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ABSTRACT

Motivation: Modern machine learning methods based on matrix
decomposition techniques, like independent component analysis
(ICA) or non-negative matrix factorization (NMF), provide new and
efficient analysis tools which are currently explored to analyze
gene expression profiles. These exploratory feature extraction
techniques yield expression modes (ICA) or metagenes (NMF). These
extracted features are considered indicative of underlying regulatory
processes. They can as well be applied to the classification of gene
expression datasets by grouping samples into different categories
for diagnostic purposes or group genes into functional categories
for further investigation of related metabolic pathways and regulatory
networks.
Results: In this study we focus on unsupervised matrix factorization
techniques and apply ICA and sparse NMF to microarray datasets.
The latter monitor the gene expression levels of human peripheral
blood cells during differentiation from monocytes to macrophages.
We show that these tools are able to identify relevant signatures in the
deduced component matrices and extract informative sets of marker
genes from these gene expression profiles. The methods rely on the
joint discriminative power of a set of marker genes rather than on
single marker genes. With these sets of marker genes, corroborated
by leave-one-out or random forest cross-validation, the datasets
could easily be classified into related diagnostic categories. The latter
correspond to either monocytes versus macrophages or healthy vs
Niemann Pick C disease patients.
Supplementary information: Supplementary data are available at
Bioinformatics online.
Contact: elmar.lang@biologie.uni-regensburg.de

1 INTRODUCTION
Modern signal processing and machine learning techniques
provide appropriate tools to analyze high-throughput datasets like
microarrays. Despite the fact that many problems still remain to
be solved (Dougherty and Datta, 2005; Dougherty et al., 2005;
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Quackenbush, 2001), some consensus is slowly reached as to how
data should be analyzed properly (Allison et al., 2006).

Raw gene expression level measurements need sophisticated
preprocessing (Wu and Irizarry, 2007) encompassing background
correction, summarization, normalization (Baldi and Hatfield, 2002;
Hochreiter et al., 2006) and missing value imputation (Troyanskaya
et al., 2001), which is often done using software available from the
chip producer (Affymetrix, 2002).

After preprocessing, normalized gene expression levels can be
analyzed using feature extraction (Guyon and Elisseeff, 2003) and
classification (Dudoit et al., 2002) methods. Any statistical analysis
of gene expression probe level data, however, has to face the ’large
N , small M’ problem setting, where N denotes the number of genes
(= features, variables, parameters) and M denotes the number of
samples (= experiments, environments, tissues). Also overfitting
has to be avoided to construct a classifier with a good generalization
ability (Spang et al., 2002). Any robust classifier needs a sample-
per-feature (SpF) ratio of 5-to 10-fold, while with usual microarray
probe level measurements the SpF amounts to 1/50−1/200 roughly.
Hence a substantial reduction of the feature space dimensionality
via gene or feature selection is often the only way out of this SpF
dilemma.

Traditionally two strategies exist to analyze such sets of gene
expression signatures: Supervised approaches and Unsupervised
approaches. Supervised approaches afford prior knowledge such
as class labels, clinical outcomes, prior densities, etc. and a
truly representative set of training data. They are generally
used for classification of malignancies within a discriminant
analysis. Unsupervised approaches explore correlations in the high-
dimensional data space and find appropriate transformations to
identify relevant subspaces and group observations accordingly.
However, such approaches often need additional constraints to yield
unique answers but they allow for the detection of new, yet unknown
classes (Saidi et al., 2004). For a detailed account of the relevant
literature see the extended ‘Introduction’ in the accompanying
Supplementary Material.

There is a recent interest in applying exploratory matrix
factorization (MF) techniques, like principal component analysis
(PCA), independent component analysis (ICA) or non-negative
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matrix factorization (NMF), to gene expression level measurements
with microarrays (Liebermeister, 2002). In this study we propose
to include diagnostic knowledge and explore the potential of
matrix decomposition techniques to identify and extract marker
genes from microarray data sets and classify these datasets
according to the diagnostic classes they represent. Note that the
feature extraction process via exploratory matrix decomposition
techniques is unsupervised, but the identification of the most relevant
features follows the supervision of diagnostic information available.
Preliminary work along these lines has been presented recently at
a conference (Schachtner et al., 2007a). Corresponding supervised
feature extraction and classification techniques like support vector
machines (SVM) have been applied to the same dataset and are
discussed in short as well. For a more detailed discussion of these
supervised techniques, though applied to different datasets, see
(Schachtner et al., 2007b).

2 THE MONOCYTE–MACROPHAGE DATASET
For our analysis we combined the gene-chip results from
three different experimental settings to the monocyte–macrophage
(MoMa) dataset (Lutter et al., 2008). In each experiment human
peripheral blood monocytes were isolated from healthy donors
(Experiment 1 and 2) and from donors with Niemann Pick
type C disease (Experiment 3). Monocytes were differentiated to
macrophages for 4 days in the presence of M-CSF (50 ng/ml,
R&D Systems). Differentiation was confirmed by phase contrast
microscopy. Gene-expression profiles were determined using
Affymetrix HG-U133A (Experiment 1 and 2) and HG-U133plus2.0
(Experiment 3) Gene Chips covering 22 215 probe sets and
about 18 400 transcripts (HG-U133A). Probe sets only covered
by HG-U133plus2.0 array were excluded from further analysis.
In Experiment 1 pooled RNA was used for hybridization, while
in Experiment 2 and 3 RNA from single donors were used. The
final dataset consisted of seven monocyte and seven macrophage
expression profiles and contained 22 215 probe sets. After filtering
out probe sets which had at least one absent call, 5969 probe sets
remained for further analysis. Exp. 1–7 refer to monocytes and Exp.
8–14 to macrophages. Exp. 1–4 and 8–11 stem from healthy subjects,
the rest from diseased subjects.

