102 research outputs found

    Cleaning graphene : a first quantum/classical molecular dynamics approach

    Full text link
    Graphene outstanding properties created a huge interest in the condensed matter community and unprecedented fundings at the international scale in the hope of application developments. Recently, there have been several reports of incomplete removal of the polymer resists used to transfer as-grown graphene from one substrate to another, resulting in altered graphene transport properties. Finding a large-scale solution to clean graphene from adsorbed residues is highly desirable and one promising possibility would be to use hydrogen plasmas. In this spirit, we couple here quantum and classical molecular dynamics simulations to explore the kinetic energy ranges required by atomic hydrogen to selectively etch a simple residue, a CH3 group, without irreversibly damaging the graphene. For incident energies in the 2-15 eV range, the CH3 radical can be etched by forming a volatile CH4 compound which leaves the surface, either in the CH4 form or breaking into CH3+H fragments, without further defect formation. At this energy, adsorption of H atoms on graphene is possible and further annealing will be required to recover pristine graphene.Comment: 9 figures, 27 page

    Deep silicon maxima in the stratified oligotrophic Mediterranean Sea

    Get PDF
    The silicon biogeochemical cycle has been studied in the Mediterranean Sea during late summer/early autumn 1999 and summer 2008. The distribution of nutrients, particulate carbon and silicon, fucoxanthin (Fuco), and total chlorophyll-<i>a</i> (TChl-<i>a</i>) were investigated along an eastward gradient of oligotrophy during two cruises (PROSOPE and BOUM) encompassing the entire Mediterranean Sea during the stratified period. At both seasons, surface waters were depleted in nutrients and the nutriclines gradually deepened towards the East, the phosphacline being the deepest in the easternmost Levantine basin. Following the nutriclines, parallel deep maxima of biogenic silica (DSM), fucoxanthin (DFM) and TChl-<i>a</i> (DCM) were evidenced during both seasons with maximal concentrations of 0.45 μmol L<sup>−1</sup> for BSi, 0.26 μg L<sup>−1</sup> for Fuco, and 1.70 μg L<sup>−1</sup> for TChl-<i>a</i>, all measured during summer. Contrary to the DCM which was a persistent feature in the Mediterranean Sea, the DSM and DFMs were observed in discrete areas of the Alboran Sea, the Algero-Provencal basin, the Ionian sea and the Levantine basin, indicating that diatoms were able to grow at depth and dominate the DCM under specific conditions. Diatom assemblages were dominated by <i>Chaetoceros</i> spp., <i>Leptocylindrus</i> spp., <i>Pseudonitzschia</i> spp. and the association between large centric diatoms (<i>Hemiaulus hauckii</i> and <i>Rhizosolenia styliformis</i>) and the cyanobacterium <i>Richelia intracellularis</i> was observed at nearly all sites. The diatom's ability to grow at depth is commonly observed in other oligotrophic regions and could play a major role in ecosystem productivity and carbon export to depth. Contrary to the common view that Si and siliceous phytoplankton are not major components of the Mediterranean biogeochemistry, we suggest here that diatoms, by persisting at depth during the stratified period, could contribute to a large part of the marine primary production as observed in other oligotrophic areas

    Quantitative Analysis of Mechanisms That Govern Red Blood Cell Age Structure and Dynamics during Anaemia

    Get PDF
    Mathematical modelling has proven an important tool in elucidating and quantifying mechanisms that govern the age structure and population dynamics of red blood cells (RBCs). Here we synthesise ideas from previous experimental data and the mathematical modelling literature with new data in order to test hypotheses and generate new predictions about these mechanisms. The result is a set of competing hypotheses about three intrinsic mechanisms: the feedback from circulating RBC concentration to production rate of immature RBCs (reticulocytes) in bone marrow, the release of reticulocytes from bone marrow into the circulation, and their subsequent ageing and clearance. In addition we examine two mechanisms specific to our experimental system: the effect of phenylhydrazine (PHZ) and blood sampling on RBC dynamics. We performed a set of experiments to quantify the dynamics of reticulocyte proportion, RBC concentration, and erythropoietin concentration in PHZ-induced anaemic mice. By quantifying experimental error we are able to fit and assess each hypothesis against our data and recover parameter estimates using Markov chain Monte Carlo based Bayesian inference. We find that, under normal conditions, about 3% of reticulocytes are released early from bone marrow and upon maturation all cells are released immediately. In the circulation, RBCs undergo random clearance but have a maximum lifespan of about 50 days. Under anaemic conditions reticulocyte production rate is linearly correlated with the difference between normal and anaemic RBC concentrations, and their release rate is exponentially correlated with the same. PHZ appears to age rather than kill RBCs, and younger RBCs are affected more than older RBCs. Blood sampling caused short aperiodic spikes in the proportion of reticulocytes which appear to have a different developmental pathway than normal reticulocytes. We also provide evidence of large diurnal oscillations in serum erythropoietin levels during anaemia

