the first two
samples, three of the sequences detected by DASL and RNA-seq
were confirmed as present by q-RT-PCR, as expected. For sample 1,
all six of the miRNAs detected by miRNA-seq but not by DASL were
all confirmed to be present by q-RT-PCR. Three of the six miRNAs in
this category were also detected by miRNA-seq but not by DASL in
sample 2. Out of the six miRNAs detected by DASL and missed by
miRNA-seq overall in the first two samples, five were confirmed to
be present in both samples and one was confirmed to be absent in
both samples. For samples 3–5, each miRNA that was detected by
either DASL (but absent in miRNA-seq) or miRNA-seq (but absent in
DASL) was confirmed to be present in all 3 specimens by q-RT-PCR.

4. Discussion

Next-generation RNA sequencing technologies hold great promise to
accelerate translational and basic research due to their high-throughput,
quality data generation, ability to generate novel sequencing informa-
tion, and decreasing cost [5]. Traditionally, microarrays were the pre-
dominant tools to investigate genome-wide research questions, and
many studies utilizing these data have been published [3,4]. In the com-
ing years sequencing technologies will become increasingly utilized
to answer major questions pertaining to genomics, epigenomics, and



Table 2
Summary of cross-platform concordance. For all samples the cross-platform Pearson (parametric) and Spearman (non-parametric) correlation coefficients are presented. Also, the
numbers of miRNAs passing detection criteria using each technology are reported along with the number of discordant detections. The number of miRNAs detected by RNA-seq
should be considered in the context of the number of miRNAs which DASL is capable of detecting (number of probes spotted on the array, by design).

Quantitative correlations Fold-change correlations Detection concordance

Sample 1
Pearson Pearson Detected by DASL Detected by RNA-seq Detected by both
0.535 0.268 449 355 169

Spearman Spearman Detected by DASL, not RNA-seq Detected by RNA-seq, not DASL
0.557 0.397 280 165

Detected by RNA-seq but no probe on DASL miRNA-seq detected with DASL probes
20 334

Sample 2
Pearson Pearson Detected by DASL Detected by RNA-seq Detected by both
0.545 0.268 473 402 205

Spearman Spearman Detected by DASL, not RNA-seq Detected by RNA-seq, not DASL
0.55 0.397 268 161

Detected by RNA-seq but no probe on DASL miRNA-seq detected with DASL probes
36 366

Sample 3
Pearson Pearson Detected by DASL Detected by RNA-seq Detected by both
0.594 0.573 (0.541–0.605) 501 454 263

Spearman Spearman Detected by DASL, not RNA-seq Detected by RNA-seq, not DASL
0.596 0.631 (0.626–0.635) 238 191

Detected by RNA-seq but no probe on DASL miRNA-seq detected with DASL probes
45 354

Sample 4
Pearson Pearson Detected by DASL Detected by RNA-seq Detected by both
0.556 0.628 (0.605–0.651) 568 417 277

Spearman Spearman Detected by DASL, not RNA-seq Detected by RNA-seq, not DASL
0.548 0.636 (0.626–0.646) 291 140

Detected by RNA-seq but no probe on DASL miRNA-seq detected with DASL probes
47 331

Sample 5
Pearson Pearson Detected by DASL Detected by RNA-seq Detected by both
0.524 0.596 (0.541–0.651) 528 393 236

Spearman Spearman Detected by DASL, not RNA-seq Detected by RNA-seq, not DASL
0.514 0.641 (0.635–0.646) 292 157

Detected by RNA-seq but no probe on DASL miRNA-seq detected with DASL probes
57 306
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transcriptomics [6]. At the same time newmicroarray technologies have
been developed, which allow for high throughput interrogation of even
low-abundance transcripts using very little input RNA [7], and it has
been shown that microarray-based capture in conjunction with RNA-
seq can yield deeper insights into species expressed at low levels than
RNA-seq alone [16]. Given the evolving nature of NGS methods, an
important question to investigators in diverse fields is their degree of
concordance with microarray-based expression profiling. Studies dem-
onstrating a high degree of concordance between arrays and sequencing
have been published, but they use very high quality RNA with little
expected degradation [5,10]. To our knowledge, there have been no in-
vestigations comparingmiRNAexpressiondata generated bymicroarrays
to those from sequencing that use RNA extracted fromFFPE tissues. These
challenging samples are particularly important to many clinical and
translational investigators due to their widespread acquisition during
routine medical care. A platform (DASL assay) has been developed and
utilized to date and it has been shown to generate highly reproducible
gene and miRNA expression data from FFPE tissue, but comparative
data with NGS profiling miRNAs using degraded RNA is lacking.
In this preliminary, pilot study, we attempted to tackle this prob-
lem by interrogating RNA from 5 FFPE samples in technical duplicate
on both platforms and evaluated how well miRNA quantitation corre-
lated between the technologies, and how often the same miRNAs
were detected. Then we attempted to determine which technology
was more likely to be accurate in cases of discordant detection using
q-RT-PCR.