3 METHODS
The data are traditionally represented as a N ×M-dimensional data matrix
X whose M columns represent gene expression signatures (GES) of N
genes during M experiments or environmental conditions while the N rows
represent gene expression profiles (GEP) of each of the N genes across all M
experimental conditions. Column vectors are denoted as, for example, x∗m,
while row vectors are denoted as xn∗ in the following. The index m is always
signifying an environmental condition in the following whereas the index n
always refers to a certain gene.

3.1 Gene selection schemes
A general problem with microarray datasets is the problem of overfitting
which arises whenever the number N of parameters (genes) is large compared
to the number M of samples (experimental conditions). One way around
this problem is to preselect a reduced number of genes which are ranked
according to some scoring scheme. The data matrix X contains in its columns
the GESs observed during M experimental conditions. Out of these, K
genes and their corresponding class label were preselected from the training
dataset, using different selection methods and scoring schemes, to result

in a (K +1)×M-dimensional data matrix whose column vectors served as
input to the Lagrangian SVM (LSVM) classifier which thus operated in a
(K +1)-dimensional subspace of the N-dimensional gene space.

3.1.1 Random gene picking First and simplest, random gene picking was
used to preselect K-tuples of genes whose gene expression profiles were
used to train the LSVM classifier. If the resulting decision hyperplane
correctly classified the training set, a leave-one-out (LOO) cross-validation
was applied to estimate the classification error. With the current dataset
single marker genes could always be identified which could classify the
dataset according to the classification task considered, be it monocyte versus
macrophage or healthy versus NPC disease. Thus the algorithm was used
with k =1 only.

3.1.2 Score-based gene selection Thereby the following scoring criteria
are considered:

1. FCh: A simple and often used score is the Fold Change (FCh).

2. w-score: In Golub et al. (1999), an empirical w-score was proposed.
This score has been criticized, however, to yield incorrect units in the
related discriminant function (Dudoit et al., 2002).

3. T-score: In Liu et al. (2005) a score based on a likelihood ratio of in
class and between class variances was suggested.

4. c-score: Galton (1888, 1889) proposed a statistical correlation score
nowadays known as Pearson correlation (Pearson, 1901), which can
be used to measure the similarity between the n-th GEP xn∗ of the
data matrix and a design vector d reflecting the diagnostic knowledge
available from the experimental design.

5. SAM: The significance analysis of microarrays (SAM) represents a
variance stabilized version of a t-test (Tusher et al., 2001).

The gene selection can now proceed by choosing either a fixed number of
genes with the highest scores or by defining a threshold and selecting all genes
with scores above this threshold. Here a set of 50 genes is selected always.

3.1.3 SVM-based gene selection A gene selection method different from
the selection schemes discussed above can be derived from the SVM directly
(Barnhill et al., 2002). A SVM estimates an optimal hyperplane, which is
characterized by a vector w normal to the hyperplane, separating the dataset
into appropriate subspaces. Gene expression signatures x∗m, representing
the expression levels of all genes in gene space, can be projected onto these
normal vectors via dot products. Hence the components of w indicate the
importance of a gene for the classification task. Genes which have small
components only in w can be removed as their associated unit vectors almost
lie parallel to the hyperplane, hence they are orthogonal to the direction of
optimal class discrimination, represented by w, and will not contribute to the
classification.

Note that all these scores are based on the discriminative power of single
gene statistics. Thus they ignore the joint discriminative power of a group
of genes where each single gene might exhibit a low individual score. This
is clearly a deficit of these gene selection schemes.

3.2 Feature generation and selection schemes
MF techniques like ICA or NMF seem promising in generating features
suitable for diagnostic classification purposes. A key feature of ICA as well
as NMF is the ability to identify patterns that together explain the observed
GESs as a linear combination of expression modes (ICA) or metagenes
(NMF), respectively. Hence they overcome the limitations inherent to single
gene statistics as discussed earlier. In the following we will discuss these
feature generation techniques in their application to microarray datasets. For
feature selection we consider a modified Pearson score where we replace
the observed GEPs xn∗ of the data matrix by corresponding component
profiles obtained from the feature generation step by applying matrix
decomposition techniques to the data matrix. Note that while the feature
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generation techniques are completely unsupervised, the subsequent feature
selection and classification affords the inclusion of diagnostic knowledge
through a corresponding design vector di for class i and renders the methods
semi-supervised instead.

3.2.1 Data representation and preprocessing The gene expression levels
are represented by an (N ×M) data matrix X=[x∗1 ···x∗M ] with each
column x∗m representing the expression levels of all genes in one of the
M experiments or environmental conditions. With NMF, a decomposition
is then sought according to X=WH which is not unique, of course, and
needs further specification. The columns of W are called metagenes. They
represent the GESs combined together according to the weights contained in
the rows of H which are called meta-experiments. Note that the data matrix is
non-square with N ≈103M which renders a transposition of the data matrix
necessary when techniques like ICA are applied. Hence ICA follows the
data model: XT =AS where the columns of matrix A represent the basis
vectors of a new representation which is obtained by grouping together the
observed GEPs according to the weights contained in the rows of S which
are called expression modes. Note that the latter are constrained to be as
statistically independent as possible. Accordingly, the columns of matrix A
may be named feature profiles. Further, each row am∗ contains the weights
to combine the independent expression modes to the observed GESs.

The raw expression data have been normalized per chip. As normalization
and summarization tool MAS 5.0 has been applied by the medical doctors
who owned and produced the datasets. The raw datasets have never
been available to us for alternative preprocessing. Hence, more advanced
preprocessing tools like RMA (Bolstad et al., 2003; Irrizarry et al., 2003),
GCRMA (Wu et al., 2004), FARMS (Hochreiter et al., 2006; Talloen et al.,
2007) or DFW (Chen et al., 2007) could not be applied and, in part, have
not been available yet at the time the data were produced and processed.

