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Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to
environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript
levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures,
water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of
nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target
genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-
free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory
activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated
transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes
regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative
regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is
an effective way of incorporating multiple genome-scale measurements into network inference.

INTRODUCTION

Plants alter the expression levels of different sets of genes to
coordinate physiological and developmental responses to envi-
ronmental changes (Nagano et al., 2012; Plessis et al., 2015). The

ability to respond to environmental signals is the hallmark of
adaptation and underlies tolerance to biotic and abiotic stresses.
For domesticated crop species like Asian rice (Oryza sativa),
adaptivegeneexpressionpatterns associatedwith environmental
changes can ensure high yields under a range of climatic con-
ditions (Mickelbart et al., 2015; Olsen and Wendel, 2013).
Rice is a staple food formore than half of theworld’s population

(Khush, 2005). Changes in rice yield caused by climate change
have major implications for global food security (Pachauri et al.,
2014). An estimated 45% of rice growing lands are at risk of
drought because they are not irrigated and depend entirely on
rainfall forwater (TuongandBouman, 2003).Moreover,many rice-
growing regions have temperatures bordering critical limits for
optimal grain production (Peng et al., 2004; Prasad et al., 2006;
Wassmann et al., 2009). Current climate models predict marked
reductions in rice yielddue to changes in the frequencyand intensity
ofextremeclimateevents (Pachauri etal., 2014;Redfernetal., 2012).
Understanding the mechanisms that permit growth in fluctuating
environments is a critical step toward identifying the molecular
processes that could be targeted through traditional breeding or
genetic engineering for developing stress-tolerant plants.
Plants rely on gene regulatory networks to orchestrate dynamic

adaptive changes that enable them to survive in growth limiting
environments. Gene regulatory networks are the core information
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processing mechanism of the cell; they coordinate the timing and
rate of genome-wide gene expression in response to environ-
mental and developmental signals (Bonneau, 2008; Huynh-Thu
and Sanguinetti, 2015; Imam et al., 2015; Roy et al., 2013; Schulz
et al., 2012). Environmental gene regulatory influence networks
(EGRINs) are defined by the environmentally modulated inter-
actions of protein transcription factors (TFs) with conserved
regulatory elements in genomic DNA (Sullivan et al., 2014; Zhang
et al., 2015) to effect the organization of the chromosome and the
transcription of RNAs, including microRNAs and long noncoding
RNAs, that in turn have regulatory potential (Mercer and Mattick,
2013). Plant genomes encode an expanded repertoire of TFs
relative to other organisms (Shiu et al., 2005), which is consistent
with their sessile lifestyles and their dependence on gene re-
sponse mechanisms to cope with variable environments.

The need to map out and dissect gene regulatory networks
has led to the development of various experimental and com-
putational approaches to infer their structure and composition
(Bonneau, 2008; Greenfield et al., 2013; Koryachko et al., 2015;
Roy et al., 2013). The simplest large-scale EGRINs are based
on transcriptome data, measured by high-throughput sequenc-
ing or array-based technology, without regard for other post-
transcriptional and translational regulatory events that are known
to influence transcriptional regulation (Koryachko et al., 2015).
These methods assume that the expression of genes across
environmental conditions, perturbations, and genotypes can be
used to predict regulatory relationships; however, many TF pro-
teinsexist in an inactive form in thecytosol or nucleusuntil theyare
activated by environmental or developmental signals (Fu et al.,
2011; Ohama et al., 2016). It is not feasible to measure all of the
complex and varied factors contributing to the regulation of gene
expression; as such, network inference algorithms have been
developed to predict regulatory interactions in the absence of
complete data by incorporating additional complementary data
types or prior knowledge of the network structure to estimate the
effects of unmeasured regulatory layers (Arrieta-Ortiz et al., 2015;
Bonneau, 2008; Fu et al., 2011; Greenfield et al., 2013; Misra and
Sriram, 2013; Roy et al., 2013).

In model prokaryotic and eukaryotic systems, where much of
the true architecture of many regulatory networks is known,
methods thatcombinedexpressiondataandadditionaldata types
that define structure priors were able to infer more accurate
regulatorynetworks thanmethodsbasedongeneexpressiondata
alone (Arrieta-Ortiz et al., 2015; Fu et al., 2011; Greenfield et al.,
2013). For rice, where only a minority of regulatory relationships
are known, several EGRINs have been published that use addi-
tional knowledge of network regulators to inform transcriptome-
based network inference models. For example, Obertello et al.
(2015) included knowledge of regulatory interactions in other
species, andNigam et al. (2015) considermicroRNA-mediated TF
activity. In both of these instances, the additional data types were
used to filter and refine coexpression networks. Sullivan et al.
(2014) used changes in chromatin accessibility upstream of the
coding regions of genes, a hallmark of gene regulatory activity
(Buenrostro et al., 2013; Zhanget al., 2015), and knowledge of cis-
regulatory motifs, rather than changes in gene expression, to
construct a cis-regulatory network of the response ofArabidopsis
thaliana to high temperature and during photomorphogenesis.

Mapping TFs to target genes in this manner considers putative
functional elements but does not capture the output of the reg-
ulatory network, specifically, the regulated changes in transcript
abundance that expression-based networks measure.
Here, we describe a method that combines the strengths of

transcriptome-based and chromatin accessibility-based meth-
ods in an algorithm that systematically incorporates multiple
genome-scale measurements into a single model of gene regu-
lation. We use a combination of static (i.e., cis-regulatory motif
occurrence) and dynamic (i.e., transcriptome and chromatin ac-
cessibility data) genome-scale measurements to define the
proximal promoter region for all genes and to estimate the reg-
ulatory activity of transcription factors. These analyses were used
as a starting point for inferring an EGRIN using an adapted version
of the Inferelator, amethod for learning networks based on sparse
linear models (Arrieta-Ortiz et al., 2015; Bonneau et al., 2006;
Greenfield et al., 2013). We incorporated time-series gene ex-
pression data from controlled experiments where single envi-
ronmental factors were perturbed and from agricultural field
experiments collected over multiple growing seasons with ex-
perimentally inducedstress treatments.Our approachovercomes
some of the shortcomings implicit in transcriptome-based net-
work prediction (e.g., coexpression as a proxy for regulation), by
leveraging a multifactor experimental design. Using this ap-
proach, we successfully assembled a high-resolution view of
global environmental gene regulation in rice.

RESULTS

For this study, we used multiple genome-scale measurements—
transcriptome, nucleosome-free chromatin, and cis-regulatory
motif occurrence—to learn the gene regulatory networks asso-
ciatedwith response toenvironmental change.Briefly,ourmethod
for inferringEGRINswasas follows: (1) for eachTFwith knowncis-
regulatory elements, we identified target genes that had the rel-
evant cis-regulatory element in a region of open chromatin in their
promoters; (2) we then used the expression of the putative target
genes to estimate the transcription factor activity (TFA) for each
transcription factor using a method called network component
analysis (Liao et al., 2003); (3) we then inferred the regulatory
network using the Inferelator algorithm (Arrieta-Ortiz et al., 2015;
Bonneau et al., 2006; Greenfield et al., 2013), in which regulatory
interactions are predicted based on (partial) correlations between
TFAs and the expression of target genes.
We performed two major experiments (Figure 1A) in which we

exposed rice plants to a wide range of environmental conditions
andmonitored their functional and transcriptome responses over
time. In the first experiment, we grew rice plants in climate con-
trolled growth chambers for 14 d in hydroponic culture before
initiating heat shock (a transfer from 30 to 40°C) or water deficit
treatments (removal of all root available water). We collected
samples from the heat shock treatment every 15 min for 4 h;
however, we collected samples from the water deficit treatment
every 15min for only 2 h. Beyond2hof thewater deficit treatment,
we began to see irreversible tissue damage, including leaf tip
death, andwe stopped the treatment, as that responsewas not of
interest for thisstudy. In thesecondexperiment,wegrewthree rice
cultivars in two agricultural fields, one irrigated and one rain fed,
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during both the rainy and dry seasons and monitored weather
variables throughout the experimental period. Leaf samples were
harvested every other day for 29 d during the vegetative growth
phase at the same time of day with respect to sunrise. This ex-
periment is described in detail by Plessis et al. (2015). The con-
trolled experimental treatments differed from agricultural stresses
in several critical ways: The heat shock was a near-instantaneous
10°C temperature increase and the water deficit treatment ex-
posed the roots of hydroponically grown plants into the air. While
these conditions do not replicate field conditions, they allowed us
to apply consistent treatments to a large number of plants si-
multaneously and because they had previously been demon-
strated to elicit relevant changes to both plant functional
responses, and importantly for our study, to the expression levels
of a number of transcripts that were a priori of interest.

