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Abstract

Here we use simulation to assess previously unaddressed problems in the assessment of

statistical interactions in detection and recognition tasks. The proportion of hits and

false-alarms made by an observer on such tasks is affected by both their sensitivity and

bias, and numerous measures have been developed to separate out these two factors.

Each of these measures makes different assumptions regarding the underlying process

and different predictions as to how false-alarm and hit rates should covary. Previous

simulations have shown that choice of an inappropriate measure can lead to inflated

type I error rates, or reduced power, for main effects, provided there are differences in

response bias between the conditions being compared. Interaction effects pose a

particular problem in this context. We show that spurious interaction effects in analysis

of variance can be produced, or true interactions missed, even in the absence of

variation in bias. Additional simulations show that variation in bias complicates

patterns of type I error and power further. This under-appreciated fact has the

potential to greatly distort the assessment of interactions in detection and recognition

experiments. We discuss steps researchers can take to mitigate their chances of making

an error. (194 words)

Keywords: Recognition, Detection, Interactions, Type I Error, Type II Error,

Power, Sensitivity, Bias
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Interaction Effects on Common Measures of Sensitivity: Choice of Measure, Type I

Error and Power

In binary choice recognition and detection paradigms, observers are presented with

a sequence of stimuli and are required to distinguish targets (for example, previously

studied items) from non-targets (for example, new items). Performance on such tasks is

captured by the proportion of target responses conditional on whether the probe was

actually a target or not. Participants make a hit if they correctly identify a target,

whereas they make a false-alarm if they incorrectly characterize a non-target. The

proportion of hits and false-alarms will not only be influenced by an observer’s ability to

distinguish targets and non-targets (which is usually of primary interest to researchers),

but also by their preference for one response option over another. Thus, researchers

regularly adopt measures that aim to separate out the sensitivity of observers from their

response bias. In order to do this, these commonly used measures make particular

assumptions about the process underlying discrimination. If these assumptions are

unfounded then researchers are at risk of concluding that two conditions differ in

sensitivity when truly they differ in bias, or they may miss true differences between

conditions (Rotello, Masson, & Verde, 2008; Schooler & Shiffrin, 2005).

Here we consider the assessment of interactions with commonly used single point

estimates of sensitivity (d′, Pr, A′) and find that this presents a particular problem not

recognized before in the literature. Typically researchers interested in differences

between groups will compare two or more conditions of theoretical interest and conduct

an analysis of variance on the resulting sensitivity estimates. Interaction effects, such

that certain groups do better or worse under certain conditions, are often interpreted as

indicating that a certain process functions more or less well in certain populations.

Unfortunately, if the chosen outcome measure is not appropriate for the data at hand

the detected interactions may be spurious and real interactions may be missed entirely.

We also show that this can happen in the absence of variation in response bias; that is,

even if all participants adopt the same decision strategy in all conditions. Some basic

difficulties in interpreting interactions such as these were well explained by Loftus
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(1978), but remain under-appreciated (Wagenmakers, Krypotos, Criss, & Iverson,

2012). Here we illustrate a previously unarticulated problem in interpreting interactions

from binary choice detection or recognition experiments that build on these earlier

observations.

The article is organized as follows; firstly, three commonly applied measures of

sensitivity (d′, Pr, A′) and their assumptions are described. We then discuss previous

simulation studies that have looked at the issue of main effects with point estimates of

sensitivity and outline the rationale for the present simulations examining interactions.

Following this, we describe type I error and power simulations for the three oft-used

measures under different generative assumptions. Extending the previous simulations

on main effects, the present work demonstrates that the interpretation of interaction

effects poses an even greater problem if the selected measure is inappropriate for the

data at hand. Specifically, problems with interactions can arise even in the absence of

variation in response bias. Finally, we discuss ways in which researchers may choose a

measure which is appropriate for their data, provide an empirical example of how

conclusions are liable to be affected if they don’t, and discuss approaches if no

reasonable measure can be identified.

