The luminous low-mass X-ray binary X2127+119 in the core of the globular
cluster M15 (NGC 7078), which has an orbital period of 17 hours, has long been
assumed to contain a donor star evolving off the main sequence, with a mass of
0.8 solar masses (the main-sequence turn-off mass for M15). We present
orbital-phase-resolved spectroscopy of X2127+119 in the H-alpha and He I 6678
spectral region, obtained with the Hubble Space Telescope. We show that these
data are incompatible with the assumed masses of X2127+119's component stars.
The continuum eclipse is too shallow, indicating that much of the accretion
disc remains visible during eclipse, and therefore that the size of the donor
star relative to the disc is much smaller in this high-inclination system than
the assumed mass-ratio allows. Furthermore, the flux of X2127+119's He I 6678
emission, which has a velocity that implies an association with the stream-disc
impact region, remains unchanged through eclipse, implying that material from
the impact region is always visible. This should not be possible if the
previously-assumed mass ratio is correct. In addition, we do not detect any
spectral features from the donor star, which is unexpected for a 0.8 solar-mass
sub-giant in a system with a 17-hour period.Comment: 6 pages, 4 figures, accepted by A&