We included five tropical Asian rice cultivars in these experi-
ments, all of which were traditional land races including repre-
sentatives of two of the major rice subspecies: indica (cultivars
Kinandang Puti and Tadukan) and japonica (cultivars Azucena,
Pandan Wangi, and Palawan; Figure 1A). These varieties are
traditionally used in either irrigated culture (Pandan Wangi and
Tadukan) or in rain fed fields (Azucena, Kinandang Puti, and
Palawan), and their divergent ecological adaptations allow us to
capture a greater breadth of responses to the environmental
treatments. Our method systematically incorporates multiple

genome-scale measurements, including chromatin accessibility,
cis-regulatory motifs, and transcriptome data, to generate pre-
dictions of gene regulatory interactions in rice leaves. For this
study,we limited our focus to genomic entities thatwere identified
as genes in the Michigan State University Rice Genome Anno-
tation Project version 7 (http://rice.plantbiology.msu.edu/). We
interpreted the regulatory network in the context of the plant
functional measurements and weather data (Figure 1B).

Photosynthetic Rate Is Decreased in Response to
Environmental Stress

To provide the functional context in which gene expression was
measured, we monitored plant physiological status during the
heat shock and water deficit treatments, including carbon as-
similation rate and stomatal conductance. We observed distinct
functional responses for each stress type, with similar responses
observed for all four cultivars (Supplemental Figure 1), so, here-
after, we describe the responses of Azucena as an exemplar. In
response to the heat treatment, we observed an initial steep and
transient decrease in the carbon assimilation rate (;80% control)
of Azucena followed by a recovery to a sustained rate of ;90%
control for the length of the heat stress treatment (Figure 2A;
Supplemental Figure 1). Upon return to the lower temperature, the
carbon assimilation rates remained stable, but below the rate in

Figure 1. Schematic Overview.

(A) Experimental design: We queried the response of five tropical Asian rice cultivars to high temperatures, water deficit in hydroponic culture, and
agricultural field conditions. Data collected include time-series transcriptome data (RNA-seq) and chromatin accessibility (ATAC-seq).
(B)Data analysis:We connect transcription factorswith genes via known cis-regulatorymotifs in accessible promoters. This prior network togetherwith the
transcriptome data is used to estimate transcription factor activities; the Inferelator algorithm is used to construct the final network.
(C) Inferelator algorithm:Forevery targetgene, hundredsofmodels linking itsexpression toTFactivitiesareevaluatedandonemodel is selected todefine its
regulators.
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control conditions for the duration of the measured recovery
period. The degree of change is variable across the cultivars, but
that the trend is consistent across all.

In response to the water deficit treatment, we observed
a continuous decrease in rate of carbon assimilation over the
period of the treatment. For example, Azucena’s carbon as-
similation rate declined to around 90% of its well watered rate

after only 15 min of water deficit stress and to around 15% after
90min, the lastmeasurement before the plants were returned to
thewater-unlimited treatment. Theother three cultivars similarly
had decreasing rates of carbon assimilation over the period of
thewater-deficit treatment. In all four rice cultivars,weobserved
a gradual increase in the carbon assimilation rate when the
plants were given ample water for recovery, though none of

Figure 2. Overview of Experimental Data.

(A) Functional responses: The relative photosynthetic rate of stress-treated Azucena plants is presented (n = 3 for each treatment; mean of the replicates is
presented). Data for other genotypes are in the supplemental data. The vertical dashed lines indicate the end of the stress treatment and the start of the
recovery treatment.
(B)For eachcultivar, weaveraged theexpression across control conditions for every gene.Pairwise scatterplots andPearsoncorrelations for Azucena (AZ),
Pandan Wangi (PW), Kinandang Puti (KP), and Tadukan (TD) are shown.
(C)Number of differentially expressed genes for each genotype, time point, and treatment. Geneswith positive fold change are shown as positive counts in
purple; genes with negative fold change are shown as negative counts in orange.
(D) Expression similarity of data points shown as multidimensional scaling plot based on Euclidean distance of log fold change of 2097 differentially
expressed genes (seeMethods). The number inside each data point indicates the time inminutes since the onset of the treatment at which the sample was
measured.
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them returned to pretreatment rates in the monitored recovery
period.

For neither treatment didweobserve functional differences that
could be associated with the rice subspecies (indica versus
japonica) or the type of field (irrigated versus rain fed) in which the
rice was traditionally grown. Because the functional measures of
the sampled leaves showed partial recovery upon return to the
initial experimental conditions and 4 d post-treatment we did not
observe leaf mortality on the stress treated plants, we are con-
fident that the treatments did not cause irreversible damage to the
sampled leaves.

Fast Responses to Heat; Slow Responses to Water Deficit

A comparison of the four cultivars indicated that they had similar
transcriptomes, as shown by the high correlation of the gene
expression between cultivars across the genome (Figure 2B;
Supplemental Figure 2). The correlation of gene expression was
highest within each subspecies (correlation = 0.98 for japonica
cultivars; correlation = 0.97 for the indica cultivars); correlation
between the transcriptomes of different subspecieswas also high
(correlation > 0.95). Given this similarity, there should only be very
low bias introduced by having aligned all cultivars to the same
Nipponbare reference genome. We identified differentially ex-
pressedgenes in the controlled chamber experiments in response
to single-factor environmental perturbations. Results indicate that
the two types of treatments (heat and water deficit) led to re-
sponses with distinct temporal patterns of expression regulation
(Figure 2C) that paralleled the leaf functional responses to stress.
During the heat treatment, there was a rapid increase in the ex-
pression of;300genes, but after 90min only fewgenes remained
perturbed (Figure 2C; Supplemental File 1). In contrast, the re-
sponse to water deficit was much slower, with almost no differ-
entially expressed genes detected before 60 min of treatment,
after which a large number of differentially expressed genes were
observed for the remainder of the stress period. Even 90min after
the plants were returned to water-unlimited conditions, many
genes remained perturbed. The dynamics of the stress responses
are summarized in a multidimensional scaling plot based on
Euclidean distance of log fold change of 2097 genes that are
differentially expressed in at least one condition (Figure 2D;
Supplemental Figure 3). We note that, in contrast to the response
toheatshockwhere the responseofall fourgenotypeswassimilar,
the response to thewater deficit stresswasstronger (asmeasured
by the number of differentially expressed genes) in the japonica
cultivars (Azucena and PandanWangi) than in the indica cultivars
(Kinandang Puti and Tadukan); we did not observe these differ-
ences in the plant functional measurements.

Most of the differentially expressed genes in this analysis were
morehighlyexpressed in the treated than in thecontrol conditions.
The relatively small number of downregulated genes identified in
this analysis is consistent with other published abiotic stress
studies in Arabidopsis (Kilian et al., 2007; Matsui et al., 2008; Seki
et al., 2002) and rice (Zhou et al., 2007) that applied severe and
short termtreatments,much like theoneweused in thisstudy.This
imbalance is characteristic of samples collected soon after the
treatment is initiated (within hours). In their 2008 study in Arabi-
dopsis,Matsui etal. (2008) found thatafter2hofwaterdeprivation,

a much larger number of genes were upregulated than down-
regulated in response to the treatment; whereas, after 10 h, the
number of up- and downregulated genes was effectively equiv-
alent. Similarly, the early time points (0.5, 1, 3, and 6 h) in the
osmotic stress treatment in the AtGenExpress abiotic stress data
set (Kilian et al., 2007) had a much larger number of upregulated
than downregulated genes; at the later time points (12 and 24 h),
the number of up- and downregulated genes was approximately
equal.

