186 research outputs found

    Nuclear receptors and other nuclear transcription factors in mitochondria: Regulatory molecules in a new environment

    Get PDF
    AbstractThe mitochondrion is the major energy generating organelle of the cell and the site of other basic processes, including apoptosis. The mitochondrial functions are performed in concert with other cell compartments and are regulated by various extracellular and intracellular signals. Several nuclear receptors and other nuclear transcription factors, such as NF-κB, AP-1, CREB and p53, involved in growth, metabolic and developmental processes, have been detected in mitochondria. This finding raises the question as to the role of these regulatory molecules in their “new” environment. Experimental evidence supports the action of the mitochondrially localized transcription factors on mitochondrial transcription, energy yield and apoptosis, extending the known nuclear role of these molecules outside the nucleus. A principle of coordination of nuclear and mitochondrial gene transcription has been ascertained as regards the regulatory action of steroid and thyroid hormones on energy yield. Accordingly, the same nuclear receptors, localized in the two compartments–nuclei and mitochondria–regulate transcription of genes serving a common function by way of interaction with common binding sites in the two genomes. This principle is now expanding to encompass other nuclearly and mitochondrially localized transcription factors

    The triterpene echinocystic acid and its 3-O-glucoside derivative are revealed as potent and selective glucocorticoid receptor agonists

    Get PDF
    Glucocorticoids are steroid hormones widely used to control many inflammatory conditions. These effects are primarily attributed to glucocorticoid receptor transrepressional activities but with concomitant receptor transactivation associated with considerable side effects. Accordingly, there is an immediate need for selective glucocorticoid receptor agonists able to dissociate transactivation from transrepression. Triterpenoids have structural similarities with glucocorticoids and exhibit anti-inflammatory and apoptotic activities via mechanisms that are not well-defined. In this study, we examined whether echinocystic acid and its 3-O-glucoside derivative act, at least in part, through the regulation of glucocorticoid receptor and whether they can constitute selective receptor activators. We showed that echinocystic acid and its glucoside induced glucocorticoid receptor nuclear translocation by 75% and 55%. They suppressed the nuclear factor-kappa beta transcriptional activity by 20% and 70%, respectively, whereas they have no glucocorticoid receptor transactivation capability and stimulatory effect on the expression of the phosphoenolopyruvate carboxykinase target gene in HeLa cells. Interestingly, their suppressive effect is diminished in glucocorticoid receptor low level COS-7 cells, verifying the receptor involvement in this process. Induced fit docking calculations predicted favorable binding in the ligand binding domain and structural characteristics which can be considered consistent with the experimental observations. Further, glucocorticoids exert apoptotic activities; we have demonstrated here that the echinocystic acids in combination with the synthetic glucocorticoid, dexamethasone, induce apoptosis. Taken together, our results indicate that echinocystic acids are potent glucocorticoid receptor regulators with selective transrepressional activities (dissociated from transactivation), highlighting the potential of echinocystic acid derivatives as more promising treatments for inflammatory conditions

    The Role of S-Palmitoylation of the Human Glucocorticoid Receptor (hGR) in Mediating the Nongenomic Glucocorticoid Actions

    Get PDF
    Background: Many rapid nongenomic glucocorticoid actions are mediated by membrane-bound glucocorticoid receptors (GRs). S-palmitoylation is a lipid post-translational modification that mediates the membrane localization of some steroid receptors. A highly homologous amino acid sequence (663YLCM KTLLL671) is present in the ligand-binding domain of hGRα, suggesting that hGRα might also undergo S-palmitoylation. Aim: To investigate the role of the motif 663YLCMKTLLL671 in membrane localization of the hGRα and in mediating rapid nongenomic glucocorticoid signaling. Methods and Results: We showed that the mutant receptors hGRαY663A, hGRαC665A and hGRαLL670/671AA, and the addition of the palmitoylation inhibitor 2-bromopalmitate did not prevent membrane localization of hGRα and co-localization with caveolin-1, and did not influence the biphasic activation of mitogen-activated protein kinase (MAPK) signaling pathway in the early time points. Finally, the hGRα was not shown to undergo S-palmitoylation. Conclusions: The motif 663YLCMKTLLL671 does not play a role in membrane localization of hGRα and does not mediate the nongenomic glucocorticoid actions.  