The most important results arise from the comparison of detection
and quantitation levels across the two platforms.We found that quanti-
tative measures of miRNA expression were only moderately correlated.
These correlation coefficients are similar to one published cross-
platform comparison of moderately expressed gene signals (not
measured using DASL) using intact RNA from yeast cells [5]. Inter-
estingly, we found that correlation metrics in the highest expression
tertiles were higher than those in themiddle and low expression tertiles.
We also found only a modest correlation across fold-changes in miRNA
levels obtained from both technologies. A possible explanation for
these observations is the documented loss of quantitative precision
of RNA-seq read counts and microarray intensity measurement for



Table 3
Summary of q-RT-PCR findings. A subset of miRNAs found to be discordantly detected
by either RNA-seq or DASL was chosen for q-RT-PCR analysis. For each sequence, the
number of sequencing reads, DASL signal intensity, and DASL detection p-value are
presented. The last two columns report if q-RT-PCR detected the miRNA and which
platform q-RT-PCR data is concordant with.

Sequencing
reads

Normalized
DASL
Intensity

DASL
detection
p-value

qRT-PCR
detects

Platform
q-RT-PCR
confirms

Sample 1
Detected by DASL,
not RNA-seq
hsa-miR-544 0 13.93 0.00 No RNA-seq
hsa-miR-198 0 11.54 0.00 Yes DASL
hsa-miR-1260a 0 13.55 0.00 Yes DASL
hsa-miR-939 0 11.42 0.00 Yes DASL
hsa-miR-1281 0 11.16 0.00 Yes DASL

Detected by
RNA-seq, not DASL
hsa-miR-148b 575 6.83 0.79 Yes RNA-seq
hsa-miR-378 8157 6.92 0.56 Yes RNA-seq
hsa-miR-151-3p 2881 6.96 0.44 Yes RNA-seq
hsa-miR-301b 40 6.84 0.76 Yes RNA-seq
hsa-miR-181d 286 7.07 0.23 Yes RNA-seq
hsa-miR-345-5p 48 8.23 0.12 Yes RNA-seq

Detected by both
hsa-miR-21 332838 13.66 0.00 Yes Both
hsa-miR-143 250362 11.96 0.00 Yes Both
hsa-miR-1180 8 10.68 0.00 Yes Both

Detected by neither
hsa-miR-410 1 8.78 0.65 Yes Neither
hsa-miR-494 3 8.19 0.02 Yes Neither

Sample 2
Detected by DASL,
not RNA-seq
hsa-miR-544 0 13.78 0.00 No RNA-seq
hsa-miR-198 1 11.72 0.00 Yes DASL
hsa-miR-1260a 1 13.37 0.00 Yes DASL
hsa-miR-494 2 11.22 0.00 Yes DASL
hsa-miR-939 3 9.74 0.00 Yes DASL

Detected by
RNA-seq, not DASL
hsa-miR-18a 141 6.84 0.76 Yes RNA-seq
hsa-miR-301b 189 6.84 0.76 Yes RNA-seq
has-miR-33a 92 6.96 0.40 No DASL
hsa-miR-181d 143 6.96 0.38 Yes RNA-seq
hsa-miR-345-5p 14 6.97 0.33 Yes RNA-seq

Detected by both
hsa-miR-21 40156 13.72 0.00 Yes Both
hsa-miR-143 97639 11.10 0.00 Yes Both
hsa-miR-1180 10 11.39 0 Yes Both

Detected by neither
hsa-miR-1281 0 7.25 0.03 Yes Neither
hsa-miR-410 5 6.9 0.56 Yes Neither