ATAC-Seq Interrogation of Rice Leaves under Multiple
Conditions Reveals Stable Accessible Regulatory Regions

Nucleosome-free regions of the genome are strongly associated
with active sites of transcription. We used assay of transposase
accessible chromatin (ATAC)-seq to identify nucleosome-free
regions of the genome (Figure 3A). According to our paired-end
sequencing results, themajority of DNA fragments are short, 55 to
65bp long, and there is anexponential decline in thedistributionof
longer fragments (Supplemental Figure 4). A fragment is defined
as the DNA region bounded by the forward and reverse read. To
call chromosomal regions “open,”we count the number of ATAC
cutsites (firstbaseofanaligned forward readandfirstbaseafteran
aligned reverse read) in itsproximity.Wecalledabaseopen ifmore
than half of the libraries contained at least one cut site in the 72-bp
window centered on the base (Supplemental File 2). These re-
quirements for calling open siteswere chosen becauseof the high
conservation of open sites identified across experimental con-
ditions (Supplemental Figures 5 and 6) and because of the rela-
tively lownumberof readsperATAC-seq library,which led to a low
signal to noise ratio. If two open bases are fewer than 72 bp apart,
we call all intermediate bases open. Based on this definition, the
average open region length was 268 bp, median 206 bp (Figure
3B). In rice, the distance between nucleosome centers (dyads)
ranges from;175 bp in promoter proximal regions to;191 bp in
intergenic regions (Wu et al., 2014). In the human lymphoblastoid
cell line in which the ATAC-seq method was developed, the
fragment length distribution had a clear periodicity of ;200 bp,
with the largest peak corresponding to the length of a single
nucleosome and multiple smaller peaks corresponding to integer
multiples of up to six nucleosomes (Buenrostro et al., 2013). We
did not detect peaks with lengths corresponding to multiple nu-
cleosomes in rice, which may reflect the more compact structure
of plant promoters. In Arabidopsis, more than half of DNase I
hypersensitivity siteswithin1kbof the transcriptionstart site (TSS)
were located within the first 200 bp upstream of the TSS (Zhang
et al., 2012a), indicating that the displacement of a single nu-
cleosomemaybesufficient topermit regulatedgeneexpression in
both rice and Arabidopsis.
Designating open regions in this manner, we identified 29,978

open regions covering approximately 8Mb (;2%of the genome).
The open regions were distributed throughout the genome, in
genic and intergenic regions, with a frequency similar to that of
open regions identifiedusingDNase Ihypersensitivity sites (Zhang
et al., 2012b) (Supplemental Figure 7). As expected, nucleosome-
free regions were non-randomly distributed in the genome with
respect to genomic features. We examined their distribution and
calculated the enrichment of bases belonging to open regions for
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Figure 3. Genomic Distribution of Open Chromatin Regions Identified by ATAC-Seq.

(A) The genomic location of LOC_Os10g26620, DOF Zn-finger domain containing protein, is presented as representative ATAC-seq data. Solid black lines
represent regions of genomic DNA; the histograms indicate the sequencing reads that align to a given genomic region; the blue bars indicate regions that
were determined to be open; the blue bars of variable width indicate the structure of gene models; the black arrows indicate on which strand the gene is
encoded.
(B) Length distribution of open genomic regions identified by ATAC-seq.
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the following features: 500 bp upstream of TSSs, 59 untranslated
region (UTR), coding sequence, exon, intron, 39 UTR, and 500 bp
downstream of gene (Figure 3C). We observed an almost 5.6-fold
enrichment of bases belonging to open regions in the 500 bp
upstream of the TSS of genes and an 8.5-fold enrichment in the 59
UTRs of genes with 15% of all bases occurring in open regions
(Figure 3C). Introns (;0.3-fold) and coding sequences (;0.2-fold)
were depleted of open regions.

To get a better idea of where in the promoter region open
chromatin was located for rice, we aligned all 56,000 genes in the
genome with respect to their TSS. For every base from 1000 bp
before the TSS to 500 bp after the TSS, we calculated the fraction
of genes that were covered by an open region as described above
(Figure 3D). The resulting distribution shows a sharp peak around
50 bp before the TSS where ;15% of all genes have a region of
open chromatin. The distribution quickly falls off to both sides,
almost reaching the background level of 2.1% at 21000 and
+500 bp.We used this curve to define the promoter boundaries of
2453 and +137 bp based on the coverage threshold of 4% (more
than 4% of genes have open chromatin between 2453 and
+137bp)as thiswas twice thebackground level. To test theeffects
of promoter openness on gene expression, we compared the
expression of genes with the number of ATAC cut sites that fall
within each gene’s promoter (Figure 3E). For this analysis, we
considered only Azucena growth chamber samples and summed
the ATAC results of all libraries. Of the ;33,000 genes whose
transcripts were not detected (FPKMof 0), 27,000 had 30 or fewer
cut sites in their promoter. In contrast, 74% of the expressed
genes hadmore than 30 cuts (13-fold enrichment, P < 1e-15), and
we observed a significant correlation between the number of cuts
and expression (Pearson correlation of 0.42).

TF Binding Motif Occurrence in Open Promoters Used to
Derive Priors on Network Structure

We mapped known TF binding motifs (cis-regulatory motifs) to
open chromatin regions in the promoter regions of expressed
genes to organize the existing knowledge of putative regulatory
interactions.Wecalled thiscollectionof regulatoryhypotheses the
network prior. For 666 of the more than 1800 TFs in the rice ge-
nome (Jin et al., 2014), thecis-regulatory bindingmotifs havebeen
determined (Matys et al., 2003; Weirauch et al., 2014). We
searched for thesemotifs in open promoter regions definedby the
ATAC-seq analysis (Figure 4A) and found significant motif
matches for 445 of the TFs. By limiting the search to the open
promoter regions, we greatly reduced the sequence space for
finding motif occurrences, which lowered the number of random

motifmatches.Openpromoter regionsmadeup;2.3Mb (;0.6%
of the genome) distributed among ;9000 genes, compared with
;14.7Mbof the promoters of all expressed genes. In thisway, we
mapped445TFs to5447 target genes via 77,071 interactions. The
median out-degree (thenumber of regulatory edges initiating from
a TF) of TFs with targets was 75; the median in-degree of targets
withTFswas8.For example, theknownbindingsiteofHeatShock
Factor A2a (OsHSFA2a, LOC_Os03g53340) is the heat shock
element (HSE). Fifty-three expressed genes had the HSE in an
open region of their promoter and were mapped as targets of
OsHSFA2a in the open-chromatin network prior (Figure 4B).
We used the expression data to identify interactions in the

network prior that were likely to be regulatory, based on coherent
expression profiles. This stepwascritical, as a substantial fraction
of interactions in the network prior was not expected to be related
to regulatory TFbinding inour experimental conditions. To identify
and remove nonfunctional interactions from the network prior, we
assumed that for a given TF, true prior targets should show co-
ordinated expression across at least some of our experimental
conditions and that the targets of the TF should be enriched for
that particular expression pattern with respect to background. An
example output of this step for the OsHSFA2a is shown in Figure
4B; sample order for this heat map and all other plots is given in
Supplemental File3.Each targetgenewasgivenascore indicating
our confidence that it was a true target of the TF based on the
criteria described above (seeMethods for details); genes with low
scores were removed from the network prior. This coherence-
filterednetworkprior had38,137 interactions (a reductionof 51%);
357 TFs were connected with 3240 target genes (Figure 4C;
Supplemental File 4). Of the TFs with targets, the median out-
degree was 44; of the targets with TFs, the median in-degree was
5. Some TFs had identical target gene sets in the network prior.
This occurred in cases where the TFs were members of large TF
families with identical DNA binding motifs. For example, there are
25 HSFs in the rice genome, all of which are predicted to bind to
the same HSE. As a consequence, all HSFs have identical targets
in the prior network; we group these TFs together as a TF predic-
tor group. A total of 276 TFs formed 62 TF predictor groups
(Supplemental File 5). This generated a final network prior of
13,937 interactions, connecting 143 regulators (individual TFs
and predictor groups) with 3240 target genes (Figure 4C).

TFA Estimation from Known Regulatory Targets

The regulatory activity of a TF can be derived from the changes in
the expression of its target genes across experimental conditions.
Our method estimates TFAs based on partial knowledge of

Figure 3. (continued).

