89 research outputs found

    From acute injury to chronic disease: pathophysiological hypothesis of an epithelial/mesenchymal crosstalk alteration in CKD

    Get PDF
    Observational clinical studies link acute kidney injury to chronic kidney disease (CKD) progression. The pathophysiological mechanisms that underlie this process are currently unknown but recently published papers suggest that tubular epithelial cells and interstitial mesenchymal cells emerge as a single unit, and their integrity alteration as a whole might lead to renal fibrosis and CKD. The present article reviews the biological findings supporting the hypothesis of an altered epithelial/mesenchymal crosstalk in fibrosis development and progression toward CK

    CEMIP ( HYBID , KIAA1199 ): structure, function and expression in health and disease

    Get PDF
    CEMIP (cell migration-inducing protein), also known as KIAA1199 or HYBID, is a protein involved in the depolymerisation of hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix. CEMIP was originally described in patients affected by nonsyndromic hearing loss and has subsequently been shown to play a key role in tumour initiation and progression, as well as arthritis, atherosclerosis and idiopathic pulmonary fibrosis. Despite the vast literature associating CEMIP with these diseases, its biology remains elusive. The present review article summarises all the major scientific evidence regarding its structure, function, role and expression, and attempts to cast light on a protein that modulates EMT, fibrosis and tissue inflammation, an unmet key aspect in several inflammatory disease conditions

    Expression and subcellular localization of Discoidin Domain Receptor 1 (DDR1) define prostate cancer aggressiveness

    Get PDF
    Background: The Discoidin Domain Receptor 1 (DDR1) is one of the two members of a unique family of receptor tyrosine kinase receptors that signal in response to collagen, which has been implicated in cancer progression. Here, we examined the expression of DDR1 in prostate cancer (PCa), and assessed its potential value as a prognostic marker, as a function of grade, stage and other clinicopathologic parameters. Methods: We investigated the association between the expression level and subcellular localization of DDR1 protein and PCa aggressiveness by immunohistochemistry, using tissue microarrays (TMAs) encompassing 200 cases of PCa with various Gleason scores (GS) and pathologic stages with matched normal tissue, and a highly specific monoclonal antibody. Results: DDR1 was found to be localized in the membrane, cytoplasm, and nuclear compartments of both normal and cancerous prostate epithelial cells. Analyses of DDR1 expression in low GS (≤ 7[3 + 4]) vs high GS (≥ 7[4 + 3]) tissues showed no differences in nuclear or cytoplasmic DDR1in either cancerous or adjacent normal tissue cores. However, relative to normal-matched tissue, the percentage of cases with higher membranous DDR1 expression was significantly lower in high vs. low GS cancers. Although nuclear localization of DDR1 was consistently detected in our tissue samples and also in cultured human PCa and normal prostate-derived cell lines, its presence in that site could not be associated with disease aggressiveness. No associations between DDR1 expression and overall survival or biochemical recurrence were found in this cohort of patients. Conclusion: The data obtained through multivariate logistic regression model analysis suggest that the level of membranous DDR1 expression status may represent a potential biomarker of utility for better determination of PCa aggressiveness.This work was supported by the Department of Defense Prostate Cancer Research Program, DOD Award No W81XWH-15-1-0226 (to RF and RDB) and Awards No W81XWH-10-2-0056 and W81XWH-10-2-0046 Prostate Cancer Biorepository Network (PCBN)

    Fc receptor-like 5 and anti-CD20 treatment response in granulomatosis with polyangiitis and microscopic polyangiitis

    Get PDF
    BACKGROUND. Baseline expression of FCRL5, a marker of naive and memory B cells, was shown to predict response to rituximab (RTX) in rheumatoid arthritis. This study investigated baseline expression of FCRL5 as a potential biomarker of clinical response to RTX in granulomatosis with polyangiitis (CPA) and microscopic polyangiitis (MPA). METHODS. A previously validated quantitative PCR-based (qPCR-based) platform was used to assess FCRL5 expression in patients with GPA/MPA (RAVE trial, NCT00104299). RESULTS. Baseline FCRL5 expression was significantly higher in patients achieving complete remission (CR) at 6,12, and 18 months, independent of other clinical and serological variables, among those randomized to RTX but not cyclophosphamide-azathioprine (CYC/AZA). Patients with baseline FCRL5 expression >= 0.01 expression units (termed FCRL5(hi)) exhibited significantly higher CR rates at 6,12, and 18 months as compared with FCRL5(lo) subjects (84% versus 57% [P = 0.016], 68% versus 40% [P = 0.02], and 68% versus 29% [P = 0.0009], respectively). CONCLUSION. Our data taken together suggest that FCRL5 is a biomarker of B cell lineage associated with increased achievement and maintenance of complete remission among patients treated with RTX and warrant further investigation in a prospective manner