3.2.2 ICA—Analysis The M ×N data matrix XT was used as input to
the JADE algorithm (Cardoso and Souloumiac, 1993, 1996) which is a
nearly exact algebraic algorithm focusing on the 4th order cumulant of
the distribution of expression levels within the expression modes. It was
preferred over stochastic algorithms like the fastICA which yield slightly
different results in every run and need several repetitions to identify the
robustly estimated expression modes. Note that JADE encompasses centering
and whitening procedures as preprocessing steps. The number of extracted
expression modes K ≤ M need not correspond to the maximum possible and
can be chosen deliberately. The output is a K ×M demixing matrix B, which
allows the computation of the corresponding expression modes. It is defined
through the relation BXT =YT =BAS=DPS with D, a diagonal scaling
matrix and P, a permutation matrix. Typical results show expression modes
which exhibit both positive and negative expression levels, though the raw
expression profiles only have positive expression levels, of course. Note that
either the expression modes or their related basis vectors can be normalized
to unity because of the inherent scaling indeterminacy of ICA.

An ICA-based gene grouping scheme to analyze gene expression profiles
was proposed by (Lee and Batzoglou, 2003). A thorough discussion of
this rather classical ICA approach, applied to the current dataset, can be
found in Lutter et al. (2008), where also a discussion of the biological and
medical implications of the findings is discussed in greater detail. Hence
we abstain here from any such discussion and put the emphasis on the new
methodological aspect. In contrast to this classical analysis, here a different
approach is taken which utilizes basic properties of the matrix decomposition
model and incorporates diagnostic knowledge to evaluate the structure of the
feature profiles, i.e. the basis vectors of the new representation, and deduce
a corresponding expression mode to identify a set of marker genes with
sufficient discriminative power concerning the classification task at hand.

ICAessentially seeks a new representation of the observed dataset with the
columns of matrix A representing the new basis vectors. Whereas the original
dataset X is interpreted as M data vectors (experiments) in N dimensions
(genes), with ICA the transposed data XT matrix is considered. Hence, the
data are interpreted as N data vectors, each representing the expression profile

of one of the N genes in an M �N-dimensional feature space. The latter is
spanned by the M-dimensional column vectors of matrix A which represent
the new coordinate system. Hence, individual gene expression profiles are
mapped onto feature profiles and the component profiles, i.e. the columns of
S, associated with the expression profiles by the rules of matrix multiplication
contain the weights with which every feature profile contributes to each
observed expression profile. If the matrix decomposition is adequate, a
concise analysis of the structure of these feature profiles comprising the
columns of matrix A might hopefully provide insights into the structure of
the dataset itself.

After the ICA decomposition XT =A·S, the matrix S contains K ≤M
supposedly statistically independent expression modes sm∗ ∈R1×N ,1≤m≤
(K ≤M) forming the rows of S. Now note that to every gene expression
signature a corresponding row of matrix A is related which contains the
weights with which each of the K ≤M independent expression modes
contributes to the gene expression signature under consideration. Hence each
column of A can be associated with one specific expression mode sm∗ to
which it is related by the rules of matrix multiplication. This observation
forms the basis of the proposed feature selection scheme. In a first step an
informative feature profile reflecting the available diagnostic information of
the set of experiments is identified and in a second step the genes of the
associated independent expression mode are analyzed with respect to their
diagnostic classification potential.

Each investigated microarray dataset represents at least two different
classes of cells, such as cell lines taken either from healthy subjects (Class 1)
or patients suffering from any disease (Class −1). If the gene expression
signatures x1∗,...,xM∗ of the different experiments are arranged according
to their diagnostic class label, i.e. the j experiments of Class 1 constitute
the first j rows of the data matrix XT , whereas the members of Class −1,
i.e. {xm∗}M

m=j+1, are collected in the remaining rows, this assignment is also
valid for the rows of matrix A. Suppose one of the independent expression
modes sm∗ is reflecting a putative cellular gene regulation process which is
related to the diagnostic difference between the classes. Then to every gene
expression signature of Class 1, this characteristic expression mode should
contribute substantially—signalled by a large weight in the corresponding
feature profile—whereas its contribution to Class −1 experiments should
be less (or vice versa). Since the k-th column of A contains the weights
with which the k-th expression mode sk∗ contributes to all observed
gene expression signatures, this column should show large/small feature
components according to the class labels. Hence, in contrast to the method in
Lee and Batzoglou (2003), the clinical diagnosis of the experiments is taken
into account. The strategy concentrates on the identification of a column
of A, which shows a class specific signature according to a design vector d
containing the class labels of each experiment. The expression mode related to
that specific column is assumed to provide a good candidate for further class
specific analysis concerning the identification of marker genes. Informative
columns were identified using the correlation coefficient |corr(a∗n,d)| of each
column vector of A with a design vector d whose m-th entry is dm =±1,
according to the class label of experiment m.

3.2.3 Local NMF—analysis NMF replaces the assumption of statistically
independent expression modes by a positivity constraint concerning the
entries of the matrices into which the given data matrix of observed
expression levels is to be decomposed. As the experimentally observed data
correspond to fluorescence intensity levels, such positivity constraints seem
more natural than independent expression modes which contain numerous
negative entries. Such negative entries appear as well in the matrix of
corresponding mixing coefficients meaning that different expression modes
may partially compensate their respective contributions to the observed
expression levels. Hence the constrained NMF model has the potential to
identify sets of functionally related genes more accurately. Applying NMF,
the data matrix corresponds to the usual N ×M matrix X=[x∗1 ···x∗M ].
Each column of X, called a gene expression signature, comprises the gene
expression levels of all genes resulting from one experiment. After applying
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the LNMF algorithm (Li et al., 2001), the data matrix is decomposed into
two new matrices W and H. The columns of W=[w∗1 ···w∗k] are called
metagenes. One of them is expected to be characteristic of a regulatory
process, which is responsible for the class specific difference in the observed
experiments. Its contribution to the observed gene expression signatures is
contained in the rows of matrix H which are called meta-experiments. Once
an informative meta-experiment is identified through its correlation to the
design vector encompassing the diagnostic information available, further
analysis can be focused only on the genes contained in the corresponding
metagene.

