71 research outputs found

    One-dimensional half-metallic interfaces of two-dimensional honeycomb insulators

    Get PDF
    We study zigzag interfaces between insulating compounds that are isostructural to graphene, specifically II-VI, III-V, and IV-IV two-dimensional honeycomb insulators. We show that these one-dimensional interfaces are polar, with a net density of excess charge that can be simply determined by using the ideal (integer) formal valence charges, regardless of the predominant covalent character of the bonding in these materials. We justify this finding on fundamental physical grounds by analyzing the topology of the formal polarization lattice in the parent bulk materials. First-principles calculations elucidate an electronic compensation mechanism not dissimilar to oxide interfaces, which is triggered by a Zener-like charge transfer between interfaces of opposite polarity. In particular, we predict the emergence of one-dimensional electron and hole gases, which in some cases are ferromagnetic half metallic. © 2013 American Physical Society

    Electronic stopping power in LiF from first principles.

    Get PDF
    Using time-dependent density-functional theory we calculate from first principles the rate of energy transfer from a moving proton or antiproton to the electrons of an insulating material, LiF. The behavior of the electronic stopping power versus projectile velocity displays an effective threshold velocity of approximately 0.2 a.u. for the proton, consistent with recent experimental observations, and also for the antiproton. The calculated proton/antiproton stopping-power ratio is approximately 2.4 at velocities slightly above the threshold (v approximately 0.4 a.u.), as compared to the experimental value of 2.1. The projectile energy loss mechanism is observed to be extremely local

    Transformation of spin information into large electrical signals via carbon nanotubes

    Get PDF
    Spin electronics (spintronics) exploits the magnetic nature of the electron, and is commercially exploited in the spin valves of disc-drive read heads. There is currently widespread interest in using industrially relevant semiconductors in new types of spintronic devices based on the manipulation of spins injected into a semiconducting channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation such that the magnetoresistive signals are below 1%. We overcome this long standing problem in spintronics by demonstrating large magnetoresistance effects of 61% at 5 K in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 micron gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This improvement arises because the spin lifetime in nanotubes is long due the small spin-orbit coupling of carbon, because the high nanotube Fermi velocity permits the carrier dwell time to not significantly exceed this spin lifetime, because the manganite remains highly spin polarized up to the manganite-nanotube interface, and because the interfacial barrier is of an appropriate height. We support these latter statements regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire adventure in materials selection for some future spintronicsComment: Content highly modified. New title, text, conclusions, figures and references. New author include

    Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity

    Get PDF
    Ubiquitination is initiated by transfer of ubiquitin (Ub) from a ubiquitin-activating enzyme (E1) to a ubiquitin-conjugating enzyme (E2), producing a covalently linked intermediate (E2-Ub)(1). Ubiquitin ligases (E3s) of the 'really interesting new gene' (RING) class recruit E2-Ub via their RING domain and then mediate direct transfer of ubiquitin to substrates(2). By contrast, 'homologous to E6-AP carboxy terminus' (HECT) E3 ligases undergo a catalytic cysteine-dependent transthiolation reaction with E2-Ub, forming a covalent E3-Ub intermediate(3,4). Additionally, RING-between-RING (RBR) E3 ligases have a canonical RING domain that is linked to an ancillary domain. This ancillary domain contains a catalytic cysteine that enables a hybrid RING-HECT mechanism(5). Ubiquitination is typically considered a post-translational modification of lysine residues, as there are no known human E3 ligases with non-lysine activity. Here we perform activity-based protein profiling of HECT or RBR-like E3 ligases and identify the neuron-associated E3 ligase MYCBP2 (also known as PHR1) as the apparent single member of a class of RING-linked E3 ligase with esterification activity and intrinsic selectivity for threonine over serine. MYCBP2 contains two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates. Crystallographic characterization of this class of E3 ligase, which we designate RING-Cys-relay (RCR), provides insights into its mechanism and threonine selectivity. These findings implicate non-lysine ubiquitination in cellular regulation of higher eukaryotes and suggest that E3 enzymes have an unappreciated mechanistic diversity

    Expression of the Arabidopsis thaliana BBX32 Gene in Soybean Increases Grain Yield

    Get PDF
    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to deliver increased agricultural productivity

    Structural insights into the catalysis and regulation of E3 ubiquitin ligases

    Get PDF
    Covalent attachment (conjugation) of one or more ubiquitin molecules to protein substrates governs numerous eukaryotic cellular processes, including apoptosis, cell division and immune responses. Ubiquitylation was originally associated with protein degradation, but it is now clear that ubiquitylation also mediates processes such as protein–protein interactions and cell signalling depending on the type of ubiquitin conjugation. Ubiquitin ligases (E3s) catalyse the final step of ubiquitin conjugation by transferring ubiquitin from ubiquitin-conjugating enzymes (E2s) to substrates. In humans, more than 600 E3s contribute to determining the fates of thousands of substrates; hence, E3s need to be tightly regulated to ensure accurate substrate ubiquitylation. Recent findings illustrate how E3s function on a structural level and how they coordinate with E2s and substrates to meticulously conjugate ubiquitin. Insights regarding the mechanisms of E3 regulation, including structural aspects of their autoinhibition and activation are also emerging

    REVEILLE8 and PSEUDO-REPONSE REGULATOR5 Form a Negative Feedback Loop within the Arabidopsis Circadian Clock

    Get PDF
    Circadian rhythms provide organisms with an adaptive advantage, allowing them to regulate physiological and developmental events so that they occur at the most appropriate time of day. In plants, as in other eukaryotes, multiple transcriptional feedback loops are central to clock function. In one such feedback loop, the Myb-like transcription factors CCA1 and LHY directly repress expression of the pseudoresponse regulator TOC1 by binding to an evening element (EE) in the TOC1 promoter. Another key regulatory circuit involves CCA1 and LHY and the TOC1 homologs PRR5, PRR7, and PRR9. Purification of EE–binding proteins from plant extracts followed by mass spectrometry led to the identification of RVE8, a homolog of CCA1 and LHY. Similar to these well-known clock genes, expression of RVE8 is circadian-regulated with a dawn phase of expression, and RVE8 binds specifically to the EE. However, whereas cca1 and lhy mutants have short period phenotypes and overexpression of either gene causes arrhythmia, rve8 mutants have long-period and RVE8-OX plants have short-period phenotypes. Light input to the clock is normal in rve8, but temperature compensation (a hallmark of circadian rhythms) is perturbed. RVE8 binds to the promoters of both TOC1 and PRR5 in the subjective afternoon, but surprisingly only PRR5 expression is perturbed by overexpression of RVE8. Together, our data indicate that RVE8 promotes expression of a subset of EE–containing clock genes towards the end of the subjective day and forms a negative feedback loop with PRR5. Thus RVE8 and its homologs CCA1 and LHY function close to the circadian oscillator but act via distinct molecular mechanisms

    Molecular dynamics simulations of non-equilibrium systems

    Get PDF
    Peer reviewe
    • …
    corecore