177 research outputs found

    Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations

    Get PDF
    Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health

    A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease

    Get PDF
    Protein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available. SirT1 (Sir2 in Drosophila melanogaster) deacetylates histones and other proteins including transcription factors. Genetically reducing, but not eliminating, Sir2 has been shown to suppress HD pathology in model organisms. To date, small molecule inhibitors of sirtuins have exhibited low potency and unattractive pharmacological and biopharmaceutical properties. Here, we show that highly selective pharmacological inhibition of Drosophila Sir2 and mammalian SirT1 using the novel inhibitor selisistat (selisistat; 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide) can suppress HD pathology caused by mutant huntingtin exon 1 fragments in Drosophila, mammalian cells and mice. We have validated Sir2 as the in vivo target of selisistat by showing that genetic elimination of Sir2 eradicates the effect of this inhibitor in Drosophila. The specificity of selisistat is shown by its effect on recombinant sirtuins in mammalian cells. Reduction of HD pathology by selisistat in Drosophila, mammalian cells and mouse models of HD suggests that this inhibitor has potential as an effective therapeutic treatment for human disease and may also serve as a tool to better understand the downstream pathways of SirT1/Sir2 that may be critical for H

    Genomic Runs of Homozygosity Record Population History and Consanguinity

    Get PDF
    The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (N(e)), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental N(e) (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Meta-Analysis of Gene Level Tests for Rare Variant Association

    Get PDF
    The vast majority of connections between complex disease and common genetic variants were identified through meta-analysis, a powerful approach that enables large sample sizes while protecting against common artifacts due to population structure, repeated small sample analyses, and/or limitations with sharing individual level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the unit of analysis. Here, we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features of single variant meta-analytic approaches and demonstrate its utility in a study of blood lipid levels in ∼18,500 individuals genotyped with exome arrays

    The Rule of Law is Dead! Long Live the Rule of Law!

    Get PDF
    Polls show that a significant proportion of the public considers judges to be political. This result holds whether Americans are asked about Supreme Court justices, federal judges, state judges, or judges in general. At the same time, a large majority of the public also believes that judges are fair and impartial arbiters, and this belief also applies across the board. In this paper, I consider what this half-law-half-politics understanding of the courts means for judicial legitimacy and the public confidence on which that legitimacy rests. Drawing on the Legal Realists, and particularly on the work of Thurman Arnold, I argue against the notion that the contradictory views must be resolved in order for judicial legitimacy to remain intact. A rule of law built on contending legal and political beliefs is not necessarily fair or just. But it can be stable. At least in the context of law and courts, a house divided may stand

    Lack of Support for the Association between GAD2 Polymorphisms and Severe Human Obesity

    Get PDF
    The demonstration of association between common genetic variants and chronic human diseases such as obesity could have profound implications for the prediction, prevention, and treatment of these conditions. Unequivocal proof of such an association, however, requires independent replication of initial positive findings. Recently, three (−243 A>G, +61450 C>A, and +83897 T>A) single nucleotide polymorphisms (SNPs) within glutamate decarboxylase 2 (GAD2) were found to be associated with class III obesity (body mass index > 40 kg/m(2)). The association was observed among 188 families (612 individuals) segregating the condition, and a case-control study of 575 cases and 646 lean controls. Functional data supporting a pathophysiological role for one of the SNPs (−243 A>G) were also presented. The gene GAD2 encodes the 65-kDa subunit of glutamic acid decarboxylase—GAD65. In the present study, we attempted to replicate this association in larger groups of individuals, and to extend the functional studies of the −243 A>G SNP. Among 2,359 individuals comprising 693 German nuclear families with severe, early-onset obesity, we found no evidence for a relationship between the three GAD2 SNPs and obesity, whether SNPs were studied individually or as haplotypes. In two independent case-control studies (a total of 680 class III obesity cases and 1,186 lean controls), there was no significant relationship between the −243 A>G SNP and obesity (OR = 0.99, 95% CI 0.83–1.18, p = 0.89) in the pooled sample. These negative findings were recapitulated in a meta-analysis, incorporating all published data for the association between the −243G allele and class III obesity, which yielded an OR of 1.11 (95% CI 0.90–1.36, p = 0.28) in a total sample of 1,252 class III obese cases and 1,800 lean controls. Moreover, analysis of common haplotypes encompassing the GAD2 locus revealed no association with severe obesity in families with the condition. We also obtained functional data for the −243 A>G SNP that does not support a pathophysiological role for this variant in obesity. Potential confounding variables in association studies involving common variants and complex diseases (low power to detect modest genetic effects, overinterpretation of marginal data, population stratification, and biological plausibility) are also discussed in the context of GAD2 and severe obesity

    A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    Get PDF
    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels

    Interaction of Crohn's Disease Susceptibility Genes in an Australian Paediatric Cohort

    Get PDF
    Genetic susceptibility is an important contributor to the pathogenesis of Crohn's disease (CD). We investigated multiple CD susceptibility genes in an Australian paediatric onset CD cohort. Newly diagnosed paediatric onset CD patients (n = 72) and controls (n = 98) were genotyped for 34 single nucleotide polymorphisms (SNPs) in 18 genetic loci. Gene-gene interaction analysis, gene-disease phenotype analysis and genetic risk profiling were performed for all SNPs and all genes. Of the 34 SNPs analysed, four polymorphisms on three genes (NOD2, IL23R, and region 3p21) were significantly associated with CD status (p<0.05). All three CD specific paediatric polymorphisms on PSMG1 and TNFRSF6B showed a trend of association with p<0.1. An additive gene-gene interaction involving TLR4, PSMG1, TNFRSF6B and IRGM was identified with CD. Genes involved in microbial processing (TLR4, PSMG1, NOD2) were significantly associated either at the individual level or in gene-gene interactive roles. Colonic disease was significantly associated with disease SNP rs7517847 (IL23R) (p<0.05) and colonic and ileal/colonic disease was significantly associated with disease SNP rs125221868 (IBD5) and SLC22A4 & SLC22A4/5 variants (p<0.05). We were able to demonstrate genetic association of several genes to CD in a paediatric onset cohort. Several of the observed associations have not been reported previously in association with paediatric CD patients. Our findings demonstrate that CD genetic susceptibility in paediatric patients presents as a complex interaction between numerous genes

    Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

    Get PDF
    Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species
    corecore