136 research outputs found

    Sensitive quantification of the HIV-1 reservoir in gut-associated lymphoid tissue

    Get PDF
    Biòpsia; VIH-1; Teixit limfoideBiopsia; VIH-1; Tejido linfoideBiopsy; HIV-1; Lymphoid tissueBackground The implementation of successful strategies to achieve an HIV cure has become a priority in HIV research. However, the current location and size of HIV reservoirs is still unknown since there are limited tools to evaluate HIV latency in viral sanctuaries such as gut-associated lymphoid tissue (GALT). As reported in the so called “Boston Patients”, despite undetectable levels of proviral HIV-1 DNA in blood and GALT, viral rebound happens in just few months after ART interruption. This fact might imply that current methods are not sensitive enough to detect residual reservoirs. Showing that, it is imperative to improve the detection and quantification of HIV-1 reservoir in tissue samples. Herein, we propose a novel non-enzymatic protocol for purification of Lamina Propria Leukocytes (LPL) from gut biopsies combined to viral HIV DNA (vDNA) quantification by droplet digital PCR (ddPCR) to improve the sensitivity and accuracy of viral reservoir measurements (LPL-vDNA assay). Methods Endoscopic ileum biopsies were sampled from 12 HIV-1-infected cART-suppressed subjects. We performed a DTT/EDTA-based treatment for epithelial layer removal followed by non-enzymatic disruption of the tissue to obtain lamina propria cell suspension (LP). CD45+ cells were subsequently purified by flow sorting and vDNA was determined by ddPCR. Results vDNA quantification levels were significantly higher in purified LPLs (CD45+) than in bulk LPs (p<0.01). The levels of vDNA were higher in ileum samples than in concurrent PBMC from the same individuals (p = 0.002). As a result of the increased sensitivity of this purification method, the Poisson 95% confidence intervals of the vDNA quantification data from LPLs were narrower than that from bulk LPs. Of note, vDNA was unambiguously quantified above the detection limit in 100% of LPL samples, while only in 58% of bulk LPs. Conclusion We propose an innovative combined protocol for a more sensitive detection of the HIV reservoir in gut-associated viral sanctuaries, which might be used to evaluate any proposed eradication strategy.This substudy was supported by ViiV and the American Foundation for AIDS Research (amfAR) (ARCHE). IrsiCaixa was supported by the CERCA programme from Generalitat de Catalunya. MS was supported by the post-doctoral training scholarship (Juan de la Cierva) of the Spanish Economy and Competitiveness Ministry (FPDI-2013-17134). SM-L received a fellowship from the Agència de Gestió d’Ajuts Universitaris i de Recerca (2013FI_B 00275). CG was partially supported by the pre-doctoral fellowship of the Spanish Education, Culture and Sport Ministry (FPU15/03698). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication

    Switching from a protease inhibitor-based regimen to a dolutegravir-based regimen : a randomized clinical trial to determine the effect on peripheral blood and ileum biopsies from antiretroviral therapy-suppressed human immunodeficiency virus-infected individuals

    Get PDF
    Background: Optimization of combination antiretroviral therapy (cART) can impact the human immunodeficiency virus (HIV) reservoir. We evaluated the effect on the HIV reservoir in peripheral blood and ileum biopsies in patients switching from boosted protease inhibitor (PI/r)-based therapy to dolutegravir (DTG)-based therapy. Methods: Impact of Integrase-inhibitor DOlutegravir On the viral Reservoir (INDOOR) is a phase 4 open-label clinical trial that randomly included 42 HIV type 1-infected individuals on effective cART: 20 who switched from PI/r-based to DTG-based cART (switch group), and 22 who remained in PI/r-based regimens (control group). We analyzed blood and ileum biopsies to quantify episomal, total, and integrated HIV DNA, cell-associated HIV RNA, residual plasma viremia, T-cell subsets, cell activation, and inflammation markers. Results: There were no related adverse events or treatment discontinuations due to drug intolerance. The HIV reservoir was consistently larger in ileal than in peripheral CD4(+) T cells in both groups (P <.01). Residual viremia in plasma decreased in the switch group (P =.03). However, we did not observe significant longitudinal changes in low-level viral replication, total and integrated HIV reservoir, HIV transcription, T-cell maturation subsets, immunoactivation markers, inflammatory soluble proteins, or cellular markers of latently infected cells. Conclusions: The INDOOR study is the first evaluation of changes in HIV reservoir size in ileum biopsies and in peripheral blood in individuals switched from PI/r- to DTG-based cART. Although this switch was safe and well tolerated, it had no impact on a large array of immunological and inflammatory markers or on HIV reservoir markers in peripheral or in ileal CD4(+) T cells