    Advances and unmet needs in genetic, basic and clinical science in Alport syndrome::report from the 2015 International Workshop on Alport Syndrome

    Get PDF
    Alport syndrome (AS) is a genetic disease characterized by haematuric glomerulopathy variably associated with hearing loss and anterior lenticonus. It is caused by mutations in the COL4A3, COL4A4 or COL4A5 genes encoding the α3α4α5(IV) collagen heterotrimer. AS is rare, but it accounts for >1% of patients receiving renal replacement therapy. Angiotensin-converting enzyme inhibition slows, but does not stop, the progression to renal failure; therefore, there is an urgent requirement to expand and intensify research towards discovering new therapeutic targets and new therapies. The 2015 International Workshop on Alport Syndrome targeted unmet needs in basic science, genetics and diagnosis, clinical research and current clinical care. In three intensive days, more than 100 international experts including physicians, geneticists, researchers from academia and industry, and patient representatives from all over the world participated in panel discussions and breakout groups. This report summarizes the most important priority areas including (i) understanding the crucial role of podocyte protection and regeneration, (ii) targeting mutations by new molecular techniques for new animal models and potential gene therapy, (iii) creating optimal interaction between nephrologists and geneticists for early diagnosis, (iv) establishing standards for mutation screening and databases, (v) improving widespread accessibility to current standards of clinical care, (vi) improving collaboration with the pharmaceutical/biotech industry to investigate new therapies, (vii) research in hearing loss as a huge unmet need in Alport patients and (viii) the need to evaluate the risk and benefit of novel (including 'repurposing') therapies on an international basis

    Plasma Proteomics of Renal Function: A Transethnic Meta-Analysis and Mendelian Randomization Study.

    Get PDF
    BACKGROUND: Studies on the relationship between renal function and the human plasma proteome have identified several potential biomarkers. However, investigations have been conducted largely in European populations, and causality of the associations between plasma proteins and kidney function has never been addressed. METHODS: A cross-sectional study of 993 plasma proteins among 2882 participants in four studies of European and admixed ancestries (KORA, INTERVAL, HUNT, QMDiab) identified transethnic associations between eGFR/CKD and proteomic biomarkers. For the replicated associations, two-sample bidirectional Mendelian randomization (MR) was used to investigate potential causal relationships. Publicly available datasets and transcriptomic data from independent studies were used to examine the association between gene expression in kidney tissue and eGFR. RESULTS: In total, 57 plasma proteins were associated with eGFR, including one novel protein. Of these, 23 were additionally associated with CKD. The strongest inferred causal effect was the positive effect of eGFR on testican-2, in line with the known biological role of this protein and the expression of its protein-coding gene (SPOCK2) in renal tissue. We also observed suggestive evidence of an effect of melanoma inhibitory activity (MIA), carbonic anhydrase III, and cystatin-M on eGFR. CONCLUSIONS: In a discovery-replication setting, we identified 57 proteins transethnically associated with eGFR. The revealed causal relationships are an important stepping stone in establishing testican-2 as a clinically relevant physiological marker of kidney disease progression, and point to additional proteins warranting further investigation.The KORA study was initiated and financed by the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. This work was also supported by the Biomedical Research Program at Weill Cornell Medicine in Qatar, a program funded by the Qatar Foundation. K.S. is supported by Qatar National Research Fund (QNRF) grant no. NPRPC11-0115-180010. The Nord-Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology NTNU), Nord-Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of Public Health. The HUNT part of the project re-used protein data that was originally analysed and paid for by Somalogic Inc, CO, USA. Somalogic had no role in the design and conduct of the study; collection of phenotypic data, statistical analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Professor John Danesh is funded by the National Institute for Health Research [Senior Investigator Award]. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. RNA-sequencing experiments and kidney gene expression studies were supported by British Heart Foundation project grants [PG/17/35/33001 and PG/19/16/34270] and Kidney Research UK grants [ RP_017_20180302 and RP_013_20190305] to M.T. The German Diabetes Center is funded by the German Federal Ministry of Health (Berlin, Germany), the Ministry of Culture and Science of the state North Rhine-Westphalia (Düsseldorf, Germany), and grants from the German Federal Ministry of Education and Research (Berlin, Germany) to the German Center for Diabetes Research e.V. (DZD)

    The emerging concept of a fibrotic microenvironment in CKD.

    Get PDF
    corecore