Commonly used Measures and their Assumptions

Two broad classes of model dominate the analysis of sensitivity in recognition or

detection paradigms; namely, the signal detection and high-threshold accounts. We

outline these models in turn along with their frequently used estimators of sensitivity.1

In addition, we discuss a measure outside of these models that is often used in an

attempt to avoid making assumptions about the underlying discrimination process, and

the arguments that have been made against this measure.
1The present analysis deals entirely with commonly used point measures of sensitivity derived from

accuracy data (i.e. hits and false-alarms). It should be noted that there are a range of models that allow
the joint analysis of accuracy and reactions times, for example the diffusion model (Ratcliff, 1978; Ratcliff,
Smith, Brown, & McKoon, 2016) and linear ballistic accumulator model (Brown & Heathcote, 2008).
Where applicable these models provide a range of informative parameters and can address questions
beyond mere analysis of accuracy (e.g. speed-accuracy trade offs). There are highly accessible tutorials,
as well as simplified versions of these models geared towards investigating empirical effects, for interested
readers to pursue (see Wagenmakers, Van Der Maas, & Grasman, 2007; van Ravenzwaaij, Donkin, &
Vandekerckhove, 2017; Donkin, Brown, & Heathcote, 2011).
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Signal Detection Theory. Accounts based on signal detection theory propose

that items are evaluated on a continuous decision variable (Green & Swets, 1966;

Tanner Jr & Swets, 1954). This evaluation is noisy (either due to the nature of the

stimulus or the internal processing) but targets are expected to yield greater values on

the decision variable than non-targets, producing two distributions (see Figure 1). The

observer must establish a criterion, above which they respond target and below which

they respond non-target. Applications of signal detection theory tend to assume that

the underlying evidence distributions are Gaussian as depicted in Figure 1. In this

parameterization, the difference between the means of the two distributions is given by

d. This parameter captures the sensitivity of the observer, which is their ability to

distinguish target and non-target items. As depicted in Figure 1, sensitivity is given in

units of the standard deviation of the non-target distribution, which is fixed to 1

(without loss of generality). To account for the possibility that the two distributions

have different variances, an additional parameter, s, controls the ratio of the non-target

to target standard deviations. Consequently, the standard deviation of the target

distribution is 1/s (as the non-target standard deviation is fixed to 1. See Figure 1).

Here the criterion, k, is placed relative to the mid point between the means of the two

distributions. According to this account, when a stimulus is presented, it elicits a value

along the decision variable. As the observer does not know from which distribution this

value has been sampled, they respond non-target if it is smaller than k and target if it is

greater. Thus, negative k values indicate a liberal criterion (a bias toward responding

target), whereas positive values indicate a more conservative criterion (a bias toward

responding non-target).

Assuming the distributions are normal, the probability an observer makes a hit is

given by h = Φ[(d/2− k)/(1/s)], where Φ is the standard normal cumulative

distribution function. Related to Figure 1, this gives the area of both the blue and

green shaded areas (the area of the target distribution above the criterion). The

probability of making a false-alarm is given by, f = Φ(−d/2− k). This is the blue

shaded area in Figure 1 (the area of the non-target distribution above the criterion). In
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−4 −3 −2 −1 0 1 2 3 4

Non−Target Target

d

k

σN = 1 σT = 1/s

Figure 1 . Illustration of Gaussian signal detection theory. The parameter d determines
the distance between the means of the non-target and target distributions, while σN

and σT give the standard deviations of these distributions. Finally, k is the criterion at
which the observer goes from responding non-target to target. In this example, d = 1.5,
k = 0.5, and s = 1 (equal variance). Hit rate is equal to the area of both the green and
blue shaded areas. False-alarm rate is equal to the area of the blue area only.

order to derive a closed form estimator that translates pairs of false-alarm and hit rates

into sensitivity, irrespective of response bias, it is necessary to restrict the s parameter

(which controls the relative variance of the target and non-target distributions).

Figure 1 depicts the case where s = 1 and, consequently, the distributions have equal

variance. In this case a simple estimate of sensitivity can be determined by rearranging

the above equations, d′ = z(h)− z(f), where z is the quantile function of the standard

normal distribution (z(x) = Φ−1(x)). As the equation shows, d′ only serves as an

estimate of d provided that the two distributions are standard normals with equal

variances, otherwise sensitivity and bias will be confounded (Swets, 1986b).