The search strategy is similar to the one used in case of the ICA analysis
discussed earlier. As before all experiments were classified according to
available diagnostic information and labeled accordingly. The correlation
coefficients between every meta-experiment hm∗ and d are then computed.
Empirically, a correlation coefficient |corr(hm∗,d)|>0.9 signifies a sufficient
similarity between hm∗ and d. Besides the maximum number of iterations
which controls the precision of the decomposition, the number of extracted
basis components K , i.e. the metagenes, is the only adjustable parameter
affecting the structure of W and H. For several decompositions X=
WH using different numbers K of metagenes [w∗1 ···w∗K ], the matrices
H are studied with respect to the appearance of correlation coefficients
|corr(hm∗,d|) close to 1. A metagene is considered informative only if all
entries of the corresponding meta-experiment which belong to Class 1 are
smaller than all other entries of that meta-experiment (or vice versa). After
a total number of 5000 iterations, the cost function of the LNMF algorithm
did not show noticeable changes with any of the datasets investigated. For
K =2,...,49, ten separate simulations were carried out each time and only the
simulation showing the smallest reconstruction error was retained. Further
matrix decompositions with K =50,60,...,400 metagenes were examined.
In the latter case, only three simulations were performed for each K . Note that
NMF traditionally chooses K �M to go for a more compact representation
of the data matrix. However, deliberately choosing K �M opens the way to
a sparse and hopefully more informative and straightforwardly interpretable
representation of the dataset with co-regulated genes combined into one
metagene.

3.3 Classifier
3.3.1 SVM classifier SVM (Schölkopf and Smola, 2002) are appropriate
tools whenever data classification is the goal. They are based on geometric
considerations in a vector space. Given an optimal separating hyperplane,
characterized through its vector wopt normal to the hyperplane, the
corresponding decision rule reads

f (x)=sgn
(〈x,wopt〉+b

)
(1)

where wopt =∑
m∈SV ymαmxSV∗m and ym represents the class label, αm

represents a hyperparameter and xSV∗m indicates the support vectors
closest to the separating hyperplane. The solution to this quadratic
optimization problem is implemented in the LSVM algorithm (Mangasarian
and Musicant, 2001), a MATLAB version of which is available at
www.cs.wisc.edu/∼musicant/lsvm/ and has been used in this study. For
cross-validation to evaluate the performance of the LSVM classifier, a LOO
procedure was applied. Note that in every case the test sample has been taken
out before the classifier was trained to avoid any bias in the decision making
(Simon, 2003).

3.3.2 MF classifier MF of the data matrix has been considered a feature
generation technique sofar. The resulting M-dim feature profiles (ICA:
columns of A) or the M-dim meta-experiments (NMF: rows of H) have
then been used for feature selection purposes by correlating them with a
design vector d the components of which represent class labels encoding
the diagnostic information available about the respective experiments or
environmental conditions. But the known class labels of the GESs (ICA:
xT

m∗ or NMF: x∗m) also translate to corresponding labels for the rows ak∗
in case of ICA or the columns h∗k in case of NMF. Similarities between

these row or column vectors, respectively, can thus be used to classify the
observations directly without having to identify appropriate sets of marker
genes. The method will be explained in the following referring to the
NMF notation but can be translated to the ICA notation immediately by
recognizing the correspondence of metagene—expression mode and feature
profile—meta-experiment, i.e. W�ST and H�AT , respectively.

Note that from X=WH it follows that W# ·x∗m =h∗m where W# denotes
the pseudo-inverse of W. Now the similarities between the columns of H can
be used to classify the observations. Though any method based on similarity
measures can be used, we simply estimate the correlation coefficient, i.e.
cm ≡corr(htest,h∗m). Now for each class a separate index set Ii of indices is
created, where I1 encompasses all indices m for which x∗m ∈ Class 1 while
I−1 contains all remaining indices. This thus results in two sets of correlation
coefficients corresponding to the two assignments m∈ I1 or m∈ I−1. Two
rules for class assignment were tested:

• Average correlation:

label(htest∗m )=
{

1 if 〈cm(1)〉> 〈cm(−1)〉
−1 otherwise

(2)

where 〈....〉 denotes an average of the correlation coefficients over the
respective index set.

• Maximal correlation:

label(htest∗m )=
{

1 if max{cm(1)}>max{cm(−1)}
−1 otherwise

(3)

where max{cm(±1)} denotes the maximal value of all correlation
coefficients within either the set I1 or I−1.

Rule 1 thus assigns the class label according to an average correlation
of the test vector with all vectors belonging to one or the other index set.
Rule 2 assigns the class label according to the maximal correlation occurring
between the test vector and the members of each index set.

3.3.3 Random forest classifier Last but not least a random forest (RF)
classifier (Breiman, 2001; Diaz-Uriarte, 2007; Diaz-Uriarte and de Andrés,
2006) was applied to a set of 50 genes which were selected by either
a) the highest scores, b) the highest expression values in the most informative
expression mode in case of ICA feature selection or c) the highest expression
levels in the most informative metagene in case of NMF feature selection. RF
is a classification algorithm which uses an ensemble of classification trees.
Each tree is built using a bootstrap sample of the data, and at each node
of the decision tree the candidate set of variables is a random subset of the
variables. Hence RF uses both bagging and random variable selection which
results in largely uncorrelated decision trees. RF shows improved accuracy in
comparison to other supervised learning methods. Apart from this it provides
a stability measure of the list of genes selected according to some well-
defined measure of variable importance. This is a definite advantage over
other cross-validation schemes, hence it was applied to all features (= gene
lists) generated with other techniques in this contribution.

4 RESULTS AND DISCUSSION
The following results discuss the application of the various gene or
feature selection schemes and classifiers to the microarray datasets.
The goal was to identify an as small as possible set of marker genes
which allow for a diagnostic classification of the given microarray
experiments devoted to the investigation of the related disease. These
marker genes would allow the design of special purpose chips which
could provide a less costly alternative to genome-wide microarray
diagnostics.

