18 research outputs found

    Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring

    Get PDF
    The restoration of fire-affected forest areas needs to be combined with their future protection from renewed catastrophic fires, such as those that occurred in Greece during the 2007 summer season. The present work demonstrates that the use of various sources of satellite data in conjunction with weather forecast information is capable of providing valuable information for the characterization of fire danger with the purpose of protecting the Greek national forest areas. This study shows that favourable meteorological conditions have contributed to the fire outbreak during the days of the unusually damaging fires in Peloponnese as well as Euboia (modern Greek: Evia) at the end of August 2007. During those days, Greece was located between an extended high pressure system in Central Europe and a low pressure system in the Middle East. Their combination resulted in strong north-northeasterly winds in the Aegean Sea. As a consequence, strong winds were also observed in the regions of Evia and Peloponnese, especially in mountainous areas. The analysis of satellite images showing smoke emitted from the fires corroborates the results from the weather forecasts. A further analysis using the Fraction of Absorbed Photosyntetically Active Radiation (FAPAR) as an indicator of active vegetation shows the extent of the destruction caused by the fire. The position of the burned areas coincides with that of the active fires detected in the earlier satellite image. Using the annual maximum FAPAR as an indicator of regional vegetation density, it was found that only regions with relatively high FAPAR were burned

    Analysis of waterspout environmental conditions and of parent-storm behaviour based on satellite data over the southern Aegean Sea of Greece

    Get PDF
    ABSTRACTA frequent area of waterspout formation is identified over the southern Aegean Sea. The objectives of this study are threefold: (1) to investigate the temporal evolution of Cloud Top Temperature (CTT) of cloud lines (waterspouts' parent clouds) that triggered the formation of single or multiple waterspout events, by using Meteorological Satellite Second Generation infrared satellite data, cloud base height data and weather observations from the closest Hellenic National Meteorological Service meteorological station; (2) to synthesize a detailed climatology of the thermodynamic environment during waterspout activity and (3) to explore the sea‐surface temperature (SST) seasonal distribution and its possible relationships with the temperature of the middle and lower troposphere during waterspout days over the southern Aegean Sea.It was found that the CTT of waterspout parent clouds decreases close to waterspout formation time, which is consistent with growing clouds. The Severe Weather Threat Index (SWEAT), the Bulk Richardson Number (BRN) and the Convective Potential Available Energy during the autumn season were consistent with a shallow‐convection environment. The instability parameter ΔT1000 (difference in the air temperature between 1000 hPa and that at other pressure levels) exhibited a symmetric distribution about the median during both seasons and at all levels. More than 75% of autumn waterspout activity over the southern Aegean Sea developed with SST values varying from 22 to 24.5 °C, while the instability parameter ΔTSST (the temperature difference between the SST and the temperature at various pressure levels) exhibited a symmetrical distribution about the median for both seasons and for all pressure levels, consistent with the ΔT1000 seasonal distribution. A statistical analysis showed that the means of SWEAT, BRN, convective inhibition, SST, ΔTSST and ΔT1000 from air temperature at 700 hPa differ statistically significant (p < 0.001) between waterspout and non‐waterspout days in autumn, over the southern Aegean Sea, during 2005–2012

    Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble

    Get PDF
    In the current work we present six hindcast WRF (Weather Research and Forecasting model) simulations for the EURO-CORDEX (European Coordinated Regional Climate Downscaling Experiment) domain with different configurations in microphysics, convection and radiation for the time period 1990?2008. All regional model simulations are forced by the ERA-Interim reanalysis and have the same spatial resolution (0.44°). These simulations are evaluated for surface temperature, precipitation, short- and longwave downward radiation at the surface and total cloud cover. The analysis of the WRF ensemble indicates systematic temperature and precipitation biases, which are linked to different physical mechanisms in the summer and winter seasons. Overestimation of total cloud cover and underestimation of downward shortwave radiation at the surface, mostly linked to the Grell?Devenyi convection and CAM (Community Atmosphere Model) radiation schemes, intensifies the negative bias in summer temperatures over northern Europe (max ?2.5 °C). Conversely, a strong positive bias in downward shortwave radiation in summer over central (40?60%) and southern Europe mitigates the systematic cold bias over these regions, signifying a typical case of error compensation. Maximum winter cold biases are over northeastern Europe (?2.8 °C); this location suggests that land?atmosphere rather than cloud?radiation interactions are to blame. Precipitation is overestimated in summer by all model configurations, especially the higher quantiles which are associated with summertime deep cumulus convection. The largest precipitation biases are produced by the Kain?Fritsch convection scheme over the Mediterranean. Precipitation biases in winter are lower than those for summer in all model configurations (15?30%). The results of this study indicate the importance of evaluating not only the basic climatic parameters of interest for climate change applications (temperature and precipitation), but also other components of the energy and water cycle, in order to identify the sources of systematic biases, possible compensatory or masking mechanisms and suggest pathways for model improvement.The contribution from Universidad de Cantabria was funded by the Spanish R&D programme through projects CORWES (CGL2010-22158-C02-01) and WRF4G (CGL2011-28864), co-funded by the European Regional Development Fund. M. García-Díez acknowledges financial support from the EXTREMBLES (CGL2010-21869) project

