127 research outputs found

    Cygnus X-2: the Descendant of an Intermediate-Mass X-Ray Binary

    Full text link
    The X-ray binary Cygnus X-2 (Cyg X-2) has recently been shown to contain a secondary that is much more luminous and hotter than is appropriate for a low-mass subgiant. We present detailed binary-evolution calculations which demonstrate that the present evolutionary state of Cyg X-2 can be understood if the secondary had an initial mass of around 3.5 M_sun and started to transfer mass near the end of its main-sequence phase (or, somewhat less likely, just after leaving the main sequence). Most of the mass of the secondary must have been ejected from the system during an earlier rapid mass-transfer phase. In the present phase, the secondary has a mass of around 0.5 M_sun with a non-degenerate helium core. It is burning hydrogen in a shell, and mass transfer is driven by the advancement of the burning shell. Cyg X-2 therefore is related to a previously little studied class of intermediate-mass X-ray binaries (IMXBs). We suggest that perhaps a significant fraction of X-ray binaries presently classified as low-mass X-ray binaries may be descendants of IMXBs and discuss some of the implications

    The formation of the eccentric-orbit millisecond pulsar J1903+0327 and the origin of single millisecond pulsars

    Get PDF
    The millisecond pulsar J1903+0327 is accompanied by an ordinary G-dwarf star in an unusually wide (Porb95.2P_{\rm orb} \simeq 95.2\,days) and eccentric (e0.44e \simeq 0.44) orbit. The standard model for producing MSPs fails to explain the orbital characteristics of this extraordinary binary, and alternative binary models are unable to explain the observables. We present a triple-star model for producing MSPs in relatively wide eccentric binaries with a normal (main-sequence) stellar companion. We start from a stable triple system consisting of a Low-Mass X-ray Binary (LMXB) with an orbital period of at least 1 day, accompanied by a G-dwarf in a wide and possibly eccentric orbit. Variations in the initial conditions naturally provide a satisfactory explanation for the unexplained triple component in the eclipsing soft X-ray transient 4U~2129+47 or the cataclysmic variable EC 19314-5915. The best explanation for J1903, however, results from the expansion of the orbit of the LMXB, driven by the mass transfer from the evolving donor star to its neutron star companion, which causes the triple eventually to becomes dynamically unstable. Using numerical computations we show that, depending on the precise system configuration at the moment the triple becomes dynamically unstable, the ejection of each of the three components is possible. If the donor star of the LMXB is ejected, a system resembling J1903, will result. If the neutron star is ejected, a single MSP results. This model therefore also provides a straightforward mechanism for forming single MSP in the Galactic disk. We conclude that the Galaxy contains some 30--300 binaries with characteristics similar to J1903, and about an order of magnitude fewer single millisecond pulsars produced with the proposed triple scenario.Comment: ApJ accepted for publicatio

    Transients Among Binaries with Evolved Low-Mass Companions

    Get PDF
    We show that stable disk accretion should be very rare among low-mass X-ray binaries and cataclysmic variables whose evolution is driven by the nuclear expansion of the secondary star on the first giant branch. Stable accretion is confined to neutron-star systems where the secondary is still relatively massive, and some supersoft white dwarf accretors. All other systems, including all black-hole systems, appear as soft X-ray transients or dwarf novae. All long-period neutron-star systems become transient well before most of the envelope mass is transferred, and remain transient until envelope exhaustion. This complicates attempts to compare the numbers of millisecond pulsars in the Galactic disk with their LMXB progenitors, and also means that the pulsar spin rates are fixed in systems which are transient rather than steady, contrary to common assumption. The long-period persistent sources Sco X-2, LMC X-2, Cyg X-2 and V395 Car must have minimum companion masses > 0.75 Msun if they contain neutron stars, and still larger masses if they contain black holes. The companion in the neutron-star transient GRO J1744-2844 must have a mass <0.87 Msun. The existence of any steady sources at all at long periods supports the ideas that (a) the accretion disks in many, if not all, LMXBs are strongly irradiated by the central source, and (b) mass transfer is thermally unstable in long-period supersoft X-ray sources.Comment: 10 pages, Latex, 1 ps figure, Ap.J., accepted Feb. 15, 199