Each account of the discrimination process predicts different receiver operating

characteristic or ROC curves. These theoretical ROC curves plot the relationship
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Figure 2 . ROC curves predicted by (A) the Gaussian equal variance signal detection
theory (σN = σT ), (B) two high-threshold theory (PN = PT ), and (C) the measure, A′.

between false-alarm rate and hit rate for a fixed level of sensitivity across all levels of

bias. Figure 2A presents several ROC curves for different values of d′. This measure

predicts symmetrical, curved ROCs that become more compressed to the top left of

ROC space with incrementally increasing sensitivity. Relaxing the assumption of

equal-variance (s 6= 1) allows for asymmetrical ROC curves, that have often been

observed in the literature (Ratcliff, Sheu, & Gronlund, 1992; Swets, 1986a). The form of

these ROC plots becomes particularly important when discussing evidence for

interactions, as will be shown later in detail.

High-Threshold Theory. Accounts based on threshold theory propose that,

rather than items being evaluated on a continuum, observers enter one of a handful of

discrete states (Luce, 1963; Snodgrass & Corwin, 1988). Consequently, the crucial

quantities of interest are the probabilities of entering these states. According to this

account, observers are said to either detect a certain state of affairs or be in a state of

complete information loss and must guess. The most popular variant of threshold

theory states that observers cannot detect an incorrect state of affairs (i.e. they cannot

enter a target detect state when presented with a non-target and vice versa); that is,

the thresholds are ‘high’ (see Snodgrass & Corwin, 1988). Figure 3 presents the

two-high threshold (THT) account of the detection process. The left tree indicates that,

when a target is presented (as denoted by T ), an observer has a specific probability, PT ,

of detecting this state of affairs, in which case they certainly respond target and make a
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T
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!D

hit

miss

N

DN correct rejection

!D

false alarm

correct rejection

PT

1− PT Br

1−Br

PN

1− PN Br

1−Br

Figure 3 . Illustration of the two-high threshold (THT) theory of detection. Diamonds
refer to the nature of the item presented (T = target, N = non-target), circles refer to
the internal state of the observer (DT = detect target, DN = detect non-target, !D = no
detection), and rectangles refer to category of response made. Note that targets cannot
lead to the detect non-target state and vice versa, making the model ‘high threshold’.

hit. On some proportion of trials (1− PT ), however, the observer does not enter the

detect state, and must guess. The probability that the observer correctly guesses that

the item is old is given by, Br. Zero bias towards responding target over non-target is

reflected in a Br of 0.5. The probability of correctly responding target, then, is the sum

of the branches in Figure 3 ending in a target response, h = PT + (1− PT )Br. On trials

where a non-target is presented (the right tree of Figure 3 beginning N), observers

detect this at a rate of, PN . Therefore, a false-alarm can only occur if the detect

threshold is not passed and participants incorrectly guess. The probability of this

occurring is given by, f = (1− PN)Br.

Constraints are needed to arrive at a point estimate of sensitivity from a pair of

observed false-alarm and hit rates. Assuming that the probability of entering the target

detection state is the same as the probability of entering the non-target detection state

(PT = PN , referred to as Pr: Snodgrass & Corwin, 1988) results in a simple measure of

discriminability, Pr = h− f , which is commonly referred to as hit rate corrected for

guessing (or corrected recognition).

The two-high threshold model of recognition can also be used to justify the use of
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proportion correct, p(c), as an index of sensitivity. As noted by Macmillan and

Creelman (2005), the formula for proportion correct can be written as a linear function

of hits minus false alarms, p(c) = 1
2(h− f) + 1

2 . Thus, using proportion correct to

summarize performance (sensitivity) in a recognition task implies a threshold decision

model (see also Swets, 1986b), although this is rarely acknowledged. The two-high

threshold model can also be expressed in a signal detection framework with rectangular

underlying evidence distributions (see Rotello et al., 2008), however the

parameterization presented here more clearly outlines the rationale of this measure.

The ROC curve predicted by the measure Pr is presented in Figure 2B. Unlike equal

variance signal detection, this account predicts linear functions within ROC space with

an intercept of Pr and a slope of 1.