    Potential interference of aluminum chlorohydrate with estrogen receptor signaling in breast cancer cells

    Get PDF
    Aluminum salts are widely used as the active antiperspirant in underarm cosmetic. Experimental observations indicate that its long term application may correlate with breast cancer development and progression. This action is proposed to be attributed, among others, to aluminum possible estrogen-like activities. In this study we showed that aluminum, in the form of aluminum chlorohydrate (ACH), caused increase in estrogen receptor alpha (ERα) protein levels, in ERα-positive MCF-7 cells. This effect was accompanied by moderate activation of Estrogen Response Elements (ERE)-driven reporter gene expression and 20%-50% increase in certain estrogen responsive, ERE-independent genes expression. Genes affected were ERα, p53, cyclin D1, and c-fos, crucial regulators of breast cancer development and progression. ACH-induced genes expression was eliminated in the presence of the estrogen antagonist: ICI 182780, in MCF-7 cells, whereas it was not observed in ERα-negative MDA-MB-231 breast cancer cells, indicating aluminum interference with estrogen signaling. Moreover, ACH caused increase in the perinuclear localization of estrogen receptor alpha in MCF-7 breast cancer cells and increase in the mitochondrial Bcl-2 protein, possibly affecting receptors-mediated mitochondrial actions and mitochondrial-dependent apoptosis. ACH-induced perinuclear localization of estrogen receptor beta was also observed in MDA-MB-231. Our findings indicate that aluminum actions on estrogen receptors protein level and subcellular localization possibly affect receptors-mediated actions and thus, aluminum interference with estrogen signaling

    Glucocorticoid and Estrogen Receptors Are Reduced in Mitochondria of Lung Epithelial Cells in Asthma

    Get PDF
    Mitochondrial glucocorticoid (mtGR) and estrogen (mtER) receptors participate in the coordination of the cell’s energy requirement and in the mitochondrial oxidative phosphorylation enzyme (OXPHOS) biosynthesis, affecting reactive oxygen species (ROS) generation and induction of apoptosis. Although activation of mtGR and mtER is known to trigger anti-inflammatory signals, little information exists on the presence of these receptors in lung tissue and their role in respiratory physiology and disease. Using a mouse model of allergic airway inflammation disease and applying confocal microscopy, subcellular fractionation, and Western blot analysis we showed mitochondrial localization of GRα and ERβ in lung tissue. Allergic airway inflammation caused reduction in mtGRα, mtERβ, and OXPHOS enzyme biosynthesis in lung cells mitochondria and particularly in bronchial epithelial cells mitochondria, which was accompanied by decrease in lung mitochondrial mass and induction of apoptosis. Confirmation and validation of the reduction of the mitochondrial receptors in lung epithelial cells in human asthma was achieved by analyzing autopsies from fatal asthma cases. The presence of the mitochondrial GRα and ERβ in lung tissue cells and especially their reduction in bronchial epithelial cells during allergic airway inflammation suggests a crucial role of these receptors in the regulation of mitochondrial function in asthma, implicating their involvement in the pathophysiology of the disease

    Mitochondrial abnormalities in spinal and bulbar muscular atrophy

    Get PDF
    Spinal and bulbar muscular atrophy (SBMA) is a motor neuron disease caused by polyglutamine expansion mutation in the androgen receptor (AR). We investigated whether the mutant protein alters mitochondrial function. We found that constitutive and doxycycline-induced expression of the mutant AR in MN-1 and PC12 cells, respectively, are associated with depolarization of the mitochondrial membrane. This was mitigated by cyclosporine A, which inhibits opening of the mitochondrial permeability transition pore. We also found that the expression of the mutant protein in the presence of ligand results in an elevated level of reactive oxygen species, which is blocked by the treatment with the antioxidants co-enzyme Q10 and idebenone. The mutant protein in MN-1 cells also resulted in increased Bax, caspase 9 and caspase 3. We assessed the effects of mutant AR on the transcription of mitochondrial proteins and found altered expression of the peroxisome proliferator-activated receptor γ coactivator 1 and the mitochondrial specific antioxidant superoxide dismutase-2 in affected tissues of SBMA knock-in mice. In addition, we found that the AR associates with mitochondria in cultured cells. This study thus provides evidence for mitochondrial dysfunction in SBMA cell and animal models, either through indirect effects on the transcription of nuclear-encoded mitochondrial genes or through direct effects of the mutant protein on mitochondria or both. These findings indicate possible benefit from mitochondrial therapy for SBMA

