10 research outputs found

    Amyloid β Induces Early Changes in the Ribosomal Machinery, Cytoskeletal Organization and Oxidative Phosphorylation in Retinal Photoreceptor Cells

    Get PDF
    Amyloid β (Aβ) accumulation and its aggregation is characteristic molecular feature of the development of Alzheimer’s disease (AD). More recently, Aβ has been suggested to be associated with retinal pathology associated with AD, glaucoma and drusen deposits in age related macular degeneration (AMD). In this study, we investigated the proteins and biochemical networks that are affected by Aβ in the 661 W photoreceptor cells in culture. Time and dose dependent effects of Aβ on the photoreceptor cells were determined utilizing tandem mass tag (TMT) labeling-based quantitative mass-spectrometric approach. Bioinformatic analysis of the data revealed concentration and time dependent effects of the Aβ peptide stimulation on various key biochemical pathways that might be involved in mediating the toxicity effects of the peptide. We identified increased Tau phosphorylation, GSK3β dysregulation and reduced cell viability in cells treated with Aβ in a dose and time dependent manner. This study has delineated for the first-time molecular networks in photoreceptor cells that are impacted early upon Aβ treatment and contrasted the findings with a longer-term treatment effect. Proteins associated with ribosomal machinery homeostasis, mitochondrial function and cytoskeletal organization were affected in the initial stages of Aβ exposure, which may provide key insights into AD effects on the photoreceptors and specific molecular changes induced by Aβ peptide

    Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CLpro targeting repurposed drug candidates

    Full text link
    Background: Severe acute respiratory syndrome (SARS) has been initiating pandemics since the beginning of the century. In December 2019, the world was hit again by a devastating SARS episode that has so far infected almost four million individuals worldwide, with over 200,000 fatalities having already occurred by mid-April 2020, and the infection rate continues to grow exponentially. SARS coronavirus 2 (SARS-CoV-2) is a single stranded RNA pathogen which is characterised by a high mutation rate. It is vital to explore the mutagenic capability of the viral genome that enables SARS-CoV-2 to rapidly jump from one host immunity to another and adapt to the genetic pool of local populations. Methods: For this study, we analysed 2301 complete viral sequences reported from SARS-CoV-2 infected patients. SARS-CoV-2 host genomes were collected from The Global Initiative on Sharing All Influenza Data (GISAID) database containing 9 genomes from pangolin-CoV origin and 3 genomes from bat-CoV origin, Wuhan SARS-CoV2 reference genome was collected from GeneBank database. The Multiple sequence alignment tool, Clustal Omega was used for genomic sequence alignment. The viral replicating enzyme, 3-chymotrypsin-like cysteine protease (3CLpro) that plays a key role in its pathogenicity was used to assess its affinity with pharmacological inhibitors and repurposed drugs such as anti-viral flavones, biflavanoids, anti-malarial drugs and vitamin supplements. Results: Our results demonstrate that bat-CoV shares >?96% similar identity, while pangolin-CoV shares 85.98% identity with Wuhan SARS-CoV-2 genome. This in-depth analysis has identified 12 novel recurrent mutations in South American and African viral genomes out of which 3 were unique in South America, 4 unique in Africa and 5 were present in-patient isolates from both populations. Using state of the art in silico approaches, this study further investigates the interaction of repurposed drugs with the SARS-CoV-2 3CLpro enzyme, which regulates viral replication machinery. Conclusions: Overall, this study provides insights into the evolving mutations, with implications to understand viral pathogenicity and possible new strategies for repurposing compounds to combat the nCovid-19 pandemic

    Oxidative Stress Induced Dysfunction of Protein Synthesis in 661W Mice Photoreceptor Cells