    Sensitive quantification of the HIV-1 reservoir in gut-associated lymphoid tissue

    Get PDF
    Background: The implementation of successful strategies to achieve an HIV cure has become a priority in HIV research. However, the current location and size of HIV reservoirs is still unknown since there are limited tools to evaluate HIV latency in viral sanctuaries such as gut-associated lymphoid tissue (GALT). As reported in the so called "Boston Patients", despite undetectable levels of proviral HIV-1 DNA in blood and GALT, viral rebound happens in just few months after ART interruption. This fact might imply that current methods are not sensitive enough to detect residual reservoirs. Showing that, it is imperative to improve the detection and quantification of HIV-1 reservoir in tissue samples. Herein, we propose a novel non-enzymatic protocol for purification of Lamina Propria Leukocytes (LPL) from gut biopsies combined to viral HIV DNA (vDNA) quantification by droplet digital PCR (ddPCR) to improve the sensitivity and accuracy of viral reservoir measurements (LPL-vDNA assay). Methods: Endoscopic ileum biopsies were sampled from 12 HIV-1-infected cART-suppressed subjects. We performed a DTT/EDTA-based treatment for epithelial layer removal followed by non-enzymatic disruption of the tissue to obtain lamina propria cell suspension (LP). CD45+ cells were subsequently purified by flow sorting and vDNA was determined by ddPCR. Results: vDNA quantification levels were significantly higher in purified LPLs (CD45+) than in bulk LPs (p<0.01). The levels of vDNA were higher in ileum samples than in concurrent PBMC from the same individuals (p = 0.002). As a result of the increased sensitivity of this purification method, the Poisson 95% confidence intervals of the vDNA quantification data from LPLs were narrower than that from bulk LPs. Of note, vDNA was unambiguously quantified above the detection limit in 100% of LPL samples, while only in 58% of bulk LPs. Conclusion: We propose an innovative combined protocol for a more sensitive detection of the HIV reservoir in gut-associated viral sanctuaries, which might be used to evaluate any proposed eradication strategy

    Exploring the HIV-1 Rev Recognition Element (RRE)–Rev Inhibitory Capacity and Antiretroviral Action of Benfluron Analogs

    Get PDF
    Human immunodeficiency virus-type 1 (HIV-1) remains one of the leading contributors to the global burden of disease, and novel antiretroviral agents with alternative mechanisms are needed to cure this infection. Here, we describe an exploratory attempt to optimize the antiretroviral properties of benfluron, a cytostatic agent previously reported to exhibit strong anti-HIV activity likely based on inhibitory actions on virus transcription and Rev-mediated viral RNA export. After obtaining six analogs designed to modify the benzo[c]fluorenone system of the parent molecule, we examined their antiretroviral and toxicity properties together with their capacity to recognize the Rev Recognition Element (RRE) of the virus RNA and inhibit the RRE–Rev interaction. The results indicated that both the benzo[c] and cyclopentanone components of benfluron are required for strong RRE–Rev target engagement and antiretroviral activity and revealed the relative impact of these moieties on RRE affinity, RRE–Rev inhibition, antiviral action and cellular toxicity. These data provide insights into the biological properties of the benzo[c]fluorenone scaffold and contribute to facilitating the design of new anti-HIV agents based on the inhibition of Rev function.This research was funded by Generalitat Valenciana of Spain (PROMETEO 2021/036 grant to J.G. and GRISOLIAP/2020/026 contract to M.P.S.), MCIN/AEI/10.13039/501100011033 of Spain and “ERDF A way of making Europe” (grants PID2020-117508RB-I00 to V.M., RTI2021-093935-B-I00 to J.G., PID2021-125978OB-C2 to J.A. and PID2019-109870RB-I00 and CB21/13/00063 to J.M.-P.).Biotecnologí

