5 research outputs found

    Conception et mise en place sur le web d'un systÚme interactif d'aide à la décision utilisant des bases de connaissances

    Get PDF
    La facilitĂ© grandissante de la communication entre les intervenants d’une Ă©quipe de projet n’a pas rĂ©solu le problĂšme de la capitalisation des connaissances malgrĂ© l’apparition de l’Internet. La construction d’une logique d’exĂ©cution adaptĂ©e aux projets lors de la phase de conception est souvent une Ă©tape rĂ©pĂ©titive. Nous chercherons Ă  fournir une mĂ©thodologie de conception d’un outil d’aide Ă  la dĂ©cision basĂ© sur des connaissances en ordonnancement dont le but est de gĂ©nĂ©rer des Ă©chĂ©anciers. Ces connaissances seront capitalisĂ©es Ă  une grande Ă©chelle grĂące au Web. Notre premier objectif sera de stocker et gĂ©rer des connaissances portant sur la logique d’ordonnancement. Les planificateurs pourront contribuer Ă  l’amĂ©lioration continue du systĂšme de dĂ©cision en maintenant les connaissances sur une base publique. Nous mettrons ensuite en place un protocole d’évaluation et de consolidation des connaissances par des experts dĂ©signĂ©s au sein du systĂšme. Enfin nous prĂ©senterons l’outil d’aide Ă  la dĂ©cision basĂ© sur les connaissances, pour la gĂ©nĂ©ration d’une logique d’ordonnancement. Nous dĂ©velopperons donc une mĂ©thodologie de conception d’un SIAD dans un environnement Web 2.0. Nous Ă©tudierons la conception de la base de connaissances, du systĂšme d’infĂ©rence, de l’outil d’ingĂ©nierie des connaissances et des comportements de l’interface. L’application de cette mĂ©thodologie aboutira sur la conception d’un prototype. Une validation sera effectuĂ©e Ă  travers la construction d’une base de connaissances de 4000 activitĂ©s permettant de s’assurer de la fonctionnalitĂ© du prototype. L’environnement Web permettra ensuite de le valider Ă  grande Ă©chelle Ă  travers des tests d’application effectuĂ©s en simultanĂ© Ă  travers le monde

    The graphical modeling as a support tool for planning and monitoring sustainable construction projects and public infrastructure

    No full text
    International audienceVisual communication through graphical scheduling methods is often the point of failure for the planning and monitoring of construction projects. The proposed chronographic model studies the graphical visual representation of the schedule in the spatial dimension. This model classifies the scheduling entities, especially the activities, the resources and the area of work, into three types of entities. These entity types symbolize the construction operations, establish the relationships between them, and determine the direction of flow of information. Using these entities, the planner can define the graphical approach in order to display the schedule information under diverse, compatible layouts and switch between these layouts. The primary goal is for all stakeholders to have a better understanding of the scheduling logic. This paper describes the meta-model that is used to structure these entities into classes, define their classification criteria with the visual representation of the scheduling approaches, and infer the relationships amongst them. The use of the Entity Relationship (ER) model to create the meta-model ensures uniqueness and stability. The result is the development and implementation of a meta-model that allows the planner to display the schedule information's under diverse approaches, add/edit entities, organize them into classes and infer their behavior towards each other in order to gain a better understanding of their roles. The validation process is done through the generation of the ER conceptual data model, adapted to the Chronographic construction scheduling approach that embraces change while maintaining consistency and self-validation despite the addition of new entities in classes.La communication visuelle par des mĂ©thodes de planification graphiques est souvent le point d'Ă©chec pour la planification et le contrĂŽle de projets de construction. Le modĂšle de "chronographique" proposĂ© Ă©tudie la reprĂ©sentation visuelle graphique du planning dans l'espace. Ce modĂšle classifie les entitĂ©s de planification, particuliĂšrement les activitĂ©s, les ressources et la zone de travail, dans trois types d'entitĂ©s. Ces types d'entitĂ© symbolisent les opĂ©rations de construction, Ă©tablissent les relations entre elles et dĂ©terminent la direction des flux d'informations. En utilisant ces entitĂ©s, le planificateur peut dĂ©finir l'approche graphique pour afficher les informations du planning sous des reprĂ©sentations diverses, compatibles et mĂȘme passer d'une reprĂ©sentation Ă  une autre. Le but principal pour toutes les parties prenantes est d'obtenir une meilleure comprĂ©hension de la logique de planification. Cet article dĂ©crit le meta-modĂšle qui est utilisĂ© pour structurer ces entitĂ©s dans des classes, dĂ©finir leurs critĂšres de classification avec la reprĂ©sentation visuelle des approches de planification et dĂ©duire les relations entre elles. L'utilisation du modĂšle EntitĂ©-Relation (ER) pour crĂ©er le meta-modĂšle, assure l'unicitĂ© et la stabilitĂ© de cette structure. Le rĂ©sultat est la mise en Ɠuvre d'un meta-modĂšle et le dĂ©veloppement d'un logiciel qui permet au planificateur d'afficher les informations du planning dans des approches diverses, ajouter/Ă©diter des entitĂ©s, les organiser dans des classes et dĂ©duire leur comportement des unes par rapport aux autres pour obtenir une meilleure comprĂ©hension de leurs rĂŽles. Le processus de validation est fait par la gĂ©nĂ©ration du modĂšle conceptuel de donnĂ©es, modĂšle adaptĂ© Ă  la mĂ©thode chronographique de construction de planning qui associe la possibilitĂ© de changement tout en entretenan la cohĂ©rence des informations et l'auto-validation malgrĂ© l'ajout de nouvelles entitĂ©s

    The Green Edge cruise: investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom

    No full text
    The Green Edge project was designed to investigate the onset, life, and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in Arctic Ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the Arctic environment will affect it. Green Edge was a large multidisciplinary, collaborative project bringing researchers and technicians from 28 different institutions in seven countries together, aiming at understanding these changes and their impacts on the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice camp and a research vessel in Baffin Bay, in the Canadian Arctic. This paper describes the sampling strategy and the dataset obtained from the research cruise, which took place aboard the Canadian Coast Guard ship (CCGS) Amundsen in late spring and early summer 2016. The sampling strategy was designed around the repetitive, perpendicular crossing of the marginal ice zone (MIZ), using not only ship-based station discrete sampling but also high-resolution measurements from autonomous platforms (Gliders, BGC-Argo floats 
) and under-way monitoring systems. The dataset is available at https://doi.org/10.17882/86417 (Bruyant et al., 2022)

    The Green Edge cruise: Understanding the onset, life and fate of the Arctic phytoplankton spring bloom

    No full text
    Abstract. The Green Edge project was designed to investigate the onset, life and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in arctic ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the arctic environment will affect it. Green Edge was a large multidisciplinary collaborative project bringing researchers and technicians from 28 different institutions in seven countries, together aiming at understanding these changes and their impacts into the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice-camp and a research vessel in the Baffin Bay, canadian arctic. This paper describes the sampling strategy and the data set obtained from the research cruise, which took place aboard the Canadian Coast Guard Ship (CCGS) Amundsen in spring 2016. The dataset is available at https://doi.org/10.17882/59892 (Massicotte et al., 2019a)
    corecore