574 research outputs found
Sustainable Development Stakeholder Networks for Organisational Change in Higher Education Institutions: A Case Study from the UK
Progressing towards sustainable development remains a key global challenge. And yet, the various interpretations of the concept of sustainable development and the questions it raises about economic growth make its implementation difficult. Higher education institutions may help to overcome these difficulties by developing new processes of change. However, to achieve this they need to integrate sustainable development in all their areas of activity. The aim of this paper was to develop new insights into organisational change processes in universities relating to sustainable development. Contributing to this aim, this paper reports on a case study of United Kingdom higher education drawing on findings and conclusions from a survey of their policy frameworks relating to sustainable development. The method comprised a critical policy analysis in order to identify, differentiate and categorise stakeholder interactions. The data generated comprised the range of higher education stakeholders and the network of interactions that they formed. Theoretical insights from social network analysis, stakeholder theory and the normative business model were used to find opportunities to address the difficulties in the implementation of sustainable development. Results suggested that the existing networks identified in the policy frameworks may not support the effective integration of sustainable development in higher education. Low-density of the national networks; the lack of a clear governance vocabulary for national policy frameworks; and the lack of explicit funding flows between organisations all pose problems for organisational change towards sustainable development in higher education
Warm strange hadronic matter in an effective model with a weak Y-Y interaction
An effective model is used to study the equation of state of warm strange
hadronic matter with nucleons, Lambda-hyperons, Xi-hyperons, sigmastar and phi.
In the calculation, a newest weak Y-Y interaction deduced from the recent
observation of a He double hypernucleus is adopted. Employing this effective
model, the results with strong Y-Y interaction and weak Y-Y interaction are
compared.Comment: 9 pages, 9 figure
What Does Free Space Lambda-Lambda Interaction Predict for Lambda-Lambda Hypernuclei?
Data on Lambda-Lambda hypernuclei provide a unique method to learn details on
the strangeness S =-2 sector of the baryon-baryon interaction. From the free
space Bonn-Julich potentials, determined from data on baryon-baryon scattering
in the S=0,-1 channels, we construct an interaction in the S =-2 sector to
describe the experimentally known Lambda-Lambda hypernuclei. After including
short--range (Jastrow) and RPA correlations, we find masses for these
Lambda-Lambda hypernuclei in a reasonable agreement with data, taking into
account theoretical and experimental uncertainties. Thus, we provide a natural
extension, at low energies, of the Bonn-Julich OBE potentials to the S =-2
channel.Comment: 4 pages, 2 figures, revtex4 style. Minor changes in conclusions.
References updated. Accepted in Phys. Rev. Let
Nuclear and nucleon transitions of the H di-baryon
We consider 3 types of processes pertinent to the phenomenology of an H
di-baryon: conversion of two 's in a doubly-strange hypernucleus to an
H, decay of the H to two baryons, and -- if the H is light enough -- conversion
of two nucleons in a nucleus to an H. We compute the spatial wavefunction
overlap using the Isgur-Karl and Bethe-Goldstone wavefunctions, and treat the
weak interactions phenomenologically. The observation of decays from
doubly-strange hypernuclei puts a constraint on the H wavefunction which is
plausibly satisfied. In this case the H is very long-lived as we calculate. An
absolutely stable H is not excluded at present. SuperK can provide valuable
limits
Neutron Star Constraints on the H Dibaryon
We study the influence of a possible H dibaryon condensate on the equation of
state and the overall properties of neutron stars whose population otherwise
contains nucleons and hyperons. In particular, we are interested in the
question of whether neutron stars and their masses can be used to say anything
about the existence and properties of the H dibaryon. We find that the equation
of state is softened by the appearance of a dibaryon condensate and can result
in a mass plateau for neutron stars. If the limiting neutron star mass is about
that of the Hulse-Taylor pulsar a condensate of H dibaryons of vacuum mass 2.2
GeV and a moderately attractive potential in the medium could not be ruled out.