The measure A′. As noted by Pastore, Crawley, Berens, and Skelly (2003), the

assumptions underlying measures of sensitivity, in particular signal detection theory,

have caused some concern among researchers, who have gravitated towards the use of

ostensibly assumption free, ‘non-parametric’ measures of sensitivity. The most popular

measure in this vein is A′, which was developed by Pollack and Norman (1964) with the

aim of estimating the area under the ROC curve. From the estimate of this area the

researcher would obtain the expected proportion correct of an unbiased observer on a

two-alternative forced choice task, irrespective of the underlying process (Green, 1964).

This would achieve the goal of obtaining a truly assumption free measurement of an

observers’ ability to distinguish targets from non-targets (Bamber, 1975; Green &

Moses, 1966). With a single hit and false-alarm pair, however, it is only possible to get

an average of the minimum and maximum areas implied.

As A′ was derived without specific reference to the shape of underlying evidence

distributions, it gained the title ‘non-parametric’; however, Macmillan and Creelman

have shown that A′ does indeed harbor parametric assumptions—in that the shape of

the ROC curve (see Figure 2C) does imply underlying distributions of evidence. In fact,

they demonstrated that the implied distributions change with the sensitivity of the

observer (Macmillan & Creelman, 1996). As shown in Figure 2C, when performance is
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high, A′ is consistent with a threshold model assuming (roughly) rectangular

distributions, as the ROCs are approximately linear. However, as performance lowers,

the shape of the A′ ROC curve increasingly mimics that of a signal detection model

assuming logistic evidence distributions (see Macmillan & Creelman, 1990, for a critique

of bias measures associated with A′). No currently offered theory of recognition or

detection makes the assumption that the underlying evidence distributions change with

greater sensitivity, making this a problematic characteristic of A′. Further, while the

initial aim behind the development of A′ was to obtain a compromise between the

minimum and maximum areas implied by the single point, A′ fails to do this (see

Smith, 1995; Zhang & Mueller, 2005). Despite these issues, A′ is still regularly used, so

we include it in the present simulations. Grier (1971) and Aaronson and Watts (1987)

provide the formulae for A′ for above and below chance performance, respectively:

A′ = 1
2 + (h− f)(1 + h− f)

4h(1− f) , h ≥ f

A′ = 1
2 −

(f − h)(1 + f − h)
4f(1− h) , h < f.

Previous Simulations: Main Effects and Differences in Response Bias

Looking closely at Figure 2, one can see that for two conditions in which

participants have equal sensitivity, the different sensitivity metrics will be in agreement

provided that response bias is also equivalent. This is because, in this situation, the (f ,

h) pair from each condition occupies the same point in ROC space. As the effect of

changing bias is to move the (f , h) point along the ROC curve, differences between

conditions in bias produce disagreements between different measures of sensitivity. For

example, imagine two conditions generated by a signal detection process with the same

sensitivity (d′) but where one condition has a neutral criterion and the other condition

has a conservative response bias (i.e. k > 0). The more conservative condition is shifted

along the same ROC curve as the neutral condition, but the effect of this is to produce

a sensitivity difference when, say, Pr is calculated. This is an example of type I error,

but an analogous situation can also be conceived where two conditions with truly
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different sensitivities (i.e. points on different ROC curves) appear to result in equal

performance when an inappropriate measure is applied (i.e. a type II error). To our

knowledge, two studies have looked at the ramifications of this via simulation.

Schooler and Shiffrin (2005) explored the efficacy of sensitivity measures when the

available data are sparse due to small trial numbers per participant. Their simulated

data were generated using a equal-variance signal detection model, in which two

conditions either did or did not differ in terms of sensitivity. This allowed them to

assess power and type I error rate, respectively. Provided the two conditions did not

differ in terms of criterion placement or bias, the high threshold measure, Pr, performed

well, with type I error rates around the accepted value of 0.05. However, when

conditions differed in criterion placement, type I error rates for this measure were high

(up to 34%) and, unsurprisingly, d′ performed better. When conditions truly differed in

terms of sensitivity, power was greatly improved by using d′ relative to Pr, again

unsurprisingly as it matched the generative model.

