11 research outputs found

    Arsenate Accumulation, Distribution, and Toxicity Associated with Titanium Dioxide Nanoparticles in <i>Daphnia magna</i>

    No full text
    Titanium dioxide nanoparticles (nano-TiO<sub>2</sub>) are widely used in consumer products. Nano-TiO<sub>2</sub> dispersion could, however, interact with metals and modify their behavior and bioavailability in aquatic environments. In this study, we characterized and examined arsenate (As­(V)) accumulation, distribution, and toxicity in Daphnia magna in the presence of nano-TiO<sub>2</sub>. Nano-TiO<sub>2</sub> acts as a positive carrier, significantly facilitating D. magna’s ability to uptake As­(V). As nano-TiO<sub>2</sub> concentrations increased from 2 to 20 mg-Ti/L, total <i>As</i> increased by a factor of 2.3 to 9.8 compared to the uptake from the dissolved phase. This is also supported by significant correlations between arsenic (<i>As</i>) and titanium (<i>Ti</i>) signal intensities at concentrations of 2.0 mg-Ti/L nano-TiO<sub>2</sub> (<i>R</i> = 0.676, <i>P</i> < 0.01) and 20.0 mg-Ti/L nano-TiO<sub>2</sub> (<i>R</i> = 0.776, <i>P</i> < 0.01), as determined by LA-ICP-MS. Even though <i>As</i> accumulation increased with increasing nano-TiO<sub>2</sub> concentrations in D. magna, As­(V) toxicity associated with nano-TiO<sub>2</sub> exhibited a dual effect. Compared to the control, the increased <i>As</i> was mainly distributed in BDM (biologically detoxified metal), but <i>Ti</i> was mainly distributed in MSF (metal-sensitive fractions) with increasing nano-TiO<sub>2</sub> levels. Differences in subcellular distribution demonstrated that adsorbed As­(V) carried by nano-TiO<sub>2</sub> could dissociate itself and be transported separately, which results in increased toxicity at higher nano-TiO<sub>2</sub> concentrations. Decreased As­(V) toxicity associated with lower nano-TiO<sub>2</sub> concentrations results from unaffected <i>As</i> levels in MSFs (when compared to the control), where several <i>As</i> components continued to be adsorbed by nano-TiO<sub>2</sub>. Therefore, more attention should be paid to the potential influence of nano-TiO<sub>2</sub> on bioavailability and toxicity of cocontaminants

    Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    Get PDF
    International audienceWe use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties , including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January–April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties , our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5–40 % in total absorption, respectively

    Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes

    Get PDF
    International audienceAbstract. In the Amazonian atmosphere, the aerosol coarse mode comprises a complex, diverse, and variable mixture of bioaerosols emitted from the rain forest ecosystem, long-range transported Saharan dust (we use Sahara as shorthand for the dust source regions in Africa north of the Equator), marine aerosols from the Atlantic Ocean, and coarse smoke particles from deforestation fires. For the rain forest, the coarse mode particles are of significance with respect to biogeochemical and hydrological cycling, as well as ecology and biogeography. However, knowledge on the physicochemical and biological properties as well as the ecological role of the Amazonian coarse mode is still sparse. This study presents results from multi-year coarse mode measurements at the remote Amazon Tall Tower Observatory (ATTO) site. It combines online aerosol observations, selected remote sensing and modeling results, as well as dedicated coarse mode sampling and analysis. The focal points of this study are a systematic characterization of aerosol coarse mode abundance and properties in the Amazonian atmosphere as well as a detailed analysis of the frequent, pulse-wise intrusion of African long-range transport (LRT) aerosols (comprising Saharan dust and African biomass burning smoke) into the Amazon Basin.We find that, on a multi-year time scale, the Amazonian coarse mode maintains remarkably constant concentration levels (with 0.4 cm−3 and 4.0 ”g m−3 in the wet vs. 1.2 cm−3 and 6.5 ”g m−3 in the dry season) with rather weak seasonality (in terms of abundance and size spectrum), which is in stark contrast to the pronounced biomass burning-driven seasonality of the submicron aerosol population and related parameters. For most of the time, bioaerosol particles from the forest biome account for a major fraction of the coarse mode background population. However, from December to April there are episodic intrusions of African LRT aerosols, comprising Saharan dust, sea salt particles from the transatlantic passage, and African biomass burning smoke. Remarkably, during the core period of this LRT season (i.e., February–March), the presence of LRT influence, occurring as a sequence of pulse-like plumes, appears to be the norm rather than an exception. The LRT pulses increase the coarse mode concentrations drastically (up to 100 ”g m−3) and alter the coarse mode composition as well as its size spectrum. Efficient transport of the LRT plumes into the Amazon Basin takes place in response to specific mesoscale circulation patterns in combination with the episodic absence of rain-related aerosol scavenging en route. Based on a modeling study, we estimated a dust deposition flux of 5–10 kg ha−1 a−1 in the region of the ATTO site. Furthermore, a chemical analysis quantified the substantial increase of crustal and sea salt elements under LRT conditions in comparison to the background coarse mode composition. With these results, we estimated the deposition fluxes of various elements that are considered as nutrients for the rain forest ecosystem. These estimates range from few g ha−1 a−1 up to several hundreds of g ha−1 a−1 in the ATTO region.The long-term data presented here provide a statistically solid basis for future studies of the manifold aspects of the dynamic coarse mode aerosol cycling in the Amazon. Thus, it may help to understand its biogeochemical relevance in this ecosystem as well as to evaluate to what extent anthropogenic influences have altered the coarse mode cycling already

    Unified theoretical framework for black carbon mixing state allows greater accuracy of climate effect estimation

    No full text
    Black carbon (BC) plays an important role in the climate system because of its strong warming effect, yet the magnitude of this effect is highly uncertain owing to the complex mixing state of aerosols. Here we build a unified theoretical framework to describe BC’s mixing states, linking dynamic processes to BC coating thickness distribution, and show its self-similarity for sites in diverse environments. The size distribution of BC-containing particles is found to follow a universal law and is independent of BC core size. A new mixing state module is established based on this finding and successfully applied in global and regional models, which increases the accuracy of aerosol climate effect estimations. Our theoretical framework links observations with model simulations in both mixing state description and light absorption quantification.Peer reviewe
    corecore