(C)Locationofopenchromatin regions relative togene features, including the regions 500bpupstreamof theTSSanddownstreamof the39endof thegene
model. Numbersnext tobars indicate thepercentageof bases that belong toaspecific feature fall into open regions. All odds ratios arehighly significant (P<
1e-13).
(D)Distribution of openchromatin aroundTSSs. For all 56,000genes (first isoformsonly),wedetermined thebases that are coveredbyanopen region in the
21000bp to+500bpwindowaround theTSS.Thedashed lines indicate thestart (2453bp) andend (+137bp)of thepromoter regionwheremore than4%of
the genes are open.
(E) Histogram of number of ATAC-seq cuts in promoter for nonexpressed genes (top). Gene expression (median FPKM across all AZ samples) versus
number of ATAC-seq cuts in promoter for expressed genes; Pearson correlation 0.42 (bottom).
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TF-target relationships—regulatory interactions in the coherence
filtered network prior—with the aimof then using the TFAs to learn
better TF-target relationships. Based on the prior network and the
expressiondata,weusednetwork component analysis (Liaoet al.,
2003) to estimate TFAs. The principal idea of network component
analysis is to use a simplified model of transcriptional regulation
and treat the known or putative targets of a TF as reporters of its
activity. This approach requires at least some known TF targets;
hence, we estimated the activities only for the 143 regulators with
targets in our network prior (Supplemental File 6). Many TFs had
similar TFAs in our experimental conditions that could be asso-
ciated with the different experimental treatments (Figure 5A). The
activities indicate that some TFs primarily regulate their target
genes in response to only one of the experimental treatments (i.e.,

heat or water deficit), while others regulate the expression of their
targets in response tomultiple experimental treatments (e.g., heat
and water deficit). Moreover, we identify TFs with similar activities
in the controlled experiments, but with divergent responses in the
agricultural setting.
Because the network prior was constructed from predicted TF-

target interactions based on cis-regulatory motifs determined by
in vitro TF binding to protein binding microarrays, we anticipated
that it could contain many incorrect or irrelevant interactions.
Therefore, we investigated the impact that simulated changes in
the network prior had on the estimated TFAs. To do so, we
subsampled the prior matrix with replacement (keeping only 63%
of the interactions on average) 201 times. In this way, we obtained
201 TFA estimates for every TF; we called the mean pairwise

Figure 4. Prior Knowledge of the Network Structure Is Used to Calculate TFA.

(A) Exemplar of network prior inputs. Region of chromosome 1 encoding three genes is highlighted to indicate howmotif locations gave rise to the network
prior.
(B)Coherencefilteringof networkprior, showingOsHSFA2aasanexample.Heatmapof expressionof network prior targetswith higher levelsof expression
indicatedwithgreen tonesand lowerexpression levels indicatedwithbrowntones.Coherencescoresare indicatedwithgrayscalebar;darker tones indicate
higher confidence.
(C) Number of regulators, edges, and targets in each stage of the network prior.
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Figure 5. Transcription Factor Activities.

(A)Heatmapof TFAs for all TFs andTFpredictor groups forwhich activitieswere calculated. Higher levels of expression are indicatedwith green tones, and
lower expression levels are indicated with brown tones.
(B) and (C) TFA stability (quantified as correlation of TFA estimates between 201 bootstrap subsamples of the network prior) for LOC_Os01g60600 (B) and
LOC_Os08g41360 (C). In these plots, the light band shows the region between the 5th and 95th percentile of TFAs; the dark line shows the average TFA.
(D)PearsoncorrelationbetweenexpressionandTFA foreachTFandTFpredictorgroup. Forpredictorgroups,wecalculatedall correlationsbetween theTF
activity and theexpressionof the individual TFs in thegroup. From this set of correlations,we includedonly thehighest absolute correlation in thehistogram.
(E) Correlation of TFA for OsNAP when estimated from network prior (x axis) or from ChIP-PCR targets (y axis).
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Pearson correlation “TFA stability” (Supplemental Figure 8 and
Supplemental File 7). TFA stability ranged from 0.15 (Figure 5B) to
>0.96 (Figure 5C). As expected, predictors (TFs and TF predictor
groups) with few targets in the network prior (fewer than eight)
show low stability. In the remaining set of predictors, we see
64 (52%) with very stable activities (>0.75), which shows that at
least parts of the prior network are self-consistent and estimated
activities for those TFs are systematic rather random. For TFswith
greater than four targets, theredoesnotappear tobea relationship
between the number of targets and stability score (Supplemental
Figure 8). We found that for the majority of TFs activities and
expressionprofileswerepoorlycorrelated,with85%ofcorrelation
values between20.5 and 0.5 (Figure 5D), consistent with the fact
that posttranscriptional and posttranslational mechanisms are
important for TF activity and localization.

Very few validated regulatory interactions exist for rice, thereby
making it impossible to benchmark the accuracy of the estimated
TFAs. For OsNAP (LOC_Os03g21060), a transcription factor as-
sociated with chlorophyll degradation, nutrient transport, and other
senescence-related genes, seven direct regulatory targets have
been experimentally validated by chromatin immunoprecipitation
(ChIP)PCR(Liangetal., 2014).Weestimated theTFAofOsNAPfrom
the ChIP-validated regulatory targets (regulatory targets from Liang
etal. [2014] andexpressiondata fromthisexperiment) andobserved
a 0.77 correlation with the TFA estimated from our distinct network
prior (Figure 5E). While this result increases our confidence in our
estimated TFA for OsNAP, there is not sufficient ChIP data available
to generalize the concordance between our method for predicting
regulatory targets and the gold standard ChIP data.

EGRIN: A Dynamic Model of Transcriptional Regulation in
Response to Environmental Changes

In a second step, we used the observed gene expression and the
estimated TF activities to infer the EGRIN (Figure 1C). Inference is
based on the Inferelator algorithm, which wasmost recently used
to infer an experimentally supported model of the Bacillus subtilis
transcriptional network (Arrieta-Ortiz et al., 2015). The underlying
idea of the method is to model the observed expression of every
gene as a linear combination of the activities of a small number of
TFs regulating it. For a given target gene, we constructed all
models that corresponded to the inclusion and exclusion of TFs
from the network prior in addition to those TFs that show a high
mutual information with the target. From this large set of models,
we select the one with the lowest Bayesian Information Criterion
(implementing a trade-off between model complexity and
goodness of fit) while slightly favoringmodels that also agree with
the network prior (Greenfield et al., 2013) (see Methods). The in-
ferrednetwork isnot acoexpressionnetwork, but anetworkwhere
regulatory interactions are inferred from the activity of tran-
scription factors (estimated from the expression of a subset of
putative target genes) and the transcript profiles of target genes.
Weevaluated thismethod inB. subtilis and yeast and showed that
it is robust to false interactions in the prior network and that the
inferred network was consistent with genome-wide expression
levels following TF knockout (Arrieta-Ortiz et al., 2015).

Toestimatetheerror incurredbyourEGRINinferenceandtobetter
rank regulatory interactions, we bootstrapped the expression data

by subsampling from the conditions with replacement. Additionally,
to control for the observed variability in TFAs with respect to small
changes inour prior network (i.e., TFAstability),wealso subsampled
the network prior at every bootstrap as described above. Our ap-
proach then only chose interactions for the final consensus network
if the predictor had a stable activity that predicted the target ex-
pression across a broad range of conditions. Given multiple boot-
straps, we kept those interactions that were present in more than
50%of thebootstrapnetworks. TFswith lowstabilitywere less likely
to recall the same regulatory interaction in a large number of the
bootstraps and as a consequence were less likely to be assigned
targetgenes in theconsensusnetwork.Aswe increased thenumber
of bootstraps, the network converges to a core set of interactions
quickly, after 150 bootstraps more than 98% of the interactions
remainstableafter addingmorebootstraps (Supplemental Figure9).
To obtain our final rice EGRIN, we performed 201 bootstraps. The
final EGRIN contains 4151 nodes (TFs, TF predictor groups, and
target genes) and 4498 interactions (Figure 6A; Supplemental Files
8 and 9). Of all the predicted interactions, 18% (796) were also in the
networkprior. TFs regulatedbetween1and355 targetgenes (Figure
6B); targets geneswere regulated by 1 to 3 TFs (Figure 6C). TFs that
weregrouped in thenetworkpriorbecause theyhad identical targets
were included individually in thenetwork inferenceaspotential target
genes, but only as one potential regulator.

