13 research outputs found

    Unraveling the Design Principle for Motif Organization in Signaling Networks

    Get PDF
    Cellular signaling networks display complex architecture. Defining the design principle of this architecture is crucial for our understanding of various biological processes. Using a mathematical model for three-node feed-forward loops, we identify that the organization of motifs in specific manner within the network serves as an important regulator of signal processing. Further, incorporating a systemic stochastic perturbation to the model we could propose a possible design principle, for higher-order organization of motifs into larger networks in order to achieve specific biological output. The design principle was then verified in a large, complex human cancer signaling network. Further analysis permitted us to classify signaling nodes of the network into robust and vulnerable nodes as a result of higher order motif organization. We show that distribution of these nodes within the network at strategic locations then provides for the range of features displayed by the signaling network

    Negative regulation of ErbB family receptor tyrosine kinases

    Get PDF
    Receptors of the EGF receptor or ErbB family of growth factor receptor tyrosine kinases are frequently overexpressed in a variety of solid tumours, and the aberrant activation of their tyrosine kinase activities is thought to contribute to tumour growth and progression. Much effort has been put into developing inhibitors of ErbB receptors, and both antibody and small-molecule approaches have exhibited clinical success. Recently, a number of endogenous negative regulatory proteins have been identified that suppress the signalling activity of ErbB receptors in cells. These include intracellular RING finger E3 ubiquitin ligases such as cbl and Nrdp1 that mediate ErbB receptor degradation, and may include a wide variety of secreted and transmembrane proteins that suppress receptor activation by growth factor ligands. It will be of interest to determine the extent to which tumour cells suppress these pathways to promote their progression, and whether restoration of endogenous receptor-negative regulatory pathways may be exploited for therapeutic benefit

    Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution

    Get PDF
    During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct control of an activator, but this enhancement is not fed back in the circuit. The feedback loops are rather activated by genes that have frequent stochastic bursts and fast RNA decay rates. In this way, rapid adaptation to galactose can be triggered even by weakly expressed genes. Our results indicate that nonlinear stochastic transcriptional responses enable feedback loops to function autonomously, or contrary to what is dictated by the strength of interactions enclosing the circuit

    Genetic redundancies enhance information transfer in noisy regulatory circuits

    Full text link
    [EN] Cellular decision making is based on regulatory circuits that associate signal thresholds to specific physiological actions. This transmission of information is subjected to molecular noise what can decrease its fidelity. Here, we show instead how such intrinsic noise enhances information transfer in the presence of multiple circuit copies. The result is due to the contribution of noise to the generation of autonomous responses by each copy, which are altogether associated with a common decision. Moreover, factors that correlate the responses of the redundant units (extrinsic noise or regulatory cross-talk) contribute to reduce fidelity, while those that further uncouple them (heterogeneity within the copies) can lead to stronger information gain. Overall, our study emphasizes how the interplay of signal thresholding, redundancy, and noise influences the accuracy of cellular decision making. Understanding this interplay provides a basis to explain collective cell signaling mechanisms, and to engineer robust decisions with noisy genetic circuits.This work has been supported by BFU2015-66894-P (MINECO/FEDER) and GV/2016/079 (GVA) Grants. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rodrigo Tarrega, G.; Poyatos, JF. (2016). Genetic redundancies enhance information transfer in noisy regulatory circuits. PLoS Computational Biology. 12(10). https://doi.org/10.1371/journal.pcbi.1005156S121

    Synthetic mixed-signal computation in living cells

    Get PDF
    Living cells implement complex computations on the continuous environmental signals that they encounter. These computations involve both analogue- and digital-like processing of signals to give rise to complex developmental programs, context-dependent behaviours and homeostatic activities. In contrast to natural biological systems, synthetic biological systems have largely focused on either digital or analogue computation separately. Here we integrate analogue and digital computation to implement complex hybrid synthetic genetic programs in living cells. We present a framework for building comparator gene circuits to digitize analogue inputs based on different thresholds. We then demonstrate that comparators can be predictably composed together to build band-pass filters, ternary logic systems and multi-level analogue-to-digital converters. In addition, we interface these analogue-to-digital circuits with other digital gene circuits to enable concentration-dependent logic. We expect that this hybrid computational paradigm will enable new industrial, diagnostic and therapeutic applications with engineered cells.Fundacao para a Ciencia e a Tecnologia (Fellowship SFRH/BD/51576/2011)National Science Foundation (U.S.) (1350625)National Science Foundation (U.S.) (1124247)United States. Office of Naval Research (N000141310424)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD008435)National Centers for Systems Biology (U.S.) (1P50GM098792

    Genetic dissection of differential signaling threshold requirements for the Wnt/beta-catenin pathway in vivo

    Get PDF
    Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/beta-catenin signaling capacity similar to that in the germline of the Apc(min) mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apc(min) mice arise independently of intestinal tumorigenesis. Together, the present genotype phenotype analysis suggests tissue-specific response levels for the Wnt/beta-catenin pathway that regulate both physiological and pathophysiological conditions.</p

    Kicked by Mos and tuned by MPF—the initiation of the MAPK cascade in Xenopus oocytes

    No full text
    The mitogen-activated protein kinase (MAPK) cascade is a paradigmatic signaling cascade, which plays a crucial role in many aspects of cellular events. The main initiator of the cascade in Xenopus oocytes is the oncoprotein Mos. After activation of the cascade, Mos activity is stabilized by MAPK via a feedback loop. Mos concentration levels are, however, not controlled by MAPK alone. In this paper we show, by imposing either a sustained or a peaked activity of M-phase promoting factor (MPF) (Cdc2-cyclin B), how the latter regulates the dynamics of Mos. Our experiments are supported by a detailed kinetic model for the Mos-MPF-MAPK network, which takes into account the three different phosphorylation states of Mos and, as a consequence, allows us to determine the time evolution of Mos under control of MPF. Our work opens a path toward a more complete and biologically realistic quantitative understanding of the dynamic interdependence of Mos and MPF in Xenopus oocytes
    corecore