Sample 3
Detected by DASL,
not RNA-seq
hsa-miR-544 0 12.96 0 Yes DASL
hsa-miR-1260a 3 14.3 0 Yes DASL
hsa-miR-494 3 13.4 0 Yes DASL
hsa-miR-939 3 11.86 0 Yes DASL
hsa-miR-1281 0 10.93 0 Yes DASL

Detected by
RNA-seq, not DASL
hsa-miR-301b 265 7.76 0.69 Yes RNA-seq
hsa-miR-181d 517 7.85 0.64 Yes RNA-seq
hsa-miR-345-5p 204 8.1 0.46 Yes RNA-seq
hsa-miR-410 50 8 0.55 Yes RNA-seq
hsa-miR-1180 37 8.18 0.39 Yes RNA-seq

Sample 4
Detected by DASL,
not RNA-seq
hsa-miR-544 0 12.48 0 Yes DASL
hsa-mir-1260a 0 13.87 0 Yes DASL
hsa-miR-494 1 12.29 0 Yes DASL

Table 3 (continued)

Sequencing
reads

Normalized
DASL
Intensity

DASL
detection
p-value

qRT-PCR
detects

Platform
q-RT-PCR
confirms

hsa-miR-939 1 11.77 0 Yes DASL
hsa-miR-1281 0 12.08 0 Yes DASL

Detected by
RNA-seq, not DASL
hsa-mir-301b 173 7.53 0.79 Yes RNA-seq
hsa-mir-181d 678 8.07 0.36 Yes RNA-seq
hsa-mir-345-5p 95 7.93 0.46 Yes RNA-seq
hsa-mir-410 72 8.56 0.06 Yes RNA-seq
hsa-mir-1180 65 8.48 0.09 Yes RNA-seq

Sample 5
Detected by DASL,
not RNA-seq
hsa-miR-544 0 13.46 0 Yes DASL
hsa-mir-1260a 2 14.5 0 Yes DASL
hsa-miR-494 2 14.25 0 Yes DASL
hsa-miR-939 0 11.86 0 Yes DASL
hsa-miR-1281 0 12.61 0 Yes DASL

Detected by
RNA-seq, not DASL
hsa-mir-301b 113 7.51 0.81 Yes RNA-seq
hsa-mir-181d 267 7.8 0.64 Yes RNA-seq
hsa-mir-345-5p 98 8.15 0.41 Yes RNA-seq
hsa-mir-410 36 8.21 0.36 Yes RNA-seq
hsa-mir-1180 21 8.03 0.48 Yes RNA-seq

Sample 4
Detected by DASL,
not RNA-seq
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species expressed at low levels; high relative measurement errors may
diminish quantitative comparability between DASL and RNA-seq [17].

Another interesting observation is the number of miRNAs which
appear to be discordantly detected, suggesting that either technology
(or both) harbors some deficiency in sensitivity or specificity. It seems
possible that increasing sequencing depth may increase the detection
concordance between the technologies for miRNAs expressed at low
levels, but would not alter our results for abundant miRNAs. McIntyre
et al. propose that the low proportion of RNA molecules sequenced
relative to the total pool of RNA present in an initial tissue sample
may account for technical variability in RNA-seq experiments, and
that increased coverage may reduce this variability [18]. This explana-
tionmay be particularly relevant formiRNAswhich are naturally present
at low levels. In addition, the observation that themajority of discordant-
ly detected miRNAs were clustered in the low to very low expression
range seems natural and perhaps expected. Nonetheless, several of
the discordant miRNAs were highly expressed by one technology and
completely absent by the other suggesting that low expression level can-
not totally account for this discrepancy and increased coverage depth
may not totally eliminate it.