Known and Novel Regulatory Control of Coordinated
Biological Processes

The predicted rice regulatory network consists of 113 TFs,
around half of which (62) are TF predictor groups that were
createdbygroupingTFswith identical targets in theprior. In total,
4498 interactions connect the TFs to 4052 genes. The number of
targets for each regulator and thenumberof regulators per target
genes are shown in Figures 6B and 6C, respectively. Fifteen
predictors (11 TFs and 4 TF predictor groups) had more than
100 targets in the EGRIN. For these 15 predictors, 62 to 96% of
the predicted targets were novel, i.e., not in the network prior.
Many of the genes in the networkwere differentially expressed in
response to some of our experimental treatments. We marked
groups of genes on the inferred network (Figure 6A) based on the
treatments in which theywere differentially expressed, including
heat shock and water deficit. We also marked genes as “cir-
cadian” if time of day was a good predictor of their expression
in the chamber experiments or as “field” if the field conditions
contributed more to the overall variance than the chamber data.
This notation reveals that most TFs and TF groups regulate tar-
get genes primarily in response to one treatment, while a small
number of TFs regulate targets in multiple conditions. For
example, TF group 5, which includes two MYB TFs (LOC_
Os01g09640 and LOC_Os05g10690), had the largest number
of targets of any regulator in the inferred network (355 target
genes). These targets are enriched for genes involved in pho-
tosynthesis, and many of them are differentially expressed in
response to both the heat and water deficit treatments, stresses
that altered the photosynthetic rate in our experimental con-
ditions (Figure 2A).
We performed Gene Ontology (GO) term enrichment analyses

on the target genes of each regulator and found that the targets of
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Figure 6. Gene Regulatory Network for Rice Leaves across Environmental Conditions.

(A) The inferred network. TFs are noted with triangles; other genes are noted with circles. The colors indicate the conditions in which the genes were
differentially expressed.
(B) Histogram of TF out-degree frequency.
(C) Table of target in-degree frequency.
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Figure 7. Post-Hoc Interpretation of Inferred Regulatory Relationships.

(A) TFA of the HSF predictor group (top). Heat map of TF transcript abundance of all groupmembers (bottom). Subgroups are noted to the left of the figure.
(B) TFA (blue) and transcript abundance (red) of EPR1 (top). Heat map of abundance of inferred EPR1 targets.
(C) TFA of bZIP predictor group (top). Heat map of transcript abundance of targets in network prior (bottom).
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27 regulators in the network were functionally enriched for
a biological process or molecular function (each P < 0.0001;
Supplemental File 10). Based on these analyses, we identified
regions of the network whose genes were enriched for particular
functionsandthat respond toparticular environmental signals.For
example, we identified a region of the network that was enriched
for genes involved in RNA binding and for ribosomal structural
components whose expression varied primarily as a function of
the time of day.We also identified regions of the network enriched
for genes with functions associated with kinases and transporter
functions whose expression varied primarily in response to water
deficit. Finally, we also identified regions of the network that were
enriched for genes associated with photosynthesis, cell wall bio-
synthesis, and cellulose synthase functions whose expression
vary in response to diverse environmental stimuli.

Recapitulating and Extending the Known Functions of HSFs

Resolving large families of transcription factors with similar
binding sites is a critical problem in genome-wide regulatory
studies. Here, we initially grouped TFswith identical binding sites,
and thus identical targets in the network prior, because their
estimated activities were identical following the first step in our
procedure (TFA estimation). Although we learned a regulatory
model for the control of each TF in large TF groups separately, we
had limited resolution to distinguish different outgoing edges for
these large TF family members (the in-degree in our network is an
individual TF property and the out-degree is instead an aggregate
property of themembers of the TFgroup). This limitation suggests
that future experiments aimedat investigating TFs in large families
with nearly identical binding sites are needed. Thus, for the largest
TF protein families, we lack the resolution to determine which of
the TFs in the predictor group are regulating the expression of the
target genes.

For the most well studied predictor group in our network, the
25 heat shock factors (HSFs), wewanted to determine if post-hoc
wecould identifywhichof theHSFswere themost likely regulators
of the inferred target genes. All HSFs were connected to 46 po-
tential target genes in the network prior via the canonical HSE
TTCnnGAAnnTTC. The estimated TFA for the predictor group
increases rapidly after the onset of the heat shock treatment,
peakingafter 30minand thenslowlydecreasingover thecourseof
the stress period; upon return to the prestress temperature, there
is a rapid decrease in TFA, lower than the activity in control
conditions, that persists for the remainder of the measured time
points (Figure 7A, top panel). In the EGRIN, the HSF predictor
group regulates the expression of 240 target genes. The targets
include a number of genes involved in the unfolded protein re-
sponse, including heat shock proteins—HSP70, HSP110, DnaJ,
and DnaK—and other classes of chaperone proteins (T-complex
proteins, chaperonins, etc.).

While our method is based on the assumption that the ex-
pression of a TF will often not be indicative of its activity, TFs
whose expression is highly correlatedwith the group’s activity are
prime candidates for being the true regulators of the group’s
targets. We therefore examined the expression profiles of the
HSFs and compared them to the TFA for the HSF predictor group
(Figure 7A, bottom panel). The transcripts of four HSFs were

undetectable in all of our samples; the remaining 21 formed three
distinct subgroups based on their expression profiles. HSFs in
subgroup one were characterized by increased expression in
response to heat and water deficit; HSFs in subgroup two were
primarily induced in response to water deficit; and the expression
of theHSFs in subgroup threewas not clearly associatedwith any
experimental treatment. The TFA for the HSF predictor group was
embedded in subgroup one, suggesting that the true predictor
could be found among them.
Seven of the ten HSFs in subgroup one are targets of the HSF

predictor group in the EGRIN. Three of them have the canonical
HSE in their promoter regions, as defined above. OsHSFA2d
and OsHSFA6 each have one upstream HSE, and OsHSFA2a
has three, indicating that they are potentially regulatory targets
of HSFs in addition to their potential role as regulators. The other
five HSFs in this group (OsHSFA2c, OsHSFA4b, OsHSFB2b,
OsHSFB2c, and OsHSFA9) do not have HSE in their promoters
andsoare likelynotdirect targetsofHSFs.We reasoned that these
HSFs might be the regulators of the inferred target genes of the
HSF predictor group. OsHSFA2c is the TF with the highest cor-
relation between transcript abundance and TFA in our entire data
set (correlation = 0.92). Moreover, the binding of OsHSFA2c is
temperature regulated in vitro (Mittal et al., 2011), supporting its
role as a heat responsive transcriptional regulator acting through
the HSE.
The overexpression of OsHSFA7, a member of HSF subgroup

two, enhances growth and survival in response to salt stress and
water deficit by unknown mechanisms (Liu et al., 2013). Con-
sistent with a role in the water deficit response, we find that the
expression of all HSFs in subgroup two was induced in response
to water deficit. However, the TFA, which is based on the oc-
currence of the HSE in open promoters, appears to be exclusively
responsive to the high-temperature treatment in our data set. We
therefore hypothesize that the role of HSFs as regulators of the
water deficit response is mediated by an unknown regulatory
element other than the canonical HSE.

Dissimilar Activity and Expression Hint at Novel Functional
Roles of TFs

The estimated activity of a TF is not typically correlated with the
expressionof that TF itself; it dependsonly on theexpressionof its
targets in the network prior and which other regulators are
assigned to those targets. As a result, we observe a wide range of
relationships between TF expression andTFA specific to each TF.
One interesting example is Early Phytochrome Responsive
1 (EPR1, LOC_Os06g51260), anMYBTF that is a core component
of the circadian oscillator (Filichkin et al., 2011) that binds to the
canonical evening element, AAAATATCT, in vitro (Weirauch et al.,
2014). In our data, we estimate that the activity forEPR1 increases
over the experimental period in the growth chamber, a 4.5-h
period, regardless of the experimental treatments across all four
genotypes, suggesting that most of its 114 target genes in the
networkpriorwereundercircadiancontrol asexpected (Figure7B,
toppanel).Weexamined theexpressionof these targetgenes inan
independent data set that was designed to monitor gene ex-
pression at many time points throughout the day in rice (Nagano
et al., 2012), and we found that their expression was indeed
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oscillating daily (Supplemental Figure 10). In our inferred network,
EPR1 is the regulator of 107 target genes, 44 of whichwere also in
the network prior (Figure 7B, bottom panel).

