551 research outputs found

    A discharge summary adapted to the frail elderly to ensure transfer of relevant information from the hospital to community settings: a model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elderly patients admitted to Geriatric Assessment Units (GAU) typically have complex health problems that require multi-professional care. Considering the scope of human and technological resources solicited during hospitalization, as well as the many risks and discomforts incurred by the patient, it is important to ensure the communication of pertinent information for quality follow-up care in the community setting. Conventional discharge summaries do not adequately incorporate the elements specific to an aging clientele.</p> <p>Objective</p> <p>To develop a discharge summary adapted to the frail elderly patient (D-SAFE) in order to communicate relevant information from hospital to community services.</p> <p>Methods</p> <p>The items to be included in the D-SAFE have been determined by means of a modified Delphi method through consultation with clinical experts from GAUs (11 physicians and 5 pharmacists) and the community (10 physicians and 5 pharmacists). The consensus analysis and the level of agreement among the experts were reached using a modified version of the RAND<sup>®</sup>/University of California at Los Angeles appropriateness method.</p> <p>Results</p> <p>A consensus was reached after two rounds of consultation for all the items evaluated, where none was judged «inappropriate». Among the items proposed, four were judged to be « uncertain » and were eliminated from the final D-SAFE, which was divided into two sections: the medical discharge summary (22 main items) and the discharge prescription (14 main items).</p> <p>Conclusions</p> <p>The D-SAFE was developed as a more comprehensive tool specifically designed for GAU inpatients. Additional research to validate its acceptability and practical impact on the continuity of care is needed before it can be recommended for use on a broader scale.</p

    LD-Spline: Mapping SNPs on genotyping platforms to genomic regions using patterns of linkage disequilibrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene-centric analysis tools for genome-wide association study data are being developed both to annotate single locus statistics and to prioritize or group single nucleotide polymorphisms (SNPs) prior to analysis. These approaches require knowledge about the relationships between SNPs on a genotyping platform and genes in the human genome. SNPs in the genome can represent broader genomic regions via linkage disequilibrium (LD), and population-specific patterns of LD can be exploited to generate a data-driven map of SNPs to genes.</p> <p>Methods</p> <p>In this study, we implemented LD-Spline, a database routine that defines the genomic boundaries a particular SNP represents using linkage disequilibrium statistics from the International HapMap Project. We compared the LD-Spline haplotype block partitioning approach to that of the four gamete rule and the Gabriel et al. approach using simulated data; in addition, we processed two commonly used genome-wide association study platforms.</p> <p>Results</p> <p>We illustrate that LD-Spline performs comparably to the four-gamete rule and the Gabriel et al. approach; however as a SNP-centric approach LD-Spline has the added benefit of systematically identifying a genomic boundary for each SNP, where the global block partitioning approaches may falter due to sampling variation in LD statistics.</p> <p>Conclusion</p> <p>LD-Spline is an integrated database routine that quickly and effectively defines the genomic region marked by a SNP using linkage disequilibrium, with a SNP-centric block definition algorithm.</p

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Common variants of the beta and gamma subunits of the epithelial sodium channel and their relation to plasma renin and aldosterone levels in essential hypertension

    Get PDF
    BACKGROUND: Rare mutations of the epithelial sodium channel (ENaC) result in the monogenic hypertension form of Liddle's syndrome. We decided to screen for common variants in the ENaC βand γ subunits in patients with essential hypertension and to relate their occurrence to the activity of circulating renin-angiotensin-aldosterone system. METHODS: Initially, DNA samples from 27 patients with low renin/low aldosterone hypertension were examined. The DNA variants were subsequently screened for in 347 patients with treatment-resistant hypertension, 175 male subjects with documented long-lasting normotension and 301 healthy Plasma renin and aldosterone levels were measured under baseline conditions and during postural and captopril challenge tests. RESULTS: Two commonly occurring βENaC variants (G589S and a novel intronic i12-17CT substitution) and one novel γENaC variant (V546I) were detected. One of these variants occurred in a heterozygous form in 32 patients, a prevalence (9.2%) significantly higher than that in normotensive males (2.9%, p = 0.007) and blood donors (3.0%, p = 0.001). βENaC i12-17CT was significantly more prevalent in the hypertension group than in the two control groups combined (4.6% vs. 1.1%, p = 0.001). When expressed in Xenopus oocytes, neither of the two ENaC amino acid-changing variants showed a significant difference in activity compared with ENaC wild-type. No direct evidence for a mRNA splicing defect could be obtained for the βENaC intronic variant. The ratio of daily urinary potassium excretion to upright and mean (of supine and upright values) plasma renin activity was higher in variant allele carriers than in non-carriers (p = 0.034 and p = 0.048). CONCLUSIONS: At least 9% of Finnish patients with hypertension admitted to a specialized center carry genetic variants of β and γENaC, a three times higher prevalence than in the normotensive individuals or in random healthy controls. Patients with the variant alleles showed an increased urinary potassium excretion rate in relation to their renin levels