Rotello et al. (2008) provided a more comprehensive set of simulations in which

they generated data using either an underlying signal detection or two-high threshold

structure. They assessed the type I error rates of repeated measures t-tests on multiple

commonly used measures—including d′, A′ and proportion correct. They found that,

with data simulated to have true differences in response bias between conditions, use of

a measure not matching the assumptions of the generative model (e.g. applying Pr to

data simulated from a signal detection model) resulted in type I error rates typically in

excess of 20%. Critically, the error rate associated with A′ was large regardless of the

true underlying distributions. They also conducted power simulations for their

measures where there were true differences between hypothetical conditions in

sensitivity, but identical bias. All measures were found to perform fairly well, including

A′, especially with low overall sensitivity and small numbers of trials. However, given

its unacceptably high type I error rates, Rotello et al. (2008) council against the use of

A′ in any situation.
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The Present Simulations: Problems Interpreting Interactions, Even with

Equal Bias

The work of Schooler and Shiffrin (2005) and Rotello et al. (2008) clearly shows

that, in the case of a comparison between two experimental conditions (or two groups),

a misguided choice of sensitivity measure can result in errors provided there are

differences in response bias. The reason for this is clearly seen in the ROC plots

depicted in Figure 2; variation in bias between conditions results in two different points

along the same ROC curve and, consequently, different measures of sensitivity give

discrepant results.

One contribution of the present work is to point out that, for interactions between

experimental conditions in ANOVA, it is possible for measures of sensitivity to produce

discrepant results without any variation in response bias. The only condition that must

be met for this disagreement to occur is that each experimental factor has a main effect

on sensitivity.

To illustrate this, the simplest situation to consider is a 2 × 2 design; here we

consider one between-subjects factor (e.g. age group) and one within-subjects

(experimental condition). Figure 4 depicts two situations where, in absence of variation

in response bias, Pr and d′ would give opposing answers to the question of a group ×

condition interaction effect in a standard analysis of variance. The top row presents the

case where for Pr there are two main effects but no interaction. However, when d′ is

calculated using the (f, h) pairs, a clear interaction effect emerges, where the effect of

condition for group 1 is smaller than it is for group 2. The reason for this distortion can

again be seen in the ROC plots of Figure 2; at increasingly high levels of sensitivity (d′)

the curves implied by signal detection theory become more compressed and, thus, the

equally spaced points in ROC space shown in Figure 2A imply increasingly large values

of d′, resulting in an over-additive interaction. This analysis would imply that the effect

of condition is larger for the higher performing group.

The bottom row of Figure 4 presents the case where no interaction is present

using d′, but an under-additive interaction is present with Pr, such that the difference
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Figure 4 . Plots showing that, when considering interactions, it is possible for the
commonly used two-high threshold and signal detection measures, Pr and d′, to disagree
without variation in bias. Top row: non-interaction with Pr but interaction using d′.
Bottom row: interaction using Pr but main effects only with d′.

between conditions is smaller for the higher performing group. It is important to

reiterate that this disagreement arises without any difference in response bias (all the

points lie on the negative diagonal indicating neutral responding) and occurs when each

experimental factor produces a main effect. No variation in bias and no main

experimental effects on sensitivity would result in four overlapping points in ROC space

and, thus, no disagreement between the measures. Crucially, the data from this simple

2 × 2 design will not signal which is the correct measure to use. This decision must be

based on empirical ROC data and other tests aimed at probing the generative process

underlying the specific task in question (see the General Discussion).

As the above shows, the different scaling applied by commonly used measures of

sensitivity has the potential to produce large disagreements regarding interactions in

standard analysis of variance. Given the theoretical or explanatory weight often

bestowed on interactions such as these (Wagenmakers et al., 2012), this should be of
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great concern to researchers. The extent to which this has affected the literature on

detection and recognition (especially that on group differences across different

experimental conditions) is difficult to gauge (although see Rotello, Heit, & Dubé, 2015,

for examples where the choice of outcome measure may have greatly affected

conclusions). Simulation allows us to examine the extent to which these issues could

conceivably cause problems in interpreting interactions for reasonable research designs.

Consequently, in the present simulations we assess a wide range of parameter values, for

both sensitivity and bias, across equal and unequal variance signal detection, and

two-high threshold generative models as well as assessing the influence of number of

simulated subjects per group or trials per condition. There are potentially limitless

combinations of these factors, so the code used to produce the present simulations is

available at https://github.com/stephenrho/MeasuresAndErrors for researchers

interested in assessing specific parameter settings. We report a subset of the simulations

here which serve to illustrate, and elaborate on, the main points made so far. The

results of all simulations are presented in Supplementary Material.