The cases to be distinguished by the classifier in the MoMa
datasets are the following:

• Case 1: monocyte versus macrophage (MoMa)

• Case 2: healthy versus Niemann Pick C disease (HeDi)
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Table 1. The classification task was to classify monocytes versus macrophages (Case 1:MoMa)

No. SGP/SVM-LOO ICA-GEL-neg ICA-RF-neg ICA-GEL-pos ICA-RF-pos NMF-GEL NMF-RF

1 PABPC4 NFKBIA H3F3A GPNMB CD59 GPNMB CPVL
2 SNURF/SNRP S100A9 PPP1R15A MMP9 CTSB HLA-DRB1 CST3
3 PEBP1 IL8 HSPA5 CTSB ADFP CD74 ADFP
4 ITGAL FCN1 H3F3A FUCA1 LIPA SAT LIPA
5 ZNF331 S100A8 RGS2 LIPA CTSL PSAP MS4A6A
6 CRYL1 CSPG2 CYP1B1 CD63 K-ALPHA-1 HLA-DRB1 HLA-DPA1
7 TNFAIP3 CD83 LAMP1 GM2A HLA-DRB1 C12orf8
8 DUSP1 CYBB TFRC HEXB GRN GM2A
9 PRG1 HNRPH1 CSTB PPIA GM2A CECR1
10 FPR1 CYP1B1 K-ALPHA-1 SAT GRN BASP1

SGP/SVM-LOO: genes of the dataset which lead to an error rate ε(LOO)≤2 when genes were selected by either single gene picking or a SVM and LOO cross-validation was

invoked. The genes are ranked according to their corresponding c-scores. ICA-GEL-neg/pos: the 10 most strongly expressed genes of expression submodes sneg/pos
6∗ , respectively,

when a total of k =8 expression modes were extracted by ICA. NMF-GEL: the 10 most highly expressed genes in the most informative metagene w∗28 selected by LNMF. NMF-RF:
the most informative genes of metagene w∗28 according to the RF classification of the 50 most highly expressed genes of the most informative metagene w∗28 selected by NMF.

4.1 Gene selection and classification
4.1.1 Random gene picking and classification The simplest
possibility tested was the identification of randomly picked single
genes which were able to classify the datasets into the given classes
according to both classification cases using the LSVM classifier and
LOO cross-validation. Hence 14 LOO test have been performed.
Results obtained with the MoMa dataset concerning the Case 1
classification are listed in Table 1, first column (SGP/SVM-LOO).
Only genes with a classification error rate ε(LOO)<2 are listed.
Concerning Case 2 classification, a total of 531 genes resulted from
gene picking or SVM selection which showed a classification error
rate ε(LOO)=0 when LOO cross-validation was applied. These
genes were ranked according to their c-score and the 10 genes with
the highest c-scores (see later) are listed in Table 2, first column
(SGP/SVM-LOO). Please, note that different genes might have the
same Affy-id, hence the same gene name (Loci-id) might appear
multiply in the following lists. Entries in bold face in these tables
represent genes which were also selected as marker genes with other
methods, hence appear in several columns of the table with the same
type of classification (Case 1 or Case 2). Entries in italics in these
tables represent marker genes which also appear in lists related with
the other type of classification (Case 1 and Case 2), hence appear in
both tables.

4.1.2 SVM-based gene selection and classification The recursive
gene elimination procedure discussed earlier has been tested with
the MoMa dataset. As the LSVM algorithm is not able to handle
datasets with many thousand genes, each dataset has been partitioned
into subsets of roughly 1000 genes each. For each subset an
optimal separating hyperplane has been estimated using LSVM. Two
strategies were followed to filter out a set of diagnostic marker genes:

1. Remove the gene with the smallest squared contribution to w
and run LSVM on the reduced dataset. When no solution can
be obtained with the reduced set, then stop. Merge the 100
most important genes of each set and repeat the procedure.

2. Remove the 100 least important genes with the smallest
components in w as long as more than 200 genes are in the
set. For smaller sets remove genes step by step.

In each case the algorithm stopped at one of the genes listed
in Tables 1 or 2 corroborating the findings already achieved with
single gene picking and LOO cross-validation. The comparison
of the scores of these genes with respect to the different scoring
schemes show that the genes selected with either the single gene
picking or the SVM-based selection scheme rank quite differently
in the different scoring schemes. Choosing the 50 genes with the
highest score of every scoring list, most of the genes in Table 1
would not have been selected at all by simple score ranking. The
best correspondence is achieved with a ranking according to the c-
score/SAM-score. Note that the SAM-score ranking is identical to
the c-score ranking. Hence, we only will consider this latter scoring
scheme further on.

4.1.3 Score-based gene selection and RF classification The
score-based gene selection methods discussed earlier yield quite
different collections of genes. The various scores of all genes of
the dataset were calculated and the genes were sorted in descending
order according to these scores. The 50 most highly ranked genes
according to the different scores were then selected for further
evaluation using a RF classifier. In the following we concentrate only
on the more interesting Case 2 (HeDi) classification. Furthermore
we only present results in case of the c-score which turned out to
be the most reliable and, furthermore, yielded an identical ranking
as the SAM - score. Table 2 summarizes the 19 genes with the
highest importance according to the mean decrease accuracy and
mean decrease Gini index (Breiman, 2001) estimated by the RF
classifier (Fig. 1).

4.2 Feature generation, selection and classification
In the following we apply the matrix decomposition techniques
discussed earlier for feature generation and selection which
incorporates diagnostic knowledge available about the experiments.
Sets of marker genes will result, which were subjected to a RF
classifier to identify the most relevant genes for the classification
task at hand.