    Hydration of C3S, C2S and their Blends. Micro- and Nanoscale Characterization

    Get PDF
    This study forms part of wider research conducted under a EU 7 th Framework Programme (COmputationally Driven design of Innovative CEment-based materials or CODICE). The ultimate aim is the multi-scale modelling of the variations in mechanical performance in degraded and non-degraded cementitious matrices. The model is being experimentally validated by hydrating the main tri-calcium silicate (T1-C3S) and bi-calcium silicate (β-C2S), phases present in Portland cement and their blends. The present paper discusses micro- and nanoscale studies of the cementitious skeletons forming during the hydration of C3S, C2S and 70 % / 30 % blends of both C3S/C2S and C2S/C3S with a water/cement ratio of 0.4. The hydrated pastes were characterized at different curing ages with 29 Si NMR, SEM/TEM/EDS, BET, and nanoindentation. The findings served as a basis for the micro- and nanoscale characterization of the hydration products formed, especially C-S-H gels. Differences were identified in composition, structure and mechanical behaviour (nanoindentation), depending on whether the gels formed in C3S or C2S pastes. The C3S gels had more compact morphologies, smaller BET-N2 specific surface area and lesser porosity than the gels from C2S-rich pastes. The results of nanoindentation tests appear to indicate that the various C-S-H phases formed in hydrated C3S and C2S have the same mechanical properties as those formed in Portland cement paste. Compared to the C3S sample, the hydrated C2S specimen was dominated by the loose-packed (LP) and the low-density (LD) C-S-H phases, and had a much lower content of the high density (HD) C-S-H phas

    The infectious synapse formed between mature dendritic cells and CD4 + T cells is independent of the presence of the HIV-1 envelope glycoprotein

    Get PDF
    Altres ajuts:This work was supported the Spanish AIDS Network (RD06/0006), the Catalan HIV Vaccine Development Program (HIVACAT), and the Spanish Foundation for AIDS Research and Prevention (FIPSE) project 36750/08.Since cell-mediated infection of human immunodeficiency virus type 1 (HIV-1) is more efficient than cell-free infection, cell-to-cell propagation plays a crucial role in the pathogenesis of HIV-1 infection. Transmission of HIV-1 is enabled by two types of cellular contacts, namely, virological synapses between productively infected cells and uninfected target cells and infectious synapses between uninfected dendritic cells (DC) harboring HIV-1 and uninfected target cells. While virological synapses are driven by expression of the viral envelope glycoprotein on the cell surface, little is known about the role of envelope glycoprotein during contact between DC and T cells. We explored the contribution of HIV-1 envelope glycoprotein, adhesion molecules, and antigen recognition in the formation of conjugates comprising mature DC (mDC) and CD4 + T cells in order to further evaluate their role in mDC-mediated HIV-1 transmission at the immunological synapse. Unlike virological synapse, HIV-1 did not modulate the formation of cell conjugates comprising mDC harboring HIV-1 and non-activated primary CD4 + T cells. Disruption of interactions between ICAM-1 and LFA-1, however, resulted in a 60% decrease in mDC-CD4 + T-cell conjugate formation and, consequently, in a significant reduction of mDC-mediated HIV-1 transmission to non-activated primary CD4 + T cells (p < 0.05). Antigen recognition or sustained MHC-TcR interaction did not enhance conjugate formation, but significantly boosted productive mDC-mediated transmission of HIV-1 (p < 0.05) by increasing T-cell activation and proliferation. Formation of the infectious synapse is independent of the presence of the HIV-1 envelope glycoprotein, although it does require an interaction between ICAM-1 and LFA-1. This interaction is the main driving force behind the formation of mDC-CD4 + T-cell conjugates and enables transmission of HIV-1 to CD4 + T cells. Moreover, antigen recognition boosts HIV-1 replication without affecting the frequency of cellular conjugates. Our results suggest a determinant role for immune activation driven by mDC-CD4 + T-cell contacts in viral dissemination and that this activation likely contributes to the pathogenesis of HIV-1 infection

    Understanding the neurological implications of acute and long COVID using brain organoids

    Full text link
    As early as in the acute phase of the coronavirus disease 2019 about the long-term implications of infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), like many other viruses, can trigger chronic disorders that last months or even years. Long COVID, the chronic and persistent disorder lasting more than 12 weeks after the primary infection with SARS-CoV-2, involves a variable number of neurological manifestations, ranging from mild to severe and even fatal. In vitro and in vivo modeling suggest that SARS-CoV-2 infection drives changes within neurons, glia and the brain vasculature. In this Review, we summarize the current understanding of the neuropathology of acute and long COVID, with particular emphasis on the knowledge derived from brain organoid models. We highlight the advantages and main limitations of brain organoids, leveraging their humanoerived origin, their similarity in cellular and tissue architecture to human tissues, and their potential to decipher the pathophysiology of long COVID

    Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach

    Get PDF
    10 páginas, 5 figuras, 1 tabla.A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G) and terrestrial (Zoñar Lake, Andalucia, Spain) geochemical proxies provides a high-resolution reconstruction of climate variability and human influence in the southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our combined terrestrial and marine archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. A dry period occurred prior to 2.7 cal ka BP – synchronously to the global aridity crisis of the third-millennium BC – and during the Medieval Climate Anomaly (1.4–0.7 cal ka BP). Wetter conditions prevailed from 2.7 to 1.4 cal ka BP. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity than the Medieval Climate Anomaly. Additionally, Pb anomalies in sediments at the end of the Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The Late Holocene climate evolution of the in the study area confirms the see-saw pattern between the eastern and western Mediterranean regions and the higher influence of the North Atlantic dynamics in the western Mediterranean.Projects LIMNOCLIBER REN 2003-09130- C02-02, CALIBRE CGL 2006-13327-c04/CLI, CGL-2006-2956- BOS, CGL2009-07603 (MICINN), 200800050084447 (MARM) and RNM 05212 (Junta de Andalucía), we also thanks Projects GRACCIE (CSD2007- 00067) and CTM2009-07715 (MICINN), Research Group 0179 (Junta de Andalucía) and the Training- Through-Research Programme.Peer reviewe

    Exploring the HIV-1 Rev Recognition Element (RRE)-Rev Inhibitory Capacity and Antiretroviral Action of Benfluron Analogs

    Get PDF
    Human immunodeficiency virus-type 1 (HIV-1) remains one of the leading contributors to the global burden of disease, and novel antiretroviral agents with alternative mechanisms are needed to cure this infection. Here, we describe an exploratory attempt to optimize the antiretroviral properties of benfluron, a cytostatic agent previously reported to exhibit strong anti-HIV activity likely based on inhibitory actions on virus transcription and Rev-mediated viral RNA export. After obtaining six analogs designed to modify the benzo[c]fluorenone system of the parent molecule, we examined their antiretroviral and toxicity properties together with their capacity to recognize the Rev Recognition Element (RRE) of the virus RNA and inhibit the RRE-Rev interaction. The results indicated that both the benzo[c] and cyclopentanone components of benfluron are required for strong RRE-Rev target engagement and antiretroviral activity and revealed the relative impact of these moieties on RRE affinity, RRE-Rev inhibition, antiviral action and cellular toxicity. These data provide insights into the biological properties of the benzo[c]fluorenone scaffold and contribute to facilitating the design of new anti-HIV agents based on the inhibition of Rev function.This research was funded by Generalitat Valenciana of Spain (PROMETEO 2021/036 grant to J.G. and GRISOLIAP/2020/026 contract to M.P.S.), MCIN/AEI/10.13039/501100011033 of Spain and “ERDF A way of making Europe” (grants PID2020-117508RB-I00 to V.M., RTI2021-093935-B-I00 to J.G., PID2021-125978OB-C2 to J.A. and PID2019-109870RB-I00 and CB21/13/00063 to J.M.-P.).S

    HIVconsv vaccines and romidepsin in early-treated HIV-1-infected individuals: safety, immunogenicity and effect on the viral reservoir (Study BCN02)

    Get PDF
    Kick&kill strategies combining drugs aiming to reactivate the viral reservoir with therapeutic vaccines to induce effective cytotoxic immune responses hold potential to achieve a functional cure for HIV-1 infection. Here, we report on an open-label, single-arm, phase I clinical trial, enrolling 15 early-treated HIV-1-infected individuals, testing the combination of the histone deacetylase inhibitor romidepsin as a latency-reversing agent and the MVA.HIVconsv vaccine. Romidepsin treatment resulted in increased histone acetylation, cell-associated HIV-1 RNA, and T-cell activation, which were associated with a marginally significant reduction of the viral reservoir. Vaccinations boosted robust and broad HIVconsv-specific T cells, which were strongly refocused toward conserved regions of the HIV-1 proteome. During a monitored ART interruption phase using plasma viral load over 2,000 copies/ml as a criterium for ART resumption, 23% of individuals showed sustained suppression of viremia up to 32 weeks without evidence for reseeding the viral reservoir. Results from this pilot study show that the combined kick&kill intervention was safe and suggest a role for this strategy in achieving an immune-driven durable viremic control.Peer ReviewedPostprint (published version
    corecore