    Thermal Timescale Mass Transfer and the Evolution of White Dwarf Binaries

    Full text link
    The evolution of binaries consisting of evolved main sequence stars (1 < M_d/Msun < 3.5) with white dwarf companions (0.7 < M_wd/Msun < 1.2) is investigated through the thermal mass transfer phase. Taking into account the stabilizing effect of a strong, optically thick wind from the accreting white dwarf surface, we have explored the formation of several evolutionary groups of systems for progenitors with initial orbital periods of 1 and 2 days. The numerical results show that CO white dwarfs can accrete sufficient mass to evolve to a Type Ia supernova and ONeMg white dwarfs can be built up to undergo accretion induced collapse for donors more massive than about 2 Msun. For donors less massive than ~2 Msun the system can evolve to form a He and CO or ONeMg white dwarf pair. In addition, sufficient helium can be accumulated (~0.1 Msun) in systems characterized by 1.6 < M_d/Msun < 1.9 and 0.8 < M_wd/Msun < 1 such that sub Chandrasekhar mass models for Type Ia supernovae, involving off center helium ignition, are possible for progenitor systems evolving via the Case A mass transfer phase. For systems characterized by mass ratios > 3 the system likely merges as a result of the occurrence of a delayed dynamical mass transfer instability. A semi-analytical model is developed to delineate these phases which can be easily incorporated in population synthesis studies of these systems.Comment: 9 pages, 6 figures, Latex, emulateapj style, ApJ accepte

    Theoretical Considerations on the Properties of Accreting Millisecond Pulsars

    Full text link
    We examine a number of evolutionary scenarios for the recently discovered class of accretion-powered millisecond X-ray pulsars in ultracompact binaries, including XTE J0929-314 and XTE J1751-305, with orbital periods of 43.6 and 42.4 minutes, respectively. We focus on a particular scenario that can naturally explain the present-day properties of these systems. This model invokes a donor star that was either very close to the TAMS (i.e., main-sequence turnoff) at the onset of mass transfer or had sufficient time to evolve during the mass-transfer phase. We have run a systematic set of detailed binary evolution calculations with a wide range of initial donor masses and degrees of (nuclear) evolution at the onset of mass transfer. In general, the models whose evolutionary tracks result in the best fits to these ultracompact binaries start mass transfer with orbital periods of ~15 hr, then decrease to a minimum orbital period of less than or about 40 minutes, and finally evolve back up to about 43 minutes. We also carry out a probability analysis based on the measured mass functions of XTE J0929-314 and XTE J1751-305, and combine this with the results of our binary evolution models and find that the donor stars currently have masses in the range of about 0.012 - 0.025 solar masses, and radii of about 0.042 - 0.055 solar radii, and that these radii are likely to be factors of about 1.1 - 1.3 times larger than the corresponding zero-temperature ones. We also find that the interiors of the donors are largely composed of helium and that the surface hydrogen abundances are almost certainly less than 10% (by mass).Comment: 16 pages, 6 figures, 3 table