    Conducting visitor studies using smartphone-based location sensing

    Get PDF
    Visitor studies explore human experiences within museums, cultural heritage sites, and other informal learning settings to inform decisions. Smartphones offer novel opportunities for extending the depth and breadth of visitor studies while considerably reducing their cost and their demands on specialist human resources. By enabling the collection of significantly higher volumes of data, they also make possible the application of advanced machine-learning and visualization techniques, potentially leading to the discovery of new patterns and behaviors that cannot be captured by simple descriptive statistics. In this article, we present a principled approach to the use of smartphones for visitor studies, in particular proposing a structured methodology and associated methods that enable its effective use in this context. We discuss specific methodological considerations that have to be addressed for effective data collection, preprocessing, and analysis and identify the limitations in the applicability of these tools using family visits to the London Zoo as a case study. We conclude with a discussion of the wider opportunities afforded by the introduction of smartphones and related technologies and outline the steps toward establishing them as a standard tool for visitor studies

    Potential Dissociative Glucocorticoid Receptor Activity for Protopanaxadiol and Protopanaxatriol

    Get PDF
    Glucocorticoids are steroid hormones that regulate inflammation, growth, metabolism, and apoptosis via their cognate receptor, the glucocorticoid receptor (GR). GR, acting mainly as a transcription factor, activates or represses the expression of a large number of target genes, among them, many genes of anti-inflammatory and pro-inflammatory molecules, respectively. Transrepression activity of glucocorticoids also accounts for their anti-inflammatory activity, rendering them the most widely prescribed drug in medicine. However, chronic and high-dose use of glucocorticoids is accompanied with many undesirable side effects, attributed predominantly to GR transactivation activity. Thus, there is a high need for selective GR agonist, capable of dissociating transrepression from transactivation activity. Protopanaxadiol and protopanaxatriol are triterpenoids that share structural and functional similarities with glucocorticoids. The molecular mechanism of their actions is unclear. In this study applying induced-fit docking analysis, luciferase assay, immunofluorescence, and Western blot analysis, we showed that protopanaxadiol and more effectively protopanaxatriol are capable of binding to GR to activate its nuclear translocation, and to suppress the nuclear factor-kappa beta activity in GR-positive HeLa and HEK293 cells, but not in GR-low level COS-7 cells. Interestingly, no transactivation activity was observed, whereas suppression of the dexamethasone-induced transactivation of GR and induction of apoptosis in HeLa and HepG2 cells were observed. Thus, our results indicate that protopanaxadiol and protopanaxatriol could be considered as potent and selective GR agonist

    Synthetic flavonoid derivatives targeting the glycogen phosphorylase inhibitor site: QM/MM-PBSA motivated synthesis of substituted 5,7-dihydroxyflavones, crystallography, in vitro kinetics and ex-vivo cellular experiments reveal novel potent inhibitors

    Get PDF
    Glycogen phosphorylase (GP) is an important target for the development of new anti-hyperglycaemic agents. Flavonoids are novel inhibitors of GP, but their mode of action is unspecific in terms of the GP binding sites involved. Towards design of synthetic flavonoid analogues acting specifically at the inhibitor site and to exploit the site’s hydrophobic pocket, chrysin has been employed as a lead compound for the in silico screening of 1169 new analogues with different B ring substitutions. QM/MM-PBSA binding free energy calculations guided the final selection of eight compounds, subsequently synthesised using a Baker-Venkataraman rearrangement-cyclisation approach. Kinetics experiments against rabbit muscle GPa and GPb together with human liver GPa, revealed three of these compounds (11, 20 and 43) among the most potent that bind at the site (Ki s < 4 µM for all three isoforms), and more potent than previously reported natural flavonoid inhibitors. Multiple inhibition studies revealed binding exclusively at the inhibitor site. The binding is synergistic with glucose suggesting that inhibition could be regulated by blood glucose levels and would decrease as normoglycaemia is achieved. Compound 43 was an effective inhibitor of glycogenolysis in hepatocytes (IC50 = 70 µM), further promoting these compounds for optimization of their drug-like potential. X-ray crystallography studies revealed the B-ring interactions responsible for the observed potencies
    corecore