4.2.1 Analysis of feature profiles and expression modes generated
by ICA Using a decomposition into K =M =14 independent
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Table 2. The classification task was to classify healthy versus Nieman Pick C disease (Case 2: HeDi)

No. SGP/SVM-LOO C-Sc-RF ICA-GEL-neg ICA-GEL-pos ICA-RF-neg ICA-RF-pos NMF-GEL NMF-RF

1 RPS6KA4 PEBP1 OAZ1 3GM2A RPL11 SOD2 SAP18 RY1
2 C14orf131 CD163 C6orf62 STAB1 RPL7 ACTB PNN RAD23B
3 SAP18 DIP ARPC2 GM2A ACTR2 NOTCH2NL RAB1A UBE2L3
4 COX7c unknown RPL7 HLA-A RAB1A GRN SUMO1 MIF
5 CHMP5 GRN S100A4 SOD2 ALOX5AP DUSP1 RAB31 NUDT21
6 SUMO1 MMD ITM2B NFKBIA HSPA8 HLA-C NEDD8 PCMT1
7 PNN STX7 ARHGDIB IL8 SERPINA1 GRN RPS25 SAP18
8 OAZ1 MPST TMSB4X HLA-B S100A4 AHNAK ATP6Y1C1 SNX3
9 TDE2 GRN ALOX5AP SAT H3F3A HLA-F CHMP5 CASP1
10 RAB1A PRKACB HLA-DRA PSAP ARPC2 CTSD TSPYL1 RAB31
11 GUSB C6orf62
12 GALC HNRPA1
13 NPC2 S100A10
14 SPTBN1 RAB31
15 RRAGD
16 C5orf13
17 SNRP/SNURF
18 GRB10
19 CTSD

SGP/SVM-LOO: the first 10 marker genes out of a list of 531 genes of the dataset which lead to an error rate ε(LOO)=0 when genes were selected by either single gene picking
or a SVM and LOO cross-validation was invoked. The genes are ranked according to their corresponding c-scores. The first two genes had a positive c-score, all others a negative
c-score. C-Sc-RF: list of genes of the dataset which, after ranking by their c-score, were selected as most informative by a RF classifier. Only the 50 highest ranked genes were
input to the RF-classifier. ICA-GEL: 10 most strongly expressed genes of expression mode s3∗ related with case 2 when a total of k =8 expression modes were extracted by ICA.
ICA-RF: the most informative genes, according to a RF classifier, of the submodes (sneg

3∗ ,spos
3∗ ) of expression mode s3∗ related with case 2 when a total of k =8 expression modes

were extracted by ICA. Only the 50 most highly expressed genes were input to the RF-classifier. NMF-GEL: the 10 most highly expressed genes in the most informative metagene
w∗13 selected by LNMF. NMF-RF: the most informative genes of metagene w∗13 according to the RF classification of the 50 most highly expressed genes of the most informative
metagene w∗13 selected by NMF.
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Fig. 1. Mean decrease accuracy and Gini index determined with a RF
classifier of the 50 genes of the dataset with the highest c-score. Note that both
indices label the same 19 genes as most informative though their ordering is
slightly different.

expression modes, column a∗7 of the resulting mixing matrix A
showed a moderately strong correlation |corr(a∗7,d∗1)|=0.7
with the design vector d∗1 = (d1,1 =−1,...,d7,1 =−1,d8,1 =
1,...,d14,1 =1) to discriminate GESs taken from monocytes
from those taken from macrophages. Column a∗1 showed
a correlation coefficient |corr(a∗1,d∗2)|=0.95 with design
vector d∗2 = (d1,2 =1,...,d4,2 =1,d5,2 =−1,...,d7,2 =−1,d8,2 =
1,...d11,2 =1,d12,2,...,d14,2). The signature of Column 7 is not
very clear cut. Hence a systematic investigation of the structure of
the mixing matrices was carried out while increasing the extracted
number of expression modes from K =2,...,14. The necessary
dimension reduction step can be done during the whitening step
of the JADE algorithm. The information loss is not critical in
any case as the first three principal components cover 96.1% of
the variance. Note that such an ordering principle does not hold
in case of ICA. It is thus unclear whether such a dimension
reduction removes informative components which posses large
higher order correlations but accidentally only small second order
correlations. It is because of this uncertainty that we performed a
systematic investigation of the decomposition up to the full rank
of the data matrix. The resulting maximal correlation coefficients
|corr(a∗k,d∗i)| showed little variation in both cases with average
values 〈|corr(a∗k,d∗1)|〉K =0.79 and 〈|corr(a∗k,d∗2)|〉K =0.94.
Shallow maxima occur at k =3 in Case 1 and at k =8 in Case 2.
Figures 2 and 3 present the feature profiles a∗6 and a∗3 maximally
correlated with design vectors d1 and d2 and the related expression
modes s6∗ and s3∗. A list of the 10 most strongly expressed genes in
each of the extracted expression modes is given in Tables 1 and 2.
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Table 3. List of marker genes of the MoMa dataset, Case 1, according to
Table 1, first column and their corresponding rank according to the various
scores listed above

Gene symb. c w T+ T− SAM FCh

MoMa dataset: Case 1 classification
PABPC4 >50 >50 >50 >50 >50 >50
SNURF 01 49 >50 >50 01 >50
PEBP1 09 >50 23 >50 09 09
PEBP1 02 >50 >50 >50 02 24
ITGAL >50 >50 >50 >50 >50 >50
ZNF331 45 22 >50 >50 45 >50
CRYL1 >50 >50 >50 >50 >50 >50
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−200

0

200

400

600

0 1000 2000 3000 4000 5000 6000
−20

−10

0

10

20

Fig. 2. ICA(JADE): feature profile a∗6 for k =8 and the related expression
mode s6∗. Feature profile a∗6 shows a strong correlation with the design
vector d1 in Case 1 (monocyte versus macrophage).
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Fig. 3. ICA(JADE): feature profile a∗3 for k =8 and the related expression
mode s3∗. The feature profile a∗3 shows a strong correlation with the design
vector d2 in Case 2 (healthy versus diseased).

