199 research outputs found

    Toll-like receptor-2 deficiency enhances non-alcoholic steatohepatitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously we reported that mice deficient in toll-like receptor 4 (TLR-4) signalling were protected from diet-induced non-alcoholic steatohepatitis (NASH). Another member of the toll-like receptor family, TLR-2, has been shown to play a role in lipid trafficking via uptake of diacylated lipoproteins. However, a role for TLR-2 in NASH has not been elucidated. The objectives of the current study were to examine the influence of dietary fat quality and TLR-2 on NASH pathogenesis.</p> <p>Methods</p> <p>Steatohepatitis was induced in male Db, C57BL/6 and TLR-2<sup>-/- </sup>mice by feeding an L-amino acid-defined diet that was deficient in methionine and choline (MCDD). Mice fed the base diet supplemented with methionine and choline (control diet; CD) were used as controls. To determine the role of fat quality, MCDD was enriched with polyunsaturated corn oil (PUFA) or coconut oil that is comprised mostly of saturated fat (SAFA); the total amount of each fat was 112.9 g/kg of diet. After 8 weeks of feeding CD or MCDD, hepatic steatosis, inflammation and necrosis were evaluated in histological sections. Total RNA was extracted from frozen liver samples and mRNA expression of TNFα, collagen α1, IL-10, peroxisome proliferator-activated receptor-γ (PPAR-γ), TLR-4, and CD14, was analyzed via real-time PCR. Protein levels of TLR-2 were analyzed by western blot.</p> <p>Results</p> <p>Panlobular macrovessicular steatosis and diffuse leukocyte infiltration were noted in PUFA-fed Db mice. Histological scores demonstrated significantly less steatosis, inflammation and necrosis in SAFA-fed mice of all mouse strains. However, compared to wild type mice, hepatocellular damage was notably more severe in TLR-2<sup>-/- </sup>mice. Consistent with histological findings, mRNA expression of TNFα was elevated by approximately 3-fold in TLR-2<sup>-/- </sup>mice; PPAR-γ expression was blunted in this strain compared to wild type. Expression of the matrix protein collagen αI was also significantly higher in TLR-2<sup>-/- </sup>mice, indicating a pro-fibrogenic state. Sensitivity to steatohepatitis due to dietary fat or TLR-2 deficiency correlated significantly with alterations in the expression of TLR-4 as well as the co-receptor CD-14.</p> <p>Conclusions</p> <p>Our findings suggest that dietary saturated fat plays a protective role against MCDD-induced steatohepatitis, whereas TLR-2 deficiency exacerbated NASH. The mechanism underlying the response to dietary fat and TLR-2 likely involves altered signalling via the TLR-4 pathway.</p

    Inhibition of SIRT1 Reactivates Silenced Cancer Genes without Loss of Promoter DNA Hypermethylation

    Get PDF
    The class III histone deactylase (HDAC), SIRT1, has cancer relevance because it regulates lifespan in multiple organisms, down-regulates p53 function through deacetylation, and is linked to polycomb gene silencing in Drosophila. However, it has not been reported to mediate heterochromatin formation or heritable silencing for endogenous mammalian genes. Herein, we show that SIRT1 localizes to promoters of several aberrantly silenced tumor suppressor genes (TSGs) in which 5′ CpG islands are densely hypermethylated, but not to these same promoters in cell lines in which the promoters are not hypermethylated and the genes are expressed. Heretofore, only type I and II HDACs, through deactylation of lysines 9 and 14 of histone H3 (H3-K9 and H3-K14, respectively), had been tied to the above TSG silencing. However, inhibition of these enzymes alone fails to re-activate the genes unless DNA methylation is first inhibited. In contrast, inhibition of SIRT1 by pharmacologic, dominant negative, and siRNA (small interfering RNA)–mediated inhibition in breast and colon cancer cells causes increased H4-K16 and H3-K9 acetylation at endogenous promoters and gene re-expression despite full retention of promoter DNA hypermethylation. Furthermore, SIRT1 inhibition affects key phenotypic aspects of cancer cells. We thus have identified a new component of epigenetic TSG silencing that may potentially link some epigenetic changes associated with aging with those found in cancer, and provide new directions for therapeutically targeting these important genes for re-expression