    No full text
    Photoreceptor cells are highly susceptible to oxidative-stress-induced damage due to their high metabolic rate. Oxidative stress plays a key role in driving pathological events in several different ocular diseases, which lead to retinal degeneration and ultimately blindness. A growing number of studies have been performed to understand downstream events caused by ROS induced oxidative stress in photoreceptor cells; however, the underlying mechanisms of ROS toxicity are not fully understood. To shed light on ROS induced downstream pathological events, we employed a tandem mass tag (TMT) labelling-based quantitative mass-spectrometric approach to determine proteome changes in 661W photoreceptor cells following oxidative stress induction via the application of different concentrations of H2O2 at different time points. Overall, 5920 proteins were identified and quantified, and 450 differentially expressed proteins (DEPs) were identified, which were altered in a dose and time dependent manner in all treatment groups compared to the control group. These proteins were involved in several biological pathways, including spliceosome and ribosome response, activated glutathione metabolism, decreased ECM-receptor interaction, oxidative phosphorylation, abnormally regulated lysosome, apoptosis, and ribosome biogenesis. Our results highlighted ECM receptor interaction, oxidative phosphorylation and spliceosome pathways as the major targets of oxidative stress that might mediate vascular dysfunction and cellular senescence

    Mouse model of Alzheimer's disease demonstrates differential effects of early disease pathology on various brain regions

    No full text
    Different parts of the brain are affected distinctively in various stages of the Alzheimer's disease (AD) pathogenesis. Identifying the biochemical changes in specific brain regions is key to comprehend the neuropathological mechanisms in early pre-symptomatic phases of AD. Quantitative proteomics profiling of four distinct areas of the brain of young APP/PS1 mouse model of AD was performed followed by biochemical pathway enrichment analysis. Findings revealed fundamental compositional and functional shifts even in the early stages of the disease. This novel study highlights unique proteome and biochemical pathway alterations in specific regions of the brain that underlie the early stages of AD pathology and will provide a framework for future longitudinal studies. The proteomics data were deposited into the ProteomeXchange Consortium via PRIDE with the identifier PXD019192

    Upregulation of proteolytic pathways and altered protein biosynthesis underlie retinal pathology in a mouse model of Alzheimer’s disease

    Full text link
    Increased amyloid β (Aβ) aggregation is a hallmark feature of Alzheimer’s disease (AD) pathology. The APP/PS1 mouse model of AD exhibits accumulation of Aβ in the retina and demonstrates reduced retinal function and other degenerative changes. The overall molecular effects of AD pathology on the retina remain undetermined. Using a proteomics approach, this study assessed the molecular effects of Aβ accumulation and progression of AD pathology on the retina. Retinal tissues from younger (2.5 months) and older 8-month APP/PS1 mice were analysed for protein expression changes. A multiplexed proteomics approach using chemical isobaric tandem mass tags was applied followed by functional and protein-protein interaction analyses using Ingenuity pathway (IPA) and STRING computational tools. We identified approximately 2000 proteins each in the younger (upregulated 50; downregulated 36) and older set of APP/PS1 (upregulated 85; downregulated 79) mice retinas. Amyloid precursor protein (APP) was consistently upregulated two to threefold in both younger and older retinas (p < 0.0001). Mass spectrometry data further revealed that older APP/PS1 mice retinas had elevated levels of proteolytic enzymes cathepsin D, presenilin 2 and nicastrin that are associated with APP processing. Increased levels of proteasomal proteins Psma5, Psmd3 and Psmb2 were also observed in the older AD retinas. In contrast to the younger animals, significant downregulation of protein synthesis and elongation associated proteins such as Eef1a1, Rpl35a, Mrpl2 and Eef1e1 (p < 0.04) was identified in the older mice retinas. This study reports for the first time that not only old but also young APP/PS1 animals demonstrate increased amyloid protein levels in their retinas. Quantitative proteomics reveals new molecular insights which may represent a cellular response to clear amyloid build-up. Further, downregulation of ribosomal proteins involved in protein biosynthesis was observed which might be considered a toxicity effect
    corecore