These marker genes are involved in a gene regulation network
and all genes in this network can be associated with the MeSH
term gene expression regulation, except FUCA1 and STAB1. For a
thorough discussion of the related pathways identified by applying
BiblioSphere MeSH- and GeneOntology filter tools see (Lutter et al.,
2008).

Having selected the most informative expression modes s6∗
(Case 1) and s3∗ (Case 2), their 50 most strongly expressed
genes have been selected from every submode and supplied to
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Fig. 4. Mean decrease accuracy according to a RF classification of the 50
most highly expressed genes in expression submode sneg

3∗ and spos
3∗ selected

by ICA with k =8 extracted expression modes in total. Only the 14 and 10
genes, respectively, with the highest mean decrease accuracy are considered
informative.

a RF classifier. In Table 1, the columns labeled ICA-GEL-neg/pos,
ICA-RF-neg/pos contain either the 10 genes with the highest
expression level (GEL) in the most informative expression mode
or the most informative genes selected by a RF classifier. The
columns labeled NMF-GEL/RF contain the corresponding genes
from the most informative metagene selected with LNMF feature
selection. The most highly expressed 50 genes of the expression
submodes or of the corresponding metagene have been subjected
to a RF classification. The importance of the variable decreases
exponentially in all three examples, hence only the first 10 genes
are listed as their importance was then already down to one- third of
the maximal value. The corresponding results obtained in the more
interesting classification Case 2 are listed in Table 2. According to
the mean decrease accuracy estimated, 14 and 10 genes stand out as
most informative as illustrated in Figure 4. They are listed in columns
labeled ICA-RF-neg/pos and NMF-RF in Table 2, respectively.

4.2.2 Analysis of meta-experiments and metagenes generated
by LNMF A LNMF analysis was also performed on the 14
experiments of the dataset. Again the number k of extracted
metagenes was varied systematically to identify an optimal
decomposition of the N ×M data matrix X. For every k, the
correlation coefficients between the meta-experiments and the design
vectors di∗,i=1,2 were computed. Again a RF classifier was used
to select the most informative genes from the most informative
metagene.

Monocyte versus macrophage: For k > 100, several meta-
experiments show small expression levels for all monocyte
experiments compared with larger expression levels for the
macrophage experiments, indicated by a large correlation coefficient
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Fig. 5. Signature of meta-experiment h28∗ of Hk=29 and corresponding GES
of metagene w∗28 of Wk=29.

Fig. 6. Signature of meta-experiment h13∗ and corresponding metagene
w∗13.

of |corr(hk∗,di,∗)| > 0.9. Up to K =90 mostly one significant meta-
experiment was observed, for K >90, except K = 120,170 and 190,
at least two significant meta-experiments were detected. Rows of
H related to the reverse case el(macrophage)<el(monocyte) do not
appear at a comparable level of correlation to the design vector.
Figure 5 exhibits the signature of row h28∗ of Hk=29 and the related
metagene. The 50 most highly expressed genes in metagene w∗28
have also been subjected to a RF classification to obtain a measure
of importance of these genes for the decision in question (Case 1
MoMa). Only 4 genes stand out as informative (Fig. 7) but the mean
decrease accuracy decreases exponentially, hence only the 10 most
important genes are listed in Table 1 together with the 10 most highly
expressed genes in metagene w∗28.

Healthy versus diseased: In this case, the number of meta-
experiments with a strong correlation with the design vector
reflecting overexpressed genes in case of cell lines taken from
Niemann Pick C patients increases nearly linearly with increasing k.
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Fig. 7. Mean decrease accuracy according to a RF classification of the 50
most highly expressed genes in metagene w∗28 and metagene w∗13 selected
by LNMF.

In case of underexpressed metagenes related to the disease, only
a few significant meta-experiments appear for K > 60. As an
example, a decomposition in K = 370 metagenes is considered.
Meta-experiment h13∗ yields |corr(h13∗,d2∗)| = −0.98 with respect
to the separation between the classes ‘healthy’ and ‘diseased’
(Fig. 6). The 10 most strongly expressed genes in metagene w∗13
which qualify as marker genes for the discrimination between
healthy subjects and Niemann Pick C patients are listed in Table 2
in column labeled NMF-GEL. Again the 50 most highly expressed
genes in metagene w∗13 have been subjected to a RF classification,
where 10 marker genes, listed in Table 2 in column labeled NMF-
RF, stand out as most informative for Case 2 (HeDi) classification
(Fig. 7).

4.3 MF classifier
Applying the MF classifier described eralier, the similarity between
either the rows of matrix A (ICA) or the columns of matrix H
(NMF) was studied using the dataset with LOO cross-validation.
Note that the matrix decomposition step used the complete data
matrix, though. As can be seen from Table 4, in most cases
one false classification occurred in Case 1 classification leading
to the suspicion of a falsely classified data sample which could
be identified as Experiment 4. Compared to ICA-based feature
selection and matrix decomposition, the corresponding LNMF-
based feature selection and matrix decomposition lead to a more
robust classification of all four diagnostic classes underlying the
dataset with respect to a variation of the number k of extracted
features. However, with features encompassing more than seven
genes a close to perfect classification with a close to zero
classification error resulted.