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation

    Full text link
    Catalysis makes possible a chemical reaction by increasing the transformation rate. Hydrogenation of carbon-carbon multiple bonds is one of the most important examples of catalytic reactions. Currently, this type of reaction is carried out in petrochemistry at very large scale, using noble metals such as platinum and palladium or first row transition metals such as nickel. Catalysis is dominated by metals and in many cases by precious ones. Here we report that graphene (a single layer of one-atom-thick carbon atoms) can replace metals for hydrogenation of carbon-carbon multiple bonds. Besides alkene hydrogenation, we have shown that graphenes also exhibit high selectivity for the hydrogenation of acetylene in the presence of a large excess of ethylene.This study was financially supported by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315); and Generalidad Valenciana (Prometeo 21/013) is gratefully acknowledged.Primo Arnau, AM.; Neatu, F.; Florea, M.; Parvulescu, V.; García Gómez, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications. 5:1-9. https://doi.org/10.1038/ncomms6291S195Dreyer, D. R. & Bielawski, C. W. Carbocatalysis: heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2, 1233–1240 (2011).Machado, B. F. & Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012).Schaetz, A., Zeltner, M. & Stark, W. J. Carbon modifications and surfaces for catalytic organic transformations. ACS Catal. 2, 1267–1284 (2012).Su, D. S. et al. Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 3, 169–180 (2010).Chauhan, S. M. S. & Mishra, S. Use of graphite oxide and graphene oxide as catalysts in the synthesis of dipyrromethane and calix[4]pyrrole. Molecules 16, 7256–7266 (2011).Dreyer, D. R., Jarvis, K. A., Ferreira, P. J. & Bielawski, C. W. Graphite oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites. Polym. Chem. 3, 757–766 (2012).Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).Pyun, J. Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew. Chem. Int. Ed. 50, 46–48 (2011).Rourke, J. P. et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50, 3173–3177 (2011).Sun, H. et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Interf. 4, 5466–5471 (2012).Dreyer, D. R., Jia, H. P. & Bielawski, C. W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010).Dreyer, D. R., Jia, H. P., Todd, A. D., Geng, J. X. & Bielawski, C. W. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem. 9, 7292–7295 (2011).Hayashi, M. Oxidation using activated carbon and molecular oxygen system. Chem. Rec. 8, 252–267 (2008).Jia, H. P., Dreyer, D. R. & Bielawski, C. W. C-H oxidation using graphite oxide. Tetrahedron 67, 4431–4434 (2011).Kumar, A. V. & Rao, K. R. Recyclable graphite oxide catalyzed Friedel-Crafts addition of indoles to alpha, beta-unsaturated ketones. Tetrahedron Lett. 52, 5188–5191 (2011).Soria-Sanchez, M. et al. Carbon nanostructure materials as direct catalysts for phenol oxidation in aqueous phase. Appl. Catal. B Environ. 104, 101–109 (2011).Verma, S. et al. Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 47, 12673–12675 (2011).Yu, H. et al. Solvent-free catalytic dehydrative etherification of benzyl alcohol over graphene oxide. Chem. Phys. Lett. 583, 146–150 (2013).Holschumacher, D., Bannenberg, T., Hrib, C. G., Jones, P. G. & Tamm, M. Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. Angew. Chem. Int. Ed. 47, 7428–7432 (2008).Staubitz, A., Robertson, A. P. M., Sloan, M. E. & Manners, I. Amine- and phosphine-borane adducts: new interest in old molecules. Chem. Rev. 110, 4023–4078 (2010).Stephan, D. W. & Erker, G. Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angew. Chem. Int. Ed. 49, 46–76 (2010).Poh, H. L., Sanek, F., Sofer, Z. & Pumera, M. High-pressure hydrogenation of graphene: towards graphane. Nanoscale 4, 7006–7011 (2012).Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: A two-dimensional hydrocarbon. J. Phys. Chem. B 75, 153401 (2007).Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).Despiau-Pujo, E. et al. Elementary processes of H2 plasma-graphene interaction: a combined molecular dynamics and density functional theory study. J. Appl. Phys. 113, 114302 (2013).Xu, L. & Ge, Q. Effects of defects and dopants in graphene on hydrogen interaction in graphene-supported NaAlH4. Int. J. Hydrogen Energy 38, 3670–3680 (2013).Perhun, T. I., Bychko, I. B., Trypolsky, A. I. & Strizhak, P. E. Catalytic properties of graphene material in the hydrogenation of ethylene. Theor. Exp. Chem. 48, 367–370 (2013).Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M. & Garcia, H. Doped graphene as a metal-free carbocatalyst for the selective aerobic oxidation of benzylic hydrocarbons, cyclooctane and styrene. Chem. Eur. J. 19, 7547–7554 (2013).Latorre-Sanchez, M., Primo, A. & Garcia, H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angew. Chem. Int. Ed. 52, 11813–11816 (2013).Primo, A., Sanchez, E., Delgado, J. M. & Garcia, H. High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon N. Y. 68, 777–783 (2014).Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y. 45, 1558–1565 (2007).Pumera, M. & Wong, C. H. A. Graphane and hydrogenated graphene. Chem. Soc. Rev. 42, 5987–5995 (2013).Teschner, D. et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86–89 (2008).Bridier, B., Lopez, N. & Perez-Ramirez, J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Trans. 39, 8412–8419 (2010).Flick, K., Herion, C. & Allmann, H. Palladium-haltiger Trägerkatalysator zur selektiven katalytischen Hydrierung von Acetylen in Kohlenwasserstoffströmen. EP764463-A; EP764463-A2; DE19535402-A1; JP9141097-A; CA2185721-A; KR97014834-A; MX9604031-A1; US5847250-A; US5856262-A; TW388722-A; MX195137-B; CN1151908-A; EP764463-B1; DE59610365-G; ES2197222-T3; KR418161-B; CN1081487-C; JP3939787-B2; CA2185721-C (1997).Gartside, R. J. et al. Improved olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps. WO2005080530-A1; EP1711581-A1; BR200418414-A; MX2006008045-A1; JP2007518864-W; KR2007005565-A; CN1961059-A; IN200604063-P1; KR825662-B1; JP4376908-B2; CA2553962-C; IN251202-B; SG124072-A1; SG124072-B; CN1961059-B (2005).Wegerer, D. A., Bussche, K. V. & Vandenbussche, K. M. Selective Co oxidation for acetylene converter feed Co CONTROL. US2012294774-A1; US8431094-B2 (2102).Chernichenko, K. et al. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat. Chem. 5, 718–723 (2013).Vile, G., Bridier, B., Wichert, J. & Perez-Ramirez, J. Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. Angew. Chem. Int. Ed. 51, 8620–8623 (2012).Ambrosi, A. et al. Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew. Chem. Int. Ed. 51, 500–503 (2012).Ambrosi, A. et al. Chemical reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proc. Natl Acad. Sci. USA 109, 12899–12904 (2012).Vile, G., Almora-Barrios, N., Mitchell, S., Lopez, N. & Perez-Ramirez, J. From the lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chemistry 20, 5849–5849 (2014).Gurrath, M. et al. Palladium catalysts on activated carbon supports—Influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon N. Y. 38, 1241–1255 (2000).Stephan, D. W. ‘Frustrated Lewis pairs’: a concept for new reactivity and catalysis. Org. Biomol. Chem. 6, 1535–1539 (2008).Stephan, D. W. Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Trans. 17, 3129–3136 (2009).Chase, P. A., Jurca, T. & Stephan, D. W. Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. Chem. Commun. 14, 1701–1703 (2008).Hounjet, L. J. & Stephan, D. W. Hydrogenation by frustrated Lewis pairs: main group alternatives to transition metal catalysts? Org. Process Res. Dev. 18, 385–391 (2014).Spies, P. et al. Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew. Chem. Int. Ed. 47, 7543–7546 (2008).Greb, L. et al. Metal-free catalytic olefin hydrogenation: low-temperature H2 activation by frustrated Lewis pairs. Angew. Chem. Int. Ed. 51, 10164–10168 (2012)

    Ab-initio calculation of the ground and excited states of MgH using a pseudopotential approach

    No full text
    International audienceThe electronic structure of the MgH molecule is investigated using a pseudopotential description of the Mg2+ core, complemented by a core polarization operator. The electronic problem is treated by the Internally Contracted Multi-Reference Configuration Interaction method (IC-MRCI). The potential energy curves and the molecular constants are calculated for all MgH molecular states dissociating up to the excited atomic configurations Mg(3s3d(1)D) + H(1s(2)S). A good agreement with the available experimental data is found. These calculations help to clarify the very complicated spectroscopy of MgH in the 3500046000 cm(-1) excitation range, where many states correlated with the 3s3p, 3s4s and 3s3d atomic configurations cross one another. For instance, the predissociation mechanism of the B-2 Sigma(1) state is enlighten. Both the doublet and quartet systems are documented
    corecore