The expression of EPR1 is poorly correlated with its estimated
TFA (correlation = 20.52). In the control and water deficit treat-
ments, the levels of EPR1 expression are relatively unchanging.
However, at the onset of the heat stress treatment, there is a rapid
and transient increase in EPR1 expression, which returns to the
levels of the control condition for the remainder of the heat stress
treatment; upon return to the prestress temperature, there is
a steep and transient repression of EPR1 expression, which re-
turns to the level of the control conditions over the course of the
recovery period. This expression profile is consistent with the
activity of the HSF predictor group, and in fact, EPR1 is a target of
the HSF predictor group both in the network prior and in the in-
ferred regulatory network. In Arabidopsis, AtHSFB2b binds to the
promoter of another circadian clock component, PSEUDORES-
PONSE REGULATOR7, at a canonical HSE and is required for
maintaining accuratecircadianclock rhythms inhigh-temperature
andsalt stress conditions (Kolmoset al., 2014).Notably, thebetter
characterized EPR1 gene in Arabidopsis also responds to heat
stress (Kilian et al., 2007), though its role asa regulator of response
to heat has not been investigated. These findings suggest that
EPR1 may be an entry point for integrating the heat stress re-
sponse with the circadian clock. The coordination of stress re-
sponses with the circadian clock is thought to be an adaptive
strategy tomaintainplantgrowthduringperiodsof stress (Seoand
Mas, 2015; Wilkins et al., 2009, 2010)

Dynamic Agricultural Environments Increase Resolution
of EGRIN

Upon closer examination of the network prior and the inferred
network, we found evidence of the additional value of combining
growth chamber and field experiments. Because these experi-
ments perturbed different parts of the regulatory network (e.g.,
different time scales and treatment duration, complexity of
environments, age of plants) we were able to expand the network
beyondwhat simply increasing sample size for any one of the two
experimental designswould have afforded. By combining them in
a single analysis, we were able to resolve parts of the network
where target genes expression was similar in response to some
environmental conditions, but quite different in response others.
The bZIP predictor group (TF predictor group 32 in Supplemental
File 5) is one example of a predictor where targets in the network
prior showed mostly correlated expression in growth chamber
data but could be divided into finer groups based on the field data
(Figure 7C). Prior target groups 1, 2, and 3 show distinct ex-
pression patterns only in the field; the expression of target group
3 is most similar to the estimated activity of this predictor group.
The group is composed of three bZIP TFs (LOC_Os02g49560,
LOC_Os08g38020, and LOC_Os09g29820) that bind to a
5-nucleotide motif CACGT. The estimated TFA for this predictor
group shows increasing activity in response to the water deficit
treatment in the growth chambers and then decreasing activity in
the drought recovery period; moreover, based on the data col-
lected in field, the predictor group’s activity increases over the
course of the dry season only in the rain fed fields (Figure 7C). We

infer 66 targets of this predictor group, including a number of
genes involved in cellular protection in response to water deficit:
trehalose-6-phosphate gene, three late embryogenesis abundant
genes involved in osmotic stress response, five dehydrin genes,
and three protein phosphatase 2C genes.

DISCUSSION

The aim of this work was to reconstruct an environmental gene
regulatory interaction network in rice leaves in response to two of
themost important environmental stresses that affect agricultural
productivity: high temperature andwater deficit. For this purpose,
we generated two genome-wide data sets: (1) 720 RNA-seq li-
braries generated from plants grown in heat and water deficit
stress experiments in controlled environments and from plants
grown in agricultural field conditions and (2) anATAC-seq data set
that identifies open chromatin sites in rice. We combined these
data typeswith the largest available collectionof TFbindingmotifs
to generate a network of regulatory hypotheses for 4052 genes
regulated by 113 TFs and TF groups.
We previously published our method for incorporating prior

knowledge into network inference using network component
analysis and the Inferelator algorithm for the prokaryotes Es-
cherichia coli and Bacillus subtilis (Greenfield et al., 2013; Arrieta-
Ortiz et al., 2015). This study differs from our previous projects in
several important ways. The rice EGRIN used different data types
(ATAC-seqcis-regulatorymotif occurrence) and lower confidence
interactions for learning the network prior; moreover, we used
thesemethods on a eukaryotic organismwith a complex genome.
In previous publications, many of the true regulatory interactions
in the network were known, and the network prior consisted of
bona fide regulatory edges determined using transcription factor
binding assays (e.g., ChIP-seq) and genetic lesions. In these
analyses, we developed the network prior by combining two
genome-scale measurements, i.e., known and predicted cis-
regulatory motif occurrence combined with amap of transposase
accessible chromatin, neither of which directly measures the in-
teraction between a protein transcription factor and its cis-
regulatory element. We also developed methods for filtering out
low confidence edges from the prior network, as well as imple-
menting a more rigorous sampling scheme (bootstrapping the
expression data and the network prior) to account for the un-
certainty in prior interactions.
The final inferred network includes regulatory edges that were

not present in the network prior and discounts many “false
positive” edges from the network prior. So,while the network prior
was based on ATAC-seq and motif occurrence data, the final
inferred network was based on estimated TFA and transcriptome
(RNA-seq) data. The regulatory edges present in these networks
had limited overlap. It was important to permit the network in-
ference algorithm to learn novel regulatory edges and to exclude
some edges in the network prior for several reasons. We expect
that the network prior would be incomplete because we do not
believe that our ATAC-seq data saturated the open sites in the
genome (i.e.,more open chromatinmayexist thanwewere able to
identify in this experiment). In addition, we anticipate that some
relevant cis-regulatory motifs occur outside of the promoter re-
gion we defined, and many TFs were not associated with known
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cis-regulatory motifs and so were excluded from our analyses.
Moreover, we expect that false-positive edges (connections be-
tween TFs and target genes in the network prior that are not truly
regulatory) will exist in the network prior because not every cis-
regulatory motifs occurrence has a regulatory role in the genome.
By increasing thenumberof reads ineachATAC-seq library, itmay
be possible to identify TF footprints in open chromatin regions
(Buenrostro et al., 2013). In this case, the network prior could be
defined with greater precision. However, it is unclear what the
overall consequences this would have on the estimation of TFA or
on the inference of the regulatory network.

One of the challenges of engineering agricultural crops with
improved stress tolerance is translating experimental advances
from controlled conditions in the growth cabinet into the complex
and fluctuating environments found in the field. The disjunction
between plant performance in the laboratory and in the field has
contributed to the slow improvement of crops with improved
resistance to abiotic stress in spite of the massive advances in
genomic technologies (Bruce et al., 2015). For this reason, our
experimental design did not only query the transcriptional re-
sponse of rice to heat and water deficit in a controlled environ-
ment, but also in an agricultural setting. Because field-grown
plants must incorporate numerous environmental inputs on
multiple time scales, analyses of these plants revealed a greater
proportion of the underlying regulatory network. However, iden-
tifying the underlying environmental change contributing to these
regulatory responses is challenging. By including both types of
experiments in our analysis, we were able to leverage the com-
plexity of the agricultural field conditions and the specificity of
the controlled experiments to interpret the inferred regulatory
network. This was particularly the case for TFs whose activities
responded to the water deficit treatment in the controlled ex-
periment, as we had somewhat parallel conditions in the agri-
cultural fields. The rain-fed field became drier over the course of
the sampling period, particularly during the dry season, contrib-
uting to a water deficit field condition.

With our approach,we are able to infer target genes only for TFs
that have known binding motifs or otherwise proposed targets,
and so our present network excludes many genes. While this will
have led to gaps andmis-assignments in our network, we can use
new data as it becomes available to update our network prior. For
example, ATAC-seq may be combined with data of ChIP-seq,
DNA methylation patterns, and novel TF binding motifs in more
sophisticated ways than shown here (Hoffman et al., 2012). This
would increase the resolutionof the inferredEGRINbybreakingup
predictor groups, as well as reducing the number of indirect in-
teractions that we predict.

The network and source data provided with this work provide
a vital starting point for studying and manipulating stress
responses in rice. Because gene regulatory networks define plant
response to environmental signals, divergence of EGRINs is hy-
pothesized to be an important source of ecotypic diversity
(Thompson et al., 2015; Weirauch and Hughes, 2010). In future
analyses, it will be possible to incorporate additional genome-
scale measurements, including variations in the noncoding parts
of the genome and ChIP and by reprogramming regulatory in-
teractions using gene lesions and manipulations at the tran-
scriptional level (Chavez et al., 2015; Konermann et al., 2015;

Maeder et al., 2013) to expand the EGRIN. Learning accurate
genome-scale EGRINs can be used to identify high-priority tar-
gets for plant breeding and biotechnology programs and will
permit the study of the evolution of gene networks and their re-
lation to adaptive diversification of plant species in different en-
vironments.