    Synoptic Analysis and Subseasonal Predictability of an Early Heatwave in the Eastern Mediterranean

    No full text
    Greece and the surrounding areas experienced an early warm spell with characteristics of a typical summer Mediterranean heatwave in mid-May 2020. The maximum 2 m temperature at Kalamata (southern Greece) reached 40 °C on 16 May and at Aydin (Turkey), it was 42.6 °C on 17 May. There was a 10-standard deviation positive temperature anomaly (relative to the 1975–2005 climatology) at 850 hPa, with a southwesterly flow and warm advection over Greece and western Turkey from 11 to 20 May. At 500 hPa, a ridge was located over the Eastern Mediterranean, resulting in subsidence. The aims of this study were (a) to investigate the prevailing synoptic conditions during this event in order to document its occurrence and (b) to assess whether this out-of-season heatwave was predictable on subseasonal timescales. The subseasonal predictability is not a well-researched scientific topic in the Eastern Mediterranean Sea. The ensemble global forecasts from six international meteorological centres (European Centre for Medium-Range Weather Forecasts—ECMWF, United Kingdom Met Office—UKMO, China Meteorological Administration—CMA, Korea Meteorological Administration—KMA, National Centers for Environmental Prediction—NCEP and Hydrometeorological Centre of Russia—HMCR) and limited area forecasts using the Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF) forced by Climate Forecast System version 2 (CFSv.2; NCEP) forecasts were evaluated for lead times ranging from two to six weeks using statistical scores. WRF was integrated using two telescoping nests covering Europe, the Mediterranean basin and large part of the Atlantic Ocean, with a grid spacing of 25 km, and Greece–western Turkey at 5 km. The results showed that there were some accurate forecasts initiated two weeks before the event’s onset. There was no systematic benefit from the increase of the WRF model’s resolution from 25 km to 5 km for forecasting the 850 hPa temperature, but regarding the prediction of maximum air temperature near the surface, the high resolution (5 km) nest of WRF produced a marginally better performance than the coarser resolution domain (25 km)

    Sensitivity of a Mediterranean Tropical-Like Cyclone to Physical Parameterizations

    No full text
    The accurate prediction of Mediterranean tropical-like cyclones, or medicanes, is an important challenge for numerical weather prediction models due to their significant adverse impact on the environment, life, and property. The aim of this study is to investigate the sensitivity of an intense medicane, which formed south of Sicily on 7 November 2014, to the microphysical, cumulus, and boundary/surface layer schemes. The non-hydrostatic Weather Research and Forecasting model (version 3.7.1) is employed. A symmetric cyclone with a deep warm core, corresponding to a medicane, develops in all of the experiments, except for the one with the Thompson microphysics. There is a significant sensitivity of different aspects of the simulated medicane to the physical parameterizations. Its intensity is mainly influenced by the boundary/surface layer scheme, while its track is mainly influenced by the representation of cumulus convection, and its duration is mainly influenced by microphysical parameterization. The modification of the drag coefficient and the roughness lengths of heat and moisture seems to improve its intensity, track, and duration. The parameterization of shallow convection, with explicitly resolved deep convection, results in a weaker medicane with a shorter lifetime. An optimum combination of physical parameterizations in order to simulate all of the characteristics of the medicane does not seem to exist

    Managing the Intermittency of Wind Energy Generation in Greece

    No full text
    This paper performs a comprehensive analysis of the wind energy potential of onshore regions in Greece with emphasis on quantifying the volume risk and the spatial covariance structure. Optimization techniques are employed to derive efficient wind capacity allocation plans (also known as generation portfolios) incorporating different yield aspirations. The generation profile of minimum variance and other optimal portfolios along the efficient frontier are subject to rigorous evaluation using a fusion of descriptive and statistical methods. In particular, principal component analysis is employed to estimate factor models and investigate the spatiotemporal properties of wind power generation, providing valuable insights into the persistence of volume risk. The overarching goal of the study is to employ a set of statistical and mathematical programming tools guiding investors, aggregators and policy makers in their selection of wind energy generating assets. The findings of this research challenge the effectiveness of current policies and industry practices, offering a new perspective on wind energy harvesting with a focus on the management of volume risk
    corecore