8 research outputs found

    FTIR characterization of isolated fruit cuticles from tomato species

    Get PDF
    La comunicación arriba reseñada ha sido presentado como póster.The plant cuticle is a lipid extracellular membrane which covers the outer surface of leaves, stems and fruits of higher plants acting as a real interphase between the plant and the environment. The cuticle plays a pivotal role in epidermal development, control of water loss, fruit integrity, firmness and resistance to various disorders [1]. From a morphological point of view, the cuticle (Figure 1) can be described as acutinizedepidermal cell wall [2]. Based on its structural and chemical composition, the cuticle is mainly constituted by a polyester matrix of long chainpolyhydroxy fatty acids named cutin. Additionally, a significant amount of polysaccharides (mainly cellulose, hemicellulose and pectin) is also present. Cuticular waxes, a mixture of different very long chain aliphatic compounds, can be either embedded into the cutin matrix (intracuticular waxes) or deposited on the outer surface of the cuticle (epicuticular waxes) [3]. Finally, phenolic compounds (cinnamic acid derivatives and flavonoids) are also present. In tomato, cuticular flavonoids participate in fruit coloration and their presence is influenced by environmental conditions and the stage of development.As it can be observed in Figure 1, the cuticle has an asymmetrical distribution of its components. In its outer surface waxes and aliphatic compounds are very abundant, while the inner surface is rich in polysaccharides from epidermal cell wall. Two parameters have been studied, the esterification index (the ratio between the intensities of the stretching vibration band related to ester functional groups (1730 cm-1) and the stretching vibration associated with methylene groups (2918 cm-1)), which isa relative measure of the cross-linking degree of the cutin matrix, and the amount of flavonoids, calculated as the sum of 1606 cm-1and 1624 cm-1 band areas.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    High Diversity of Cryptosporidium Subgenotypes Identified in Malaysian HIV/AIDS Individuals Targeting gp60 Gene

    Get PDF
    BACKGROUND: Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients. METHODOLOGY/PRINCIPAL FINDINGS: In this study, 346 faecal samples collected from Malaysian HIV positive patients were genetically analysed via PCR targeting the 60 kDa glycoprotein (gp60) gene. Eighteen (5.2% of 346) isolates were determined as Cryptosporidium positive with 72.2% (of 18) identified as Cryptosporidium parvum whilst 27.7% as Cryptosporidium hominis. Further gp60 analysis revealed C. parvum belonging to subgenotypes IIaA13G1R1 (2 isolates), IIaA13G2R1 (2 isolates), IIaA14G2R1 (3 isolates), IIaA15G2R1 (5 isolates) and IIdA15G1R1 (1 isolate). C. hominis was represented by subgenotypes IaA14R1 (2 isolates), IaA18R1 (1 isolate) and IbA10G2R2 (2 isolates). CONCLUSIONS/SIGNIFICANCE: These findings highlighted the presence of high diversity of Cryptosporidium subgenotypes among Malaysian HIV infected individuals. The predominance of the C. parvum subgenotypes signified the possibility of zoonotic as well as anthroponotic transmissions of cryptosporidiosis in HIV infected individuals

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Criteria for efficient prevention of dissemination and successful eradication of Erwinia amylovora (the cause of fire blight) in Aragón, Spain

    No full text
    Erwinia amylovora was detected on pome fruits in the Aragón region (North-Eastern Spain), in a ca. 5 km radius area located in the mid Jalón river (mid Ebro Valley) in the province of Zaragoza, during 2000‒2003. Eight years have now passed since this pathogen was last detected, without new infections being reported in the same area. The bases for surveys and rapid eradication performed have been analyzed in detail to understand the reasons for the success in removing fireblight. The results demonstrate that intensive surveillance, risk assessment, plant analyses using accurate identification methods, and, especially, rapid total or selective eradication of infected trees in the plots have been very effective in preventing the generalized spread of fireblight and in delaying economic losses associated with this disease. Eradication and compensation to growers, estimated to cost approx. € 467,000, were clearly counterbalanced by the economic value of apple and pear production in the 2000‒2003 period (approx. € 368 million). Fire blight risk-assessment, using the MARYBLYT system, showed that climatic conditions in the studied area were favourable to infections during the analyzed period (1997‒2006). Molecular characterization of E. amylovora strains had revealed their homogeneity, suggesting that these fire blight episodes could have been caused by just one inoculum source, supporting the hypothesis that there was a unique introduction of E. amylovora in the studied area. Spatial spread of E. amylovora to trees was analyzed within six orchards, indicating an aggregated distribution model. This Spanish experience demonstrates the success of scientifically-based prevention methods that lead to the deployment of a fast and strict containment strategy, useful for other Mediterranean area

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    International audienceHigh energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe Standard Model (SM) processes and search for physics beyond the Standard Model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    The Forward Physics Facility at the High-Luminosity LHC

    No full text
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential
    corecore