We performed q-RT-PCR quantitation of a carefully selected set of
miRNAs from both samples. Because of the potential problems with
cross-hybridization on microarrays, we could reasonably expect that
DASL may make false positive detection calls. However, this was not
entirely the case; several of the discordant patterns of detection were
confirmed by q-RT-PCR for either platform. This suggests that perhaps
certain miRNAs are inherently difficult to sequence, but still may be de-
tectable bymicroarray. The difficulty could be due to a variety of factors –
including base composition or secondary structure stability – of which
we can only speculate. We considered alternative explanations for the
observed detection discrepancies such as increased RNA degradation
over time or a greater number of freeze–thaw cycles between themicro-
array experiment and the RNA-seq run. Both of these possibilities are un-
likely since the q-RT-PCR experiments that were run after DASL and
miRNA-seq confirmed the presence of the positive control miRNAs at
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very high levels. This being said, it is conceivable that hsa-miR-544 may
have been degraded through freeze–thaw cycles. It is unlikely that this
miRNA would have been falsely detected by a non-specific DASL probe
because it has been shown that cross-hybridized miRNAs differing by a
single base would have a measured signal intensity reduced by a factor
of up to 60 relative to a true positive on the miRNA DASL assay [9]. In
light of the apparent non-detection by RNA-seq of present and highly
abundant species, we see another plausible explanation that certain
miRNAs are lost during sequencing library preparation. Importantly,
our q-RT-PCR experiments validated the presence of all but one miRNAs
detected by RNA-seq butmissed by DASL, thereby supporting the notion
that sequencing-based methods produce few false positive calls when
studying FFPE tissue.

Our findings were not seriously confounded by a number of
specimen-specific or platform-specific technical parameters. We found
that older specimen age did not correlate with inferior concordance
between the two platforms, although older RNA extractions perhaps
could. Older specimen age could lead to lower efficiency (higher fraction
of unmappable short reads) and this could have an effect in mutation
and sequence analyses, but it did not affect our quantitative and detec-
tion data. Similarly, although the magnitude of discordance is partly
diminished by DASL design limitations (such as non human or “dead”
probes, or a predefined limit of ~1000 array probes), or by limitations
of earlier miRNA-seq platforms, our data still suggests a residual amount
of true discordance in the performance of the two technologies.

It is important to consider various limitations of this pilot study.
We studied only one specific platform for RNA sequencing as an ex-
ample. Other sequencing platforms have been developed, including
some which are thought to be more specifically designed for FFPE
tissues [19]. We cannot know with certainty if our findings would
be applicable to these other platforms but we believe that they pro-
vide the basis for further evaluation in the future. We utilized both
miRBase 16.0 and miRBase 19.0 in successive steps of our study. That
being said, our analysis suggested that this did not havematerial impact
on the main conclusions and we also took care not to use any of the de-
funct sequences for the RT-PCR validation. Also, we used a relatively
small number of samples (5). A larger study would have been prefera-
ble, but was precluded due to the high cost of these experiments. We
feel that this initial pilot experiment on a limited number of samples
provided clear and novel insights that would be better studied in larger
cohorts. Furthermore, we would like to underscore that our results are
not meant to prove that one technology is better overall since we
could not perform comprehensive RT-PCR comparison on all discordant
miRNAs in this pilot analysis; rather, we wish to elucidate some of the
differences in performance and perhaps suggest their complementary
value. From the sample of 18 discordant miRNAs studied with RT-PCR,
we can reasonably conclude that neither of the two technologies is like-
ly to be always right or always wrong in this degraded tissue material,
although an emerging theme appears to be that miRNA seq may be
more specific. Lastly, it should be noted that our study did not attempt
to directly address the question of whether FFPE specimens are ade-
quately preserved for high-throughput profiling compared to frozen
tissue. Future larger studies that would include paired frozen/FFPE
specimens, ideally encompassing enough samples from different histo-
logic types, coupled with large-scale RTPCR experiments would be
required in order to definitively assess the comparative merits and
shortcomings of these technologies.

5. Conclusions

In summary, we have directly compared the detection and quanti-
tation of miRNAs present in FFPE tissue samples using the DASL assay
and miRNA-seq. Our data indicate that for miRNAs robustly detected
by both technologies, there is amoderate degree of correlation between
quantitative expression levels, and that highly abundant species are
more highly correlated. We also conclude that miRNA-seq is highly
specific in that it produces few false positivemiRNA detections; howev-
er we caution investigators that certain present miRNAs – including
highly abundant ones – may be missed by sequencing. We believe
that these findings elucidate an important technological advance and
merit further research into the potential causes for the non-detection
of certain miRNAs to improve the applicability of NGSmethods to archi-
val tissue-based studies. Further studies building on these results will
also help evaluate how NGS and microarray based technologies can be
of complementary value for clinical investigation.
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