6 research outputs found

    The Qatar Biobank: background and methods

    Get PDF
    Background: The Qatar Biobank aims to collect extensive lifestyle, clinical, and biological information from up to 60,000 men and women Qatari nationals and long-term residents (individuals living in the country for ≥15 years) aged ≥18 years (approximately one-fifth of all Qatari citizens), to follow up these same individuals over the long term to record any subsequent disease, and hence to study the causes and progression of disease, and disease burden, in the Qatari population. Methods: Between the 11th-December-2012 and 20th-February-2014, 1209 participants were recruited into the pilot study of the Qatar Biobank. At recruitment, extensive phenotype information was collected from each participant, including information/measurements of socio-demographic factors, prevalent health conditions, diet, lifestyle, anthropometry, body composition, bone health, cognitive function, grip strength, retinal imaging, total body dual energy X-ray absorptiometry, and measurements of cardiovascular and respiratory function. Blood, urine, and saliva were collected and stored for future research use. A panel of 66 clinical biomarkers was routinely measured on fresh blood samples in all participants. Rates of recruitment are to be progressively increased in the coming period and the recruitment base widened to achieve a cohort of consented individuals broadly representative of the eligible Qatari population. In addition, it is planned to add additional measures in sub-samples of the cohort, including Magnetic Resonance Imaging (MRI) of the brain, heart and abdomen. Results: The mean time for collection of the extensive phenotypic information and biological samples from each participant at the baseline recruitment visit was 179 min. The 1209 pilot study participants (506 men and 703 women) were aged between 28–80 years (median 39 years); 899 (74.4 %) were Qatari nationals and 310 (25.6 %) were long-term residents. Approximately two-thirds of pilot participants were educated to graduate level or above. Conclusions: The pilot has proven that recruitment of volunteers into the Qatar Biobank project with intensive baseline measurements of behavioural, physical, and clinical characteristics is well accepted and logistically feasible. Qatar Biobank will provide a powerful resource to investigate the major determinants of ill-health and well-being in Qatar, providing valuable insights into the current and future public health burden that faces the country.Qatar Foundation for Education, Science and Community Development and the Supreme Council of Healt

    Author Correction: Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    Get PDF

    Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk.

    Get PDF
    Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies

    Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    Get PDF
    Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies

    Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk

    No full text
    corecore