Structure of Simulations

Simulated data sets contained two groups of NS hypothetical subjects each

performing in two within-subjects conditions with the same number (NT ) of target and

non-target trials per condition. Each set of trials was drawn from independent Binomial

distributions, with the probability of a hit or false-alarm determined by the underlying

model parameters (i.e. d and k, or Pr and Br) for a given subject in a given condition.

For both signal detection and two-high threshold simulations the underlying parameter

values, p, that controlled sensitivity and bias were determined using the same linear

equation:

pi,b,w = β0 + β1xb + β2xw + β3xbxw + bi,

where β0 is the grand mean (for example, average true sensitivity, d) and β1 and β2 are

deflections from the grand mean associated with the factors B (between subjects,
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group) and W (within subjects, condition), respectively.2 The indicator variables, xb

and xw, are set to −1 if the observation comes from the first level of the factor or to 1

for the second level. Consequently, positive values of our deflection parameters mean

lower parameter values at level 1 relative to level 2. The value β3 is the multiplicative

interaction between the two variables (xbxw); so as long as β3 = 0 there is no interaction

present in the simulated data set. The final component, bi, reflects random variation in

the parameter value due to the ith simulated subject. This is assumed to be normally

distributed with a mean of zero and standard deviation, σS. Note that this only affects

the overall level of performance between hypothetical participants and there is no

variability associated with the effect of the within subjects factor.

Both sensitivity (d or Pr) and bias (k or Br) parameters were determined using

this linear equation. These general parameters are referred to throughout this

manuscript with superscripts denoting the model parameter to which they refer; for

example, a main effect of group on sensitivity with a signal detection generative model

would be indicated in the magnitude of β(d)
1 , whereas an effect of condition on two-high

threshold response bias is determined by β(Br)
2 . For the high threshold simulations, as

the parameters are constrained to fall between 0 and 1 values outside this range were

rounded up to 0 or down to 1. Each simulation proceeded as follows;

1. Parameter values for the generative model were derived for NS hypothetical

participants using the above equation with the present settings for β0, β1, β2, and

β3. Participant variability was sampled from a normal distribution with a mean of

zero and a standard deviation, σS.

2. Predicted h and f rates were determined according to the generative model (see

description of models above).

3. NT target and non-target trials were simulated for each condition for each subject

as samples from a Binomial distribution, with success probability determined by h
2In many applications of signal detection theory the symbol β is used to refer to the likelihood ratio

at the criterion, k (see Macmillan & Creelman, 2005, pp. 33). However, in this case we use β, with
super- and sub-scripts, to refer to the intercept, main effect, and interaction parameters in the linear
equation above, that in turn determined the settings for the generative model in our simulations.
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for target trials and f for non-target trials.

4. d′, A′, and Pr were calculated with the simulated hit and false-alarm rates (see

formulae above).3

5. Steps 1-4 were repeated 1000 times per combination of parameter settings and

ANOVAs were conducted on the resulting data sets to obtain the frequency of

p < 0.05 for the group × condition interaction.

Here we focus on a subset of the type I and type II error simulations where there

are no true condition or group differences in response bias. Full results of all the

simulations conducted are presented in Supplementary Material and the code to conduct

them is available online: https://github.com/stephenrho/MeasuresAndErrors.

Type I Error Simulations

In these simulations, we were interested in assessing the type I error rates of the

different measures in the absence of variation in response bias. To this end, we varied

the overall sensitivity (controlled by the parameter β0 in the linear equation above) of

our hypothetical observers as well as the main effects of group (β1) and condition (β2).

To reduce the number of simulations, we fixed the size of the two main effects to be

equal. In addition, we also assessed the effect of increasing the number of participants

per group (NS) or trials per condition (NT ) on error rate.