METHODS

Plant Materials and Growth Conditions

Seeds of the five rice (Oryza sativa) landraces used in this experiment were
obtained from the International Rice Research Institute: Azucena (AZ;
IRGC#328, japonica), Kinandang Puti (KP; IRGC#44513, indica), Palawan
(PA; IRGC#4020, japonica), Pandan Wangi (PW; IRGC#35834, japonica),
andTadukan (TD; IRGC#9804, indica). AZ,KP,PW,andTDwereused in the
controlled growth chamber experiments; AZ, PW, and PAwere used in the
field experiments.All experimentswere conductedat the InternationalRice
Research Institute in Los Baños, Philippines.

Single factor perturbation experiments were conducted in walk-in
growth rooms. Seed dormancy was broken by incubating seeds for 5 d at
50°C in a dry convection oven. Seeds were germinated in water in the dark
for 48 h at 30°C and were then sown on hydroponic rafts suspended in 13
Peters solution (J.R. Peters Inc.). The pH of the growth medium was
maintained at 5 to 5.5 throughout. Plants were grown for 14 d in climate-
controlledgrowthchamberswith1kWhigh-intensitydischarge lamps (12h
days; 30°C/20°C day/night, 300 to 500 mmol quanta m22 s21 at the leaf
surface). Relative humidity was maintained between 50 and 70%. Seeds
and plants for the field experiments were treated as described previously
(Plessis et al., 2015).

Experimental Treatments

Single factor perturbation experiments were conducted on 14-d-old
seedlings. Treatments began precisely 2 h after the chamber lights were
turned on. Samples were collected every 15 min for up to 4.5 h for each of
five treatments: control, heat shock, recovery from of heat shock, water
deficit, and recovery fromwater deficit. Heat shockwas initiated bymoving
the hydroponic rafts to a 40°C climate controlled growth chamber (RH and
light intensity as above). After 2 h, some plants were returned to the 30°C
chamber (heat shock recovery); the remainder were kept in the 40°C
chamber for the duration (heat shock). Water deficit was initiated by re-
moving the rafts from the hydroponicmediumand allowing the roots to air-
dry. After 1.5 h, some of the plants were returned to hydroponic tanks
containingPeters solution (recovery fromwaterdeficit); the remainderwere
kept in tanks without water (water deficit). Each sample comprised the
leaves, from 10 cm above the seed, of 16 juvenile plants. Samples were
harvested and flash frozen in liquid nitrogen for each treatment, time point,
landrace, and replicate. The entire experiment was replicated on two
consecutive days yielding two biological replicates for each condition.
Samples from field experiments were harvested as described previously
(Plessis et al., 2015). Aliquots of these sampleswere used for the RNA-seq
analyses.

Gas Exchange

Instantaneous photosynthetic rate and stomatal conductance of the
youngest fully expanded leaf was measured using a portable gas analyzer
(Li-6400; LI-COR). Conditions in the leaf cuvette were set at a saturating
light intensity of 1000mmol quantam21 s21with a target air temperature of
30°C (40°C in the case of the heat shock measurements), reference CO2

concentrationof 400mmolmol21 andhumidity of 70%.Themeasurements
were corrected for leaf area. Time 0 for the heat treatment coincides with
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minimum functional status observedwithin 15min of the start of the stress
imposition. Furthermore, the break within the trace coincides with the
transition from 40 to 30°C where there was instrument instability.

RNA Extraction and Library Preparation

All protocols were conducted as per themanufacturers’ instructions. Total
RNA was extracted using RNeasy Mini Kits (Qiagen). RNA quality was
determinedbygel electrophoresis. ContaminatingDNAwas removed from
the total RNA samples by treatment with Baseline-Zero DNase (Epicentre),
and rRNA was removed using the Ribo-Zero rRNA Depletion Kit (Epi-
centre). Strand-specific RNA-seq libraries were synthesized using the
Plant Leaf ScriptSeq Complete Kit (Epicentre). The libraries were se-
quenced, either six or eight libraries per lane, using standard methods for
paired-end 51-bp reads, on an Illumina HiSeq 2000 at the New York
University GenCore facility. RNA-seq summary statistics are provided in
Supplemental File 11.

RNA-Seq Processing

The reads were aligned to the O. sativa Nipponbare release 7 of the MSU
Rice Genome Annotation Project reference (Kawahara et al., 2013), which
consists of 373,245,519bpof nonoverlapping rice genome sequence from
the 12 rice chromosomes. Also included are the sequences for chloroplast
(134,525 bp), mitochondrion (490,520 bp), Syngenta pseudomolecule
(592,136 bp), and the unanchored BACpseudomolecule (633,585 bp). The
annotation contains 56,143 genes (loci), of which 6457 had additional
alternative splicing isoforms, resulting in a total of 66,495 transcripts.

We used TopHat (Kim et al., 2013; Trapnell et al., 2009) version 2.0.6 to
align the reads, discarding low-quality alignments (quality score below 1).
To count the number of reads that uniquely mapped to genes, we used
HTSeq (Anders et al., 2015) version 0.6.1. We compensated for variable
sequencing depth between samples using themedian-of-ratiosmethod of
DESeq2 (Love et al., 2014) version 1.6.3 and further performed a variance
stabilizing transformation provided by the same package. We used the
normalized count data for downstream analysis. Replicates were aver-
aged, except for differential expression analysis (see below). We removed
all genes that had zero counts inmore than 90%of the conditions.We also
removedall genes thathadacoefficientofvariationsmaller orequal to0.05.
This left us with 25,499 genes.

Differential Expression

For the chamber experiments, we determined differentially expressed
genes using DESeq2 and the raw read counts as reported by HTSeq.
Replicates were not averaged, and for every cultivar, we created a group
factor in the design matrix that was treatment and time specific and
accessed the contrasts individually (e.g., “Azucena heat 60 min” versus
“Azucena control 60 min”). This design allowed DESeq2 to estimate gene
expression dispersion parameters based on all available samples for
a given cultivar. For every gene and cultivar-condition combination, this
gave us a log fold change value and an adjusted P value. To visualize the
similarities and differences between the conditions and the cultivars with
respect to differentially expressed genes, we applied Kruskal’s nonmetric
multidimensional scaling to the fold changematrix.Only geneswith at least
one cultivar-condition where the adjusted P value was below 0.0001 and
the absolute fold changewasgreater than2were considered (2097genes).
The distance metric was Euclidean.

ATAC-Seq Library Preparation

We prepared ATAC-seq libraries from leaves at control (30 min, 2 h, 4 h),
heat (30min, 2h, 4h), heat recovery (4h),waterdeficit (2h), andwaterdeficit
recovery (4 h) conditions in an effort to identify the maximum number of

open chromatin regions relevant to our experimental conditions. Two bi-
ological replicates were prepared for each condition. The second leaves of
2-week-old Azucena rice seedlings were harvested and flash frozen in
liquid nitrogen. Intact nuclei were isolated using a protocol generously
sharedwith usbyWenli Zhang andJiming Jiang. Briefly, ground tissuewas
suspended in nuclear isolationbuffer andwashed repeatedly usingnuclear
washbuffer followingastandardnuclear isolationprotocol. Chromatinwas
fragmented and tagged following the standard ATAC-seq protocol
(Buenrostro et al., 2015). Libraries were purified using Qiagen MinElute
columns before sequencing. Libraries were prepared from control, water
deficit, and heat-treated plants after 0.5, 2, and 4 h. Libraries were se-
quenced as paired-end 51-bp reads on an Illumina HiSeq 2500 instrument
in the RapidRun mode at the New York University GenCore facility.

ATAC-Seq Data Processing

The average number of reads was 14.8 M, and the total for all libraries was
266,839,208 reads. We used Bowtie version 2.2.3 to align the reads to the
reference genome. The alignment rate was around 92%. For downstream
analysis, we removed PCR duplicates using samtools rmdup and required
alignment quality scores >30. This step resulted in a marked reduction in
the number of reads, as many reads originated from redundant regions of
the chloroplast genome or from nucleus-encoded chloroplast genes. The
final number of aligned reads for downstream analysis is 29,312,972 (11%
of all reads; 0.078 reads per bp in the reference genome).

To compare the 18 ATAC-seq samples to each other with respect to
location and number of ATAC-seq cut sites (first base of an aligned
fragment and first base after the fragment), we counted the number of cuts
in all nonoverlapping windows of 1000 bp in each library. For each pair of
libraries, we then calculated Pearson correlations of number of cuts (in log
space after adding a pseudo count). Results are shown as Supplemental
Figures 5 and 6, illustrating the high reproducibility of the ATAC-seq data,
but also how similar the ATAC-seq results are for a given tissue, even for
samples exposed to different stresses.

