777 research outputs found

    Divergent Selection and Primary Gene Flow Shape Incipient Speciation of a Riparian Tree on Hawaii Island

    Get PDF
    A long-standing goal of evolutionary biology is to understand the mechanisms underlying the formation of species. Of particular interest is whether or not speciation can occur in the presence of gene flow and without a period of physical isolation. Here, we investigated this process within Hawaiian Metrosideros, a hypervariable and highly dispersible woody species complex that dominates the Hawaiian Islands in continuous stands. Specifically, we investigated the origin of Metrosideros polymorpha var. newellii (newellii), a riparian ecotype endemic to Hawaii Island that is purportedly derived from the archipelago-wide M. polymorpha var. glaberrima (glaberrima). Disruptive selection across a sharp forestriparian ecotone contributes to the isolation of these varieties and is a likely driver of newellii’s origin. We examined genome-wide variation of 42 trees from Hawaii Island and older islands. Results revealed a split between glaberrima and newellii within the past 0.3–1.2 My. Admixture was extensive between lineages within Hawaii Island and between islands, but introgression from populations on older islands (i.e., secondary gene flow) did not appear to contribute to the emergence of newellii. In contrast, recurrent gene flow (i.e., primary gene flow) between glaberrima and newellii contributed to the formation of genomic islands of elevated absolute and relative divergence. These regions were enriched for genes with regulatory functions as well as for signals of positive selection, especially in newellii, consistent with divergent selection underlying their formation. In sum, our results support riparian newellii as a rare case of incipient ecological speciation with primary gene flow in trees

    Molecular Population Genetics and Phenotypic Diversification of Two Populations of the thermophilic Cyanobacterium Mastigocladus Laminosus

    Get PDF
    We investigated the distributions of genetic and phenotypic variation for two Yellowstone National Park populations of the heterocyst-forming cyanobacterium Mastigocladus (Fischerella) laminosus that exhibit dramatic phenotypic differences as a result of environmental differences in nitrogen availability. One population develops heterocysts and fixes nitrogen in situ in response to a deficiency of combined nitrogen in its environment, whereas the other population does neither due to the availability of a preferred nitrogen source. Slowly evolving molecular markers, including the 16S rRNA gene and the downstream internal transcribed spacer, are identical among all laboratory isolates from both populations but belie considerable genetic and phenotypic diversity. The total nucleotide diversity at six nitrogen metabolism loci was roughly three times greater than that observed for the human global population. The two populations are genetically differentiated, although variation in performance on different nitrogen sources among genotypes could not be explained by local adaptation to available nitrogen in the respective environments. Population genetic models suggest that local adaptation is mutation limited but also that the populations are expected to continue to diverge due to low migratory gene flow

    Genome-Wide Patterns of Arabidopsis Gene Expression in Nature

    Get PDF
    Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering) were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PCveg) correlate to temperature and precipitation occurrence in the field. The largest PCveg axes included thermoregulatory genes while the second major PCveg was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild

    Evolution of plant phenotypes, from genomes to traits

    Get PDF
    Connecting genotype to phenotype is a grand challenge of biology. Over the past 50 years, there have been numerous and powerful advances to meet this challenge, including next-generation sequencing approaches (Jackson et al. 2011), molecular genetic mapping techniques, computational modeling, and the integration of evolutionary theory and tools. In plants, the long history of domestication and breeding has provided multiple insights into the genotype–phenotype equation (Meyer and Purugganan 2013; Olsen and Wendel 2013). Domestication and breeding provide unique systems with which to study the evolution of traits and adaptation to new environments. At present, agriculture faces unprecedented challenges, with the need to continue to increase food quality and food production for a population that will likely exceed 9 billion by 2050, combined with the urgent need to make agriculture more sustainable in an environment that will be altered by climate change (Diouf 2009). Crop wild relatives, however, have evolved under ecological settings that often are more extreme than those under cultivation and thus represent a reservoir of useful adaptive traits. This genetic diversity has mostly been untapped because of a lack of appropriate tools, both at the genetic level and in describing plant phenotypes and adaptation (Mace et al. 2013). In this context, crop improvement needs to undergo a qualitative leap forward by exploiting the knowledge from the interface of the fields of molecular evolution, bioinformatics, plant physiology, and genetics. With the objective of reviewing the most recent advances and identifying unanswered questions at this interface, a group of scientists met in Barcelona in March 2015 for a workshop organized by B-Debate (www.bdebate.org) and the Center for Research in Agricultural Genomics (CRAG, www.cragenomica.es), with the support of the US National Science Foundation. The meeting was divided into three scientific sessions. The first concentrated on the mechanisms that generate genomic diversity in plants, with a particular emphasis on transposable elements and polyploidy, while the second and third sessions were devoted to the evolution of plant phenotypes in wild and domesticated species, and to domestication and plant improvement processes, respectively

    Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing

    Get PDF
    Long-read sequencing facilitates assembly of complex genomic regions. In plants, loci containing nucleotide-binding, leucine-rich repeat (NLR) disease resistance genes are an important example of such regions. NLR genes constitute one of the largest gene families in plants and are often clustered, evolving via duplication, contraction, and transposition. We recently mapped the Xo1 locus for resistance to bacterial blight and bacterial leaf streak, found in the American heirloom rice variety Carolina Gold Select, to a region that in the Nipponbare reference genome is NLR gene-rich. Here, toward identification of the Xo1 gene, we combined Nanopore and Illumina reads and generated a high-quality Carolina Gold Select genome assembly. We identified 529 complete or partial NLR genes and discovered, relative to Nipponbare, an expansion of NLR genes at the Xo1 locus. One of these has high sequence similarity to the cloned, functionally similar Xa1 gene. Both harbor an integrated zfBED domain, and the repeats within each protein are nearly perfect. Across diverse Oryzeae, we identified two sub-clades of NLR genes with these features, varying in the presence of the zfBED domain and the number of repeats. The Carolina Gold Select genome assembly also uncovered at the Xo1 locus a rice blast resistance gene and a gene encoding a polyphenol oxidase (PPO). PPO activity has been used as a marker for blast resistance at the locus in some varieties; however, the Carolina Gold Select sequence revealed a loss-of-function mutation in the PPO gene that breaks this association. Our results demonstrate that whole genome sequencing combining Nanopore and Illumina reads effectively resolves NLR gene loci. Our identification of an Xo1 candidate is an important step toward mechanistic characterization, including the role(s) of the zfBED domain. Finally, the Carolina Gold Select genome assembly will facilitate identification of other useful traits in this historically important variety. Author summary Plants lack adaptive immunity, and instead contain repeat-rich, disease resistance genes that evolve rapidly through duplication, recombination, and transposition. The number, variation, and often clustered arrangement of these genes make them challenging to sequence and catalog. The US heirloom rice variety Carolina Gold Select has resistance to two important bacterial diseases. Toward identifying the responsible gene(s), we combined long- and short-read sequencing technologies to assemble the whole genome and identify the resistance gene repertoire. We previously narrowed the location of the gene(s) to a region on chromosome four. The region in Carolina Gold Select is larger than in the rice reference genome (Nipponbare) and contains twice as many resistance genes. One shares unusual features with a known bacterial disease resistance gene, suggesting that it confers the resistance. Across diverse varieties and related species, we identified two widely-distributed groups of such genes. The results are an important step toward mechanistic characterization and deployment of the bacterial disease resistance. The genome assembly also identified a resistance gene for a fungal disease and predicted a marker phenotype used in breeding for resistance. Thus, the Carolina Gold Select genome assembly can be expected to aid in the identification and deployment of other valuable traits

    The Rice Paradox: Multiple Origins but Single Domestication in Asian Rice

    Get PDF
    The origin of domesticated Asian rice (Oryza sativa) has been a contentious topic, with conflicting evidence for either single or multiple domestication of this key crop species. We examined the evolutionary history of domesticated rice by analyzing de novo assembled genomes from domesticated rice and its wild progenitors. Our results indicate multiple origins, where each domesticated rice subpopulation (japonica, indica, and aus) arose separately from progenitor O. rufipogon and/or O. nivara. Coalescence-based modeling of demographic parameters estimate that the first domesticated rice population to split off from O. rufipogon was O. sativa ssp. japonica, occurring at ∼13.1–24.1 ka, which is an order of magnitude older then the earliest archeological date of domestication. This date is consistent, however, with the expansion of O. rufipogon populations after the Last Glacial Maximum ∼18 ka and archeological evidence for early wild rice management in China. We also show that there is significant gene flow from japonica to both indica (∼17%) and aus (∼15%), which led to the transfer of domestication alleles from early-domesticated japonica to proto-indica and proto-aus populations. Our results provide support for a model in which different rice subspecies had separate origins, but that de novo domestication occurred only once, in O. sativa ssp. japonica, and introgressive hybridization from early japonica to proto-indica and proto-aus led to domesticated indica and aus rice

    Variation, Sex, and Social Cooperation: Molecular Population Genetics of the Social Amoeba Dictyostelium discoideum

    Get PDF
    Dictyostelium discoideum is a eukaryotic microbial model system for multicellular development, cell–cell signaling, and social behavior. Key models of social evolution require an understanding of genetic relationships between individuals across the genome or possibly at specific genes, but the nature of variation within D. discoideum is largely unknown. We re-sequenced 137 gene fragments in wild North American strains of D. discoideum and examined the levels and patterns of nucleotide variation in this social microbial species. We observe surprisingly low levels of nucleotide variation in D. discoideum across these strains, with a mean nucleotide diversity (π) of 0.08%, and no strong population stratification among North American strains. We also do not find any clear relationship between nucleotide divergence between strains and levels of social dominance and kin discrimination. Kin discrimination experiments, however, show that strains collected from the same location show greater ability to distinguish self from non-self than do strains from different geographic areas. This suggests that a greater ability to recognize self versus non-self may arise among strains that are more likely to encounter each other in nature, which would lead to preferential formation of fruiting bodies with clonemates and may prevent the evolution of cheating behaviors within D. discoideum populations. Finally, despite the fact that sex has rarely been observed in this species, we document a rapid decay of linkage disequilibrium between SNPs, the presence of recombinant genotypes among natural strains, and high estimates of the population recombination parameter ρ. The SNP data indicate that recombination is widespread within D. discoideum and that sex as a form of social interaction is likely to be an important aspect of the life cycle

    EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to Water Deficit, High Temperature, and Agricultural Environments

    Get PDF
    Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures, water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is an effective way of incorporating multiple genome-scale measurements into network inference
    corecore