    Detached white dwarf main-sequence star binaries

    Get PDF
    We considered the formation of detached white dwarf main-sequence star (WDMS) binaries through seven evolutionary channels subdivided according to the evolutionary process that gives rise to the formation of the white dwarf or its helium-star progenitor: dynamically stable Roche-lobe overflow (Algol-type evolution), dynamically unstable Roche-lobe overflow (common-envelope evolution), or stellar winds (single star evolution). We examine the sensitivity of the population to changes in the amount of mass lost from the system during stable Roche-lobe overflow, the common-envelope ejection efficiency, and the initial mass ratio or initial secondary mass distribution. In the case of a flat initial mass ratio distribution, the local space density of WDMS binaries is of the order of 10^{-3}/pc^3. This number decreases to 10^{-4}/pc^3 when the initial mass ratio distribution is approximately proportional to the inverse of the initial mass ratio. More than 75% of the WDMS binary population stems from wide systems in which both components evolve as if they were single stars. The remaining part of the population is dominated by systems in which the white dwarf is formed in a common-envelope phase. The birthrate of WDMS binaries forming through a common-envelope phase is about 10 times larger than the birthrate of WDMS binaries forming through a stable Roche-lobe overflow phase. The ratio of the number of helium white dwarf systems to the number of carbon/oxygen or oxygen/neon/magnesium white dwarf systems derived from large samples of observed WDMS binaries by, e.g., future planet-search missions such as SuperWASP, COROT, and Kepler may furthermore constrain the common-envelope ejection efficiency.Comment: 22 pages, accepted for publication in A&

    The bifurcation periods in low-mass X-ray binaries: the effect of magnetic braking and mass loss

    Full text link
    The bifurcation period in low-mass X-ray binaries is the initial orbital pe- riod which separates the formation of converging systems (which evolve with decreasing orbital periods until the donor becomes degenerate) from the diverging systems (which evolve with increasing orbital periods until the donor star loses its envelope and a wide detached binary is formed). We calculate systematically the bifurcation periods of binary systems with a 1.4M_\sun neutron star and a 0.5-2M_\sun donor star, taking into account different kinds of magnetic braking and mass loss mechanisms. Our results show that the saturated magnetic braking can considerably decrease the values of bifurcation period compared to the traditional magnetic braking, while the influence of mass loss mechanisms on bifurcation periods is quite weak. We also develop a semi-analytical method to compute the bifurcation period, the result of which agrees well with the numerical method in the leading order.Comment: 18 pages, 4 figures, 1 table. Accepted to be published in Ap

    A new mass-ratio for the X-ray Binary X2127+119 in M15?

    Full text link
    The luminous low-mass X-ray binary X2127+119 in the core of the globular cluster M15 (NGC 7078), which has an orbital period of 17 hours, has long been assumed to contain a donor star evolving off the main sequence, with a mass of 0.8 solar masses (the main-sequence turn-off mass for M15). We present orbital-phase-resolved spectroscopy of X2127+119 in the H-alpha and He I 6678 spectral region, obtained with the Hubble Space Telescope. We show that these data are incompatible with the assumed masses of X2127+119's component stars. The continuum eclipse is too shallow, indicating that much of the accretion disc remains visible during eclipse, and therefore that the size of the donor star relative to the disc is much smaller in this high-inclination system than the assumed mass-ratio allows. Furthermore, the flux of X2127+119's He I 6678 emission, which has a velocity that implies an association with the stream-disc impact region, remains unchanged through eclipse, implying that material from the impact region is always visible. This should not be possible if the previously-assumed mass ratio is correct. In addition, we do not detect any spectral features from the donor star, which is unexpected for a 0.8 solar-mass sub-giant in a system with a 17-hour period.Comment: 6 pages, 4 figures, accepted by A&

    The Formation of Low-Mass Transient X-Ray Binaries

    Get PDF
    We consider constraints on the formation of low-mass X-ray binaries containing neutron stars (NLMXBs) arising from the presence of soft X-ray transients among these systems. We show that in short-period systems driven by angular momentum loss these constraints require the secondary at the beginning of mass transfer to have a mass > 1.2 M_sun, and to be significantly nuclear-evolved. As a consequence a comparatively large fraction of such systems appear as soft X-ray transients even at short periods, as observed. Moreover the large initial secondary masses account for the rarity of NLMXBs at periods less than 3 hr. In contrast, NLMXB populations forming with large kick velocities would not have these properties, suggesting that the kick velocity is generally small compared to the pre-SN orbital velocity in a large fraction of systems. We derive constraints on progenitor system parameters and on the strength of magnetic braking.Comment: Accepted for publication in ApJ, 19 pages, 4 figure
    corecore