On the other hand, if the medium potential were even moderately repulsive, the
H, would not likely exist in neutron stars. If neutron stars of about 1.6 solar
mass were known to exist, attractive medium effects for the H could be ruled
out. Certain ranges of dibaryon mass and potential can be excluded by the mass
of the Hulse-Taylor pulsar which we illustrate graphically.Comment: Revised by the addition of a figure showing the region of dibaryon
mass and potential excluded by the Hulse-Taylor pulsar. 18 pages, 11 figures,
latex (submitted to Phys. Rev. C
Novel Weak Decays in Doubly Strange Systems
The strangeness-changing () weak baryon-baryon interaction is
studied through the nonmesonic weak decay of double- hypernuclei.
Besides the usual nucleon-induced decay we discuss novel
hyperon-induced decay modes and . These reactions provide unique access to the exotic
K and K vertices which place new constraints
on Chiral Pertubation Theory (PT) in the weak SU(3) sector. Within a
meson-exchange framework, we use the pseudoscalar octet for the
long-range part while parametrizing the short-range part through the vector
mesons . Realistic baryon-baryon forces for the and
-2 sectors account for the strong interaction in the initial and final states.
For He the new hyperon-induced decay modes account for up
to 4% of the total nonmesonic decay rate. Predictions are made for all possible
nonmesonic decay modes.Comment: 19 pages, 2 ps figures, 9 table
Arctic system on trajectory to new state
The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this “super interglacial” state
Dihyperon in Chiral Colour Dielectric Model
The mass of dihyperon with spin, parity and isospin
is calculated in the framework of Chiral colour dielectric model. The wave
function of the dihyperon is expressed as a product of two colour-singlet
baryon clusters. Thus the quark wave functions within the cluster are
antisymmetric. Appropriate operators are then used to antisymmetrize
inter-cluster quark wave functions. The radial part of the quark wavefunctions
are obtained by solving the the quark and dielectric field equations of motion
obtained in the Colour dielectric model. The mass of the dihyperon is computed
by including the colour magnetic energy as well as the energy due to meson
interaction. The recoil correction to the dihyperon mass is incorporated by
Peierls-Yoccoz technique. We find that the mass of the dihyperon is smaller
than the threshold by over 100 MeV. The implications of our
results on the present day relativistic heavy ion experiments is discussed.Comment: LaTeX, 13 page
Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell
A model based on chiral SU(3)-symmetry in nonlinear realisation is used for
the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange
nuclear objects (so called MEMOs). The model works very well in the case of
nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic
observables which are known for nuclei and hypernuclei are reproduced
satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next
shell closures in the region of superheavy nuclei. The calculations have been
performed in self-consistent relativistic mean field approximation assuming
spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure
Detectability of Strange Matter in Heavy Ion Experiments
We discuss the properties of two distinct forms of hypothetical strange
matter, small lumps of strange quark matter (strangelets) and of hyperon matter
(metastable exotic multihypernuclear objects: MEMOs), with special emphasis on
their relevance for present and future heavy ion experiments. The masses of
small strangelets up to A = 40 are calculated using the MIT bag model with
shell mode filling for various bag parameters. The strangelets are checked for
possible strong and weak hadronic decays, also taking into account multiple
hadron decays. It is found that strangelets which are stable against strong
decay are most likely highly negative charged, contrary to previous findings.
Strangelets can be stable against weak hadronic decay but their masses and
charges are still rather high. This has serious impact on the present high
sensitivity searches in heavy ion experiments at the AGS and CERN facilities.
On the other hand, highly charged MEMOs are predicted on the basis of an
extended relativistic mean-field model. Those objects could be detected in
future experiments searching for short-lived, rare composites. It is
demonstrated that future experiments can be sensitive to a much wider variety
of strangelets.Comment: 26 pages, 5 figures, uses RevTeX and epsf.st
- …