    Using ESTs to improve the accuracy of de novo gene prediction

    Get PDF
    BACKGROUND: ESTs are a tremendous resource for determining the exon-intron structures of genes, but even extensive EST sequencing tends to leave many exons and genes untouched. Gene prediction systems based exclusively on EST alignments miss these exons and genes, leading to poor sensitivity. De novo gene prediction systems, which ignore ESTs in favor of genomic sequence, can predict such "untouched" exons, but they are less accurate when predicting exons to which ESTs align. TWINSCAN is the most accurate de novo gene finder available for nematodes and N-SCAN is the most accurate for mammals, as measured by exact CDS gene prediction and exact exon prediction. RESULTS: TWINSCAN_EST is a new system that successfully combines EST alignments with TWINSCAN. On the whole C. elegans genome TWINSCAN_EST shows 14% improvement in sensitivity and 13% in specificity in predicting exact gene structures compared to TWINSCAN without EST alignments. Not only are the structures revealed by EST alignments predicted correctly, but these also constrain the predictions without alignments, improving their accuracy. For the human genome, we used the same approach with N-SCAN, creating N-SCAN_EST. On the whole genome, N-SCAN_EST produced a 6% improvement in sensitivity and 1% in specificity of exact gene structure predictions compared to N-SCAN. CONCLUSION: TWINSCAN_EST and N-SCAN_EST are more accurate than TWINSCAN and N-SCAN, while retaining their ability to discover novel genes to which no ESTs align. Thus, we recommend using the EST versions of these programs to annotate any genome for which EST information is available. TWINSCAN_EST and N-SCAN_EST are part of the TWINSCAN open source software package

    A verification protocol for the probe sequences of Affymetrix genome arrays reveals high probe accuracy for studies in mouse, human and rat

    Get PDF
    BACKGROUND: The Affymetrix GeneChip technology uses multiple probes per gene to measure its expression level. Individual probe signals can vary widely, which hampers proper interpretation. This variation can be caused by probes that do not properly match their target gene or that match multiple genes. To determine the accuracy of Affymetrix arrays, we developed an extensive verification protocol, for mouse arrays incorporating the NCBI RefSeq, NCBI UniGene Unique, NIA Mouse Gene Index, and UCSC mouse genome databases. RESULTS: Applying this protocol to Affymetrix Mouse Genome arrays (the earlier U74Av2 and the newer 430 2.0 array), the number of sequence-verified probes with perfect matches was no less than 85% and 95%, respectively; and for 74% and 85% of the probe sets all probes were sequence verified. The latter percentages increased to 80% and 94% after discarding one or two unverifiable probes per probe set, and even further to 84% and 97% when, in addition, allowing for one or two mismatches between probe and target gene. Similar results were obtained for other mouse arrays, as well as for human and rat arrays. Based on these data, refined chip definition files for all arrays are provided online. Researchers can choose the version appropriate for their study to (re)analyze expression data. CONCLUSION: The accuracy of Affymetrix probe sequences is higher than previously reported, particularly on newer arrays. Yet, refined probe set definitions have clear effects on the detection of differentially expressed genes. We demonstrate that the interpretation of the results of Affymetrix arrays is improved when the new chip definition files are used

    Symptomatic and Asymptomatic Neurological Complications of Infective Endocarditis: Impact on Surgical Management and Prognosis