In order to define an atlas of accessible regions to be used in network
inference,wecombined theATAC-seq results fromall libraries tomaximize
thenumberof identifiednucleosome-free regions in thegenome relevant to
our experimental conditions. To define open regions, we counted the
number of ATAC cut sites that fell into the 72-bpwindow centered on each
base. We considered a base open if its window contained at least one cut
site inmore than half of the libraries. If two openbaseswere less than 72 bp
apart, we called all intermediate bases open.

Combining ATAC Data and TF Motifs as Network Prior

We used published TF binding motifs and knowledge of open chromatin
based on our ATAC-seq data to generate a prior gene regulatory network
for rice. For this, we obtained rice TF binding motifs from the CIS-BP
database (Weirauch et al., 2014) dated 5/18/2015, the TRANSFAC Pro-
fessional database (Matys et al., 2003) version 140805, and manual cu-
ration of literature. Since the 59UTR upstream gene regions showed a high
enrichment for open chromatin, we assumed that cis-regulatory elements
have the largesteffect. Tofind relevantmotif occurrences,wescannedonly
the open regions of the rice genome (as determined by ATAC-seq) that
were also in thepromoter regionof agene (2453 to+137bpwith respect to
TSS).WeusedFIMO (Grant et al., 2011) to findmotifmatcheswith aPvalue
below 1e-4, keeping only the best (lowest P value) match per motif-gene
pair. For everyTF,wefiltered theassociatedmotifmatchesbyadjusting the
P values using Holm’s method (controlling the family-wise error rate) and
only keeping matches with an adjusted P value of <0.01. Any gene with
amotifmatch in the openpart of its promoter was then recorded as a target
of the current TF.

We observed that different TFs can be associated with different motifs
but yet can have almost identical sets of targets in the network prior. To
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prevent amplification of these miniscule differences (which stem from
redundantmotifs) in thedownstreamanalysis,weunified the targets of TFs
that were <5% different (binary distance) and assigned the union of the
targets to both.

Removing Uninformative Edges from the Network Prior
(Coherence Filtering)

To remove uninformative edges from the network prior, we required an
overrepresentation of distinct expression patterns among the prior targets
of each TFwith respect to all expression patterns observed in the data.We
grouped all genes into 160 clusters (square root of 25,499, the number of
genes in thedataset) todefine thesetof expressionpatterns inourdata.We
used hierarchical clustering with average linkage and 1 minus Pearson
correlation as distance function. Then, for each TF and each expression
cluster,we testedwhether theTF targets in thenetwork priorwereenriched
for themembers of the cluster. If the Fisher’s exact test P value was below
0.05, wemarked all TF targets in the network prior that were alsomembers
of the cluster as high-confidence targets. The above procedure was re-
peated for 64 bootstraps of the expression data (conditions were sampled
with replacement), and only interactions with a high-confidence frequency
(coherence score) of at least 50% were kept for the coherence-filtered
network prior.

Estimating TFA

Let X be the matrix of gene expression values, where rows are genes and
columns represent experiments/samples. Let P be a matrix of regulatory
relationshipsbetweenTFs (columns) and targetgenes (rows). Theentries in
the prior matrix (P, the network prior) are members of the set {0, 1}. We set
Pi,j toone if andonly if there isa regulatory interactionbetweenTF jandgene
i in the network prior. Autoregulatory interactions are always set to zero in
P. Estimation of TF activities is then based on the following model
(Liao et al., 2003; Fu et al., 2011):

Xi; j ¼ ∑
k∈TFs

Pi;kAk; j ;

where the expression of gene i in sample j can be written as the weighted
sum of connected TF activities A. In matrix notation, this can be written as
X = PA, which we solve for the unknown TF activities A. This is an over-
determinedsystem,butwecanfind Âwhichminimizes ||PÂ2X||2 using the
pseudoinverse ofP. Special treatment is given to time-series experiments,
with the modified model:

Xi;tnþt
2
¼ ∑

k∈TFs
Pi;kAk;tn ;

where the expression of gene i at time tn + t/2 is used to inform the TF
activitiesat time tn.Here t is the timeshift betweenTFexpressionand target
expression usedwhen inferring regulatory relationships (see next section).
Here, we use a smaller time shift of t/2 because changes in TF activities
should be temporarily closer to target gene expression changes. If there is
noexpressionmeasurement at time tn + t/2,weuse linear interpolation tofit
the values. In cases where there are no known targets for a TF, we cannot
estimate its activity profile, and we remove the TF from the set of potential
regulators.

Network Inference

Themain input to thenetwork inferenceprocedure is theexpressiondataX,
the estimated TF activity Â, and the known regulatory relationships en-
coded in thematrix P. The coremodel is based on the assumption that the
expression of a gene i at condition j can bewritten as linear combination of
the activities of the TFs regulating it. Specifically, in the caseof steadystate
measurements, we assume

Xi; j ¼ ∑
k∈TFs

bi;kÂk; j ð1:1Þ:

For time-series data, we explicitly model a time shift between the target
gene expression response and the TF activities:

Xi;tn ¼ ∑
k∈TFs

bi;kÂk;tn2t ð1:2Þ:

Here, we are modeling the expression of gene i at time tn as the sum of
activities at time tn 2 t, where tn is the time of the nth measurement in the
timeseries, and t=15min is thedesired timeshift. Incaseswherewedonot
have measurements for Âk;tn 2 t, we use linear interpolation to add missing
data points.

The goal of our inference procedure is to find a sparse solution to b, i.e.,
a solution where most entries are zero. The left-hand sides of Equations 1.1
and 1.2 are concatenated as response, while the right-hand sides are con-
catenated as design variables. We use our previously described method
BayesianBest Subset Regression (BBSR) (Greenfield et al., 2013) to solve for
b. With BBSR we compute all possible regression models for a given gene
corresponding to the inclusion and exclusion of each potential predictor. For
a given target gene i, potential predictors are those TFs that have a known
regulatory effect on i, and the 10 TFs with highest mutual information as
measured by time-lagged context likelihood of relatedness (Greenfield et al.,
2010;Madaretal.,2010).Priorknowledgeis incorporatedusingamodification
of Zellner’s g-prior (Zellner, 1983) to include subjective information on the
regression parameters. A g-prior equal to 1.1 was used for the combined
networkdescribed in thisstudy.Sparsityofoursolution isenforcedbyamodel
selection step based on the Bayesian Information Criterion (Schwarz, 1978).

After model selection is performed, the output is a matrix of dynamical
parameters b, where each entry corresponds to the direction (i.e., corre-
lated or anticorrelated) and strength (i.e., magnitude) of a regulatory in-
teraction. To further improve inference and become more robust against
overfitting and sampling errors, we employ a bootstrapping strategy. We
resample the input conditions with replacement, as well as the prior net-
work, and runmodel selectionon the new input. This procedure is repeated
201 times, and the resulting lists of interactions are filtered to only keep
those observed in more than 50% of the bootstraps.

GO Enrichment Analysis

The reference protein ofO. sativawas obtained from the Uniprot Database
(http://www.uniprot.org/proteomes/UP000059680). The April 2013 re-
lease of theGeneOntology (http://archive.geneontology.org/full/2013-04-
01/) was then queried by these IDs, returning all annotations attributed to
genes in the O. sativa reference proteome. These annotations were
propagatedvia the truepath rule,wherebyanyproteinwithanannotation to
a GO term also gains annotations for all terms that are parents of the given
term, as specified by the GO hierarchy. Lastly, a separate proteome forO.
sativa was obtained from the Rice Genome Annotation Project (RGAP),
available at ftp://ftp.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/
o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/. BLASTp
was performed, using default parameters, and for each locus ID from the
RGAP, the best-matching Uniprot ID was chosen, and the annotations
transferred from that Uniprot ID to the locus ID. Enrichment analysis of
predictor targets was performed using the GOstats R package, where all
genes present in the network were used as background universe.

Accession Numbers

Data are available from theGene Expression Omnibus (www.ncbi.nlm.nih.
gov/geo/) under accession numbers GSE73609 (RNA-seq field data),
GSE74793 (RNA-seq controlled chamber data), and GSE75794 (ATAC-
seq data).Code and supplemental materials are available from the Open
Science Foundation at https://osf.io/w6d2n/.
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