4.3.1 Comparison of expression modes and metagenes Though
both the ICA and the LNMF algorithm lead to data matrix
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Table 4. Number of false classifications of the MF classifier using ICA (left)
or NMF (right) for matrix decomposition and LOO cross-validation

K JADE LNMF JADE LNMF
MoMa MoMa HeDi VHeDi

avg max avg max avg max avg max

2 11 11 4 9 11 12 3 5
3 3 5 1 1 5 5 0 0
4 3 4 1 1 5 3 0 0
5 2 2 1 1 4 2 0 0
6 3 2 1 1 4 1 0 0
7 1 1 1 1 1 0 0 0
8 1 1 1 1 0 0 0 0
9 1 2 1 1 0 0 0 0

10 2 2 2 1 0 0 0 0
11 1 2 1 1 0 0 0 0
12 1 2 1 2 0 0 0 0
13 1 2 2 2 0 0 0 0
14 1 2 2 2 0 0 0 0

Class labels: Mo - Monocyte, Ma - Macrophage, He - healthy, Di - Niemann Pick C
disease.

decompositions which finally lead to robust and efficient diagnostic
classification of the datasets, they nonetheless resulted with groups
of strongly over- or under-expressed genes in the related metagenes
and expression profiles which showed only partial overlap. It is
interesting to compare the distribution of correlation coefficients of
the individually observed expression profiles of the identified marker
genes for both algorithms. It turned out that the LNMF algorithm
results in a much narrower distribution of c-values meaning that it
yields a much more consistent set of diagnostic marker genes when
measured by the correlation to the diagnostic design vector.

5 SUMMARY AND CONCLUSION

5.1 Summary
In this study microarray datasets from a monocyte–macrophage
differentiation study have been analyzed. Unsupervised feature
generation strategies based on MF techniques were combined
with knowledge-based feature selection and classification strategies
referring to diagnostic information available about the class labels
of the experiments. The importance of the generated features, i.e.
either the expression modes or the metagenes, was assessed by
measuring the correlation of the related feature profiles or meta-
experiments with the diagnostic design vector of the experiment
under consideration. Two strategies were then followed to achieve
classification: either an MF classifier was applied directly or a set of
marker genes was extracted from the most informative expression
mode or metagene and classification was achieved applying an SVM
classifier with LOO cross-validation. Marker genes were extracted
based either on their expression level in the most informative feature
vector or by applying an RF classifier to evaluate their level of
importance for the classification decision at hand.

5.2 Conclusion
Concerning the identified marker genes, a remarkable number of
marker genes could be corroborated by at least one other method,
mostly of the MF venue. These genes are indicated in bold face in

Tables 1 and 2. It is interesting to see that in case of ICA feature
generation most of the genes with the highest expression level in the
most informative expression submode, listed under ICA-GEL-neg,
are corroborated by the RF classifier as being especially important
for the classification decisions at hand. This lends credit to the ICA—
feature generation and—selection procedure which indeed results
in an informative set of marker genes. But in case of the NMF-
GEL/RF methodology only little correspondence between both lists
can be seen. Hence in the NMF methodology strong expression
levels cannot be considered a valid selection criterion to identify
marker genes though these genes belong to the feature vector which
was identified as most relevant for the classification decision at hand
according to the diagnostic knowledge available.

Also, there is still considerable divergence between the results
obtained with the ICA and the NMF methodologies for both
classification cases considered. One of the reasons might be the
different constraints active in both feature generation methods
(ICA versus NMF) investigated. The constraints operative with
ICA assume statistical independence of the generated expression
modes, thus only features which comply to this property can
be detected. On the other hand, the sparseness and positivity
constraints of the LNMF algorithm lead to metagenes which
contain localized features (= few highly expressed values and many
zeros) and only positive expression levels. The gene expression
signatures of the underlying biological regulatory processes are
expected to have non-Gaussian distributions, hence uncorrelated
metagenes and independent expression modes are expected to
be different. Further selection of marker genes solely based on
their expression level in the feature vectors is not a statistically
valid criterion, hence results might not be expected to conform
to marker genes selected by the statistically well-founded RF
method or the supervised techniques discussed as well. Still
Tables 1 and 2 show a couple of genes which have been identified
consistently with different methods for the classification tasks
at hand. These genes can be considered well-justified marker
genes.

Strong overlap is also observed between the lists resulting from
the SGP/SVM-LOO and the NMF-GEL methodology in Case 2
classification meaning that each of these strongly expressed genes of
the most informative metagene is able to also individually classify
the cell line investigated. Note that only two of these genes, i.e. SAP1
and RAB1A, are also identified by the ICA-GEL/RF methodology,
hence are identified by three of the four methodologies investigated.
In Case 1 classification, no correspondence between the standard
methodologies and the MF-based techniques can be observed,
however. Further note that no single gene could be identified
with these standard techniques which could classify monocytes
versus macrophages perfectly. These observations might indicate
that the joint discriminative power of a set of genes is necessary
to successfully classify Case 1. If so then none of the gene which
perform best individually belongs to this set.

All matrix decompositions strategies lead to classification results
of the MF classifier with classification errors comparable to those
obtained with supervised techniques. Since the quality of the results
did not change when the number K of extracted basis vectors
was increased, the classification performance did not favor one of
the tested LNMF runs. Despite that one monocyte sample must
definitely be considered to be an outlier, i.e. this probe set is expected
to be falsely classified in the original dataset. No single tested
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decomposition, neither by JADE nor by LNMF, classified these
samples correctly.

Concerning more standard supervised techniques, marker genes
were selected by their ability to individually classify the cell lines
under study applying an SVM classifier with LOO cross-validation.
Preselection strategies based on various single gene scoring schemes
were considered as well. It seems that the Pearson correlation score
achieved the most useful results in what concerns reproducibility of
the extracted marker genes by other methods. The resulting list of
marker genes was for the HeDi classification problem also compared
to an importance ranking resulting from the application of an RF
classifier to the 50 most highly ranked genes according to all scores
employed. No overlap is observed between both lists. However, 6
out of 10 genes of the SGP/SVM-LOO list could be confirmed by
other methods but only one gene of the C-Sc-RF list is corroborated
also by the ICA-RF-pos methodology.

Though the classification errors are comparable, the matrix
decomposition-based approach has the advantage of not having to
deal with each gene in isolation as is the case with the supervised
techniques considered. The matrix decomposition technique instead
provides a feature selection and classification tool which uses
diagnostic knowledge available and the joint discriminative power
of a group of most informative genes. If it only were to classify
the type of cell lines investigated, the MF classifier does well and
identification of marker genes is not necessary.
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