    Post-natal parental care in a Cretaceous diapsid from northeastern China

    Get PDF
    Post-natal parental care seems to have evolved numerous times in vertebrates. Among extant amniotes, it is present in crocodilians, birds, and mammals. However, evidence of this behavior is extremely rare in the fossil record and is only reported for two types of dinosaurs, and a varanopid ‘pelycosaur’. Here we report new evidence for post-natal parental care in Philydrosaurus, a choristodere, from the Yixian Formation of western Liaoning Province, China. We review the fossil record of reproduction in choristoderes, and this represents the oldest record of post-natal parental care in diapsids to our knowledge

    <em>CYP2D6 </em>genotype and adjuvant tamoxifen:meta-analysis of heterogeneous study populations

    Get PDF

    Interaction effects on common measures of sensitivity:Choice of measure, type I error, and power

    Get PDF
    Here we use simulation to assess previously unaddressed problems in the assessment of statistical interactions in detection and recognition tasks. The proportion of hits and false-alarms made by an observer on such tasks is affected by both their sensitivity and bias, and numerous measures have been developed to separate out these two factors. Each of these measures makes different assumptions regarding the underlying process and different predictions as to how false-alarm and hit rates should covary. Previous simulations have shown that choice of an inappropriate measure can lead to inflated type I error rates, or reduced power, for main effects, provided there are differences in response bias between the conditions being compared. Interaction effects pose a particular problem in this context. We show that spurious interaction effects in analysis of variance can be produced, or true interactions missed, even in the absence of variation in bias. Additional simulations show that variation in bias complicates patterns of type I error and power further. This under-appreciated fact has the potential to greatly distort the assessment of interactions in detection and recognition experiments. We discuss steps researchers can take to mitigate their chances of making an error

    A Bivariate Genome-Wide Approach to Metabolic Syndrome: STAMPEED Consortium

    Get PDF
    OBJECTIVE The metabolic syndrome (MetS) is defined as concomitant disorders of lipid and glucose metabolism, central obesity, and high blood pressure, with an increased risk of type 2 diabetes and cardiovascular disease. This study tests whether common genetic variants with pleiotropic effects account for some of the correlated architecture among five metabolic phenotypes that define MetS. RESEARCH DESIGN AND METHODS Seven studies of the STAMPEED consortium, comprising 22,161 participants of European ancestry, underwent genome-wide association analyses of metabolic traits using a panel of ∼2.5 million imputed single nucleotide polymorphisms (SNPs). Phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS in pairwise combinations. Individuals exceeding the NCEP thresholds for both traits of a pair were considered affected. RESULTS Twenty-nine common variants were associated with MetS or a pair of traits. Variants in the genes LPL, CETP, APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and LOC100129150 were further tested for their association with individual qualitative and quantitative traits. None of the 16 top SNPs (one per gene) associated simultaneously with more than two individual traits. Of them 11 variants showed nominal associations with MetS per se. The effects of 16 top SNPs on the quantitative traits were relatively small, together explaining from ∼9% of the variance in triglycerides, 5.8% of high-density lipoprotein cholesterol, 3.6% of fasting glucose, and 1.4% of systolic blood pressure. CONCLUSIONS Qualitative and quantitative pleiotropic tests on pairs of traits indicate that a small portion of the covariation in these traits can be explained by the reported common genetic variants
    corecore