Two-High Threshold

For the simulations with the threshold model, the grand mean bias parameter

(β(Br)
1 ) was set to 0.5 (neutral) and there were no main effects or participant variability

in bias (that is, β(Br)
1 = β

(Br)
2 = σ

(Br)
S = 0). Of primary interest here was variability in

grand mean sensitivity (or probability of detection) and main effects of group and
3In calculating d′, one encounters problems with undefined z scores with proportions of 0 or 1. Prior

to calculating d′, hit and false-alarm rates of 1 or 0 were adjusted by 0.01, which is the simplest and
perhaps most commonly used approach. Previous simulations have suggested that the correction applied
has little effect on error rates (Rotello et al., 2008; Schooler & Shiffrin, 2005) therefore we did not consider
this further.
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condition. Mean sensitivity (β(Pr)
0 ) was varied from 0.4 to 0.8 in steps of 0.1 and

random participant variability in sensitivity was simulated by setting the standard

deviation parameter, σ(Pr)
S , to 0.1. Our primary interest was in the influence of main

effects on sensitivity, so the main effect parameters for group (β(Pr)
1 ) and condition

(β(Pr)
2 ) took the values 0, 0.025, 0.05, and 0.1, with the constraint that they were fixed

to the same magnitude. Scaled in terms of the random intercept parameter mentioned

above, these values represent no, small, medium, and large effects, respectively. These

settings allowed us to cover a wide range of parameter values and hit/ false-alarm rates.

The range of hit and false-alarm rates across simulations was comparable across the

two-high threshold and signal detection simulations (presented next). For both, the

most sensitive group and condition were expected to achieve almost perfect performance

(h ≈ 1, f ≈ 0; i.e. a ceiling effect), whereas the least sensitive group/ condition was

close to chance (h ≈ .6, f ≈ .4). Note that the main effects were also scaled in the same

way relative to the random participant standard deviation parameter for both the THT

and SDT simulations (0%, 25%, 50%, 100% for none, small, medium, and large,

respectively).

Finally, in separate simulation runs we varied the number of hypothetical subjects

(NS) or the number of trials (NT ) through 12, 24, 48. The results of increasing the

number of participants per group or trials per condition were practically identical,

therefore we present the former here and the latter in the supplementary material (see

Simulation 2).

The results of this simulation with a threshold-generative model are presented in

Figure 5. As can be seen in this figure, type I error rates remain under control until

there are large main effects of group and condition. As shown in the rightmost panels,

error rates for both A′ and d′ depend on the overall level of discriminability (β(Pr)
0 ). The

frequency of errors is more pronounced with d′ relative to A′ until the very highest

grand mean sensitivity is reached, at which point the error rate for d′ drops to a similar

level as Pr. As noted above, erroneously applying d′ to data conforming to the

predictions of a two-high threshold model leads to the impression that sensitivity
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Figure 5 . Type I error rates for d′, A′, and Pr with an underlying two-high threshold
(THT) model. This simulation varied overall detection probability (x axis), magnitude
of main effects on detection (left to right), and number of simulated participants (top to
bottom).

differences between conditions are larger in groups that are more sensitive overall (an

over-additive interaction effect). As overall performance improves (moving along the

x-axis), this distorting effect becomes even larger, rising to an error rate in excess of

80% with groups of 48 hypothetical subjects. The ceiling effect encountered at high

underlying levels of sensitivity (yeilding hit rates around 1 and false-alarm rates around

0 in the highest performing group) reduces this over-additive tendency, seen as a drop of

error rate at the highest mean sensitivity in Figure 5. The effect of ceiling

discriminability on type I error rate is also seen when the correct measure, Pr, is applied

(see the rightmost panels of Figure 5). Finally, the effect of increasing the number of

subjects is to exacerbate these error rates as the analysis converges on the wrong
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pattern of means (Rotello et al., 2015).

In further simulations, we introduced individual differences in bias (Br) and varied

the overall grand mean bias, which did not affect the pattern of errors greatly (see

Simulation 4 in supplement). Introducing main effects of both group and condition on

response bias, along with the main effects on sensitivity, had a big effect on errors,

however. This was especially true for d′, whose errors were magnified by a conservative

overall bias (i.e. Br < 0.5) and large main effects on this parameter. As a logical

extension of the simulations reported by Rotello et al. (2008) and Schooler and Shiffrin

(2005), we also assessed the effect of manipulating bias between groups and conditions

in the absence of true main effects on sensitivity. d′ was the only measure to exhibit

inflated type I errors in this simulation (around 20%) when the bias effects were large.