    Get PDF
    International audienceObjectives:Symptomatic neurological complications (NC) are a major cause of mortality in infective endocarditis (IE) but the impact of asymptomatic complications is unknown. We aimed to assess the impact of asymptomatic NC (AsNC) on the management and prognosis of IE.Methods: From the database of cases collected for a population-based study on IE, we selected 283 patients with definite left-sided IE who had undergone at least one neuroimaging procedure (cerebral CT scan and/or MRI) performed as part of initial evaluation.Results Among those 283 patients, 100 had symptomatic neurological complications (SNC) prior to the investigation, 35 had an asymptomatic neurological complications (AsNC), and 148 had a normal cerebral imaging (NoNC). The rate of valve surgery was 43% in the 100 patients with SNC, 77% in the 35 with AsNC, and 54% in the 148 with NoNC (p<0.001). In-hospital mortality was 42% in patients with SNC, 8.6% in patients with AsNC, and 16.9% in patients with NoNC (p<0.001). Among the 135 patients with NC, 95 had an indication for valve surgery (71%), which was performed in 70 of them (mortality 20%) and not performed in 25 (mortality 68%). In a multivariate adjusted analysis of the 135 patients with NC, age, renal failure, septic shock, and IE caused by S. aureus were independently associated with in-hospital and 1-year mortality. In addition SNC was an independent predictor of 1-year mortality.Conclusions The presence of NC was associated with a poorer prognosis when symptomatic. Patients with AsNC had the highest rate of valve surgery and the lowest mortality rate, which suggests a protective role of surgery guided by systematic neuroimaging results

    SpiroESTdb: a transcriptome database and online tool for sparganum expressed sequences tags

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sparganum (plerocercoid of <it>Spirometra erinacei</it>) is a parasite that possesses the remarkable ability to survive by successfully modifying its physiology and morphology to suit various hosts and can be found in various tissues, even the nervous system. However, surprisingly little is known about the molecular function of genes that are expressed during the course of the parasite life cycle. To begin to decipher the molecular processes underlying gene function, we constructed a database of expressed sequence tags (ESTs) generated from sparganum.</p> <p>Findings</p> <p>SpiroESTdb is a web-based information resource that is built upon the annotation and curation of 5,655 ESTs data. SpiroESTdb provides an integrated platform for expressed sequence data, expression dynamics, functional genes, genetic markers including single nucleotide polymorphisms and tandem repeats, gene ontology and KEGG pathway information. Moreover, SpiroESTdb supports easy access to gene pages, such as (i) curation and query forms, (ii) <it>in </it><it>silico </it>expression profiling and (iii) BLAST search tools. Comprehensive descriptions of the sparganum content of all sequenced data are available, including summary reports. The contents of SpiroESTdb can be viewed and downloaded from the web (<url>http://pathod.cdc.go.kr/spiroestdb</url>).</p> <p>Conclusions</p> <p>This integrative web-based database of sequence data, functional annotations and expression profiling data will serve as a useful tool to help understand and expand the characterization of parasitic infections. It can also be used to identify potential industrial drug targets and vaccine candidate genes.</p

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    An internal ribosome entry site in the 5′ untranslated region of epidermal growth factor receptor allows hypoxic expression

    Get PDF
    The expression of epidermal growth factor receptor (EGFR/ERBB1/HER1) is implicated in the progress of numerous cancers, a feature that has been exploited in the development of EGFR antibodies and EGFR tyrosine kinase inhibitors as anti-cancer drugs. However, EGFR also has important normal cellular functions, leading to serious side effects when EGFR is inhibited. One damaging characteristic of many oncogenes is the ability to be expressed in the hypoxic conditions associated with the tumour interior. It has previously been demonstrated that expression of EGFR is maintained in hypoxic conditions via an unknown mechanism of translational control, despite global translation rates generally being attenuated under hypoxic conditions. In this report, we demonstrate that the human EGFR 5′ untranslated region (UTR) sequence can initiate the expression of a downstream open reading frame via an internal ribosome entry site (IRES). We show that this effect is not due to either cryptic promoter activity or splicing events. We have investigated the requirement of the EGFR IRES for eukaryotic initiation factor 4A (eIF4A), which is an RNA helicase responsible for processing RNA secondary structure as part of translation initiation. Treatment with hippuristanol (a potent inhibitor of eIF4A) caused a decrease in EGFR 5′ UTR-driven reporter activity and also a reduction in EGFR protein level. Importantly, we show that expression of a reporter gene under the control of the EGFR IRES is maintained under hypoxic conditions despite a fall in global translation rates
    corecore