Interested readers can find the full results of these simulations in the supplementary

material accompanying this article.

Signal Detection

According to the formulation of the signal detection model described above (see

Figure 1), a criterion of zero represents a neutral bias. Therefore, for these simulations

the grand mean criterion (β(k)
0 ) was fixed to 0 and there were no main or participant

effects on criterion placement (β(k)
1 = β

(k)
2 = σ

(k)
S = 0). Overall sensitivity was varied by

having the grand mean parameter (β(d)
0 ) take several values (1.5, 2, 2.5, 3, 3.5).

Similarly, the magnitude of the main effects of group (β(d)
1 ) and condition (β(d)

2 ) on

sensitivity were also varied (0, 0.125, 0.25, 0.5) with the two fixed to be the same value.

The random participant effect had a standard deviation (σ(d)
S ) of 0.5. These settings

allowed us to cover a wide variety of parameter values and hit/ false-alarm rates. As in

the previous simulations with a threshold generative model, combinations of these

parameter settings were assessed with varying numbers of hypothetical subjects or (in a

separate run) varying numbers of trials. Once again the results of these two sets of

simulations were remarkably similar (see Simulation 2 in the supplementary material).

Figure 6 presents the estimated type I error rates for d′, A′, and Pr with an
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Figure 6 . Type I error rates for d′, A′, and Pr with an underlying Gaussian
equal-variance signal detection theory (EV-SDT) model. This simulation varied overall
detection sensitivity (x axis), magnitude of main effects on sensitivity (left to right),
and number of simulated participants (top to bottom).

underlying equal variance signal detection model. A couple of noteworthy patterns

standout; firstly, error rates for all measures are at, or around, the conventionally

accepted rate of 0.05 when there are no main effects or the true main effects of group

(the between-subjects factor) and condition (the within-subjects factor) on sensitivity

are small. When there are medium-to-large main effects, the error rates for A′ and Pr

depart from accepted levels, and increasing the number of participants per group

exacerbates this (Figure 6 right-hand panels). Of the measures, A′ clearly is more likely

to erroneously give evidence for an interaction effect where none exists.

The effect of increasing the overall mean level of sensitivity is slightly more

complex (moving along the x-axis of Figure 6). Using Pr on signal detection data
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becomes increasingly problematic as the underlying sensitivity increases, whereas for A′

errors become somewhat less pronounced as mean sensitivity increases. For both of

these measures, however, when there are large main effects, the type I error rate is

unacceptable (around 0.7 for Pr and 0.8 for A′ with 24 participants per group). d′ also

exhibits exacerbated error rates for the interaction test when underlying sensitivity is

high and there are large main effects, despite the fact that this measure is consistent

with the generating model. This is clearly due to a ceiling effect, which restricts

performance of the highest performing group, producing an under-additive interaction

where the effect of condition appears smaller in the better performing group. This

begins to appear in the simulations where grand mean sensitivity (β(d)
0 ) is 3 and the

main effects are large (0.5). In this case the expected hit and false-alarm rates of the

highest performing group are 0.98 and 0.02, respectively.

We also conducted several simulations in which bias was allowed to vary, the

results of which are presented in the supplement. To summarize, allowing for individual

differences and overall shifts in criterion placement (i.e. non-neutral) had a small effect

on error rates. Mainly, type I error rates for all three measures were less pronounced as

the observers departed from neutral overall responding, either towards a liberal or

conservative criterion placement. Introducing main effects of both variables had a

pronounced effect on error rates (see Simulation 6 in supplement). As the size of these

main effects increases, type I error rates rise for both Pr and A′, particularly when the

overall criterion placement is neutral. We discuss reasons for this pattern of results in

the supplement. This tendency for main effects on criterion placement to inflate type I

errors for interactions was also present when main effects on sensitivity were removed

(see Simulation 7). Thus, in line with previous findings concerning type I error for main

effects (Rotello et al., 2008; Schooler & Shiffrin, 2005), it is possible to generate

spurious interactions purely from differences in response bias.

In these simulations, we made it so that the two Gaussian evidence distributions

shared variance (that is, s = 1). However, when empirical ROC curves are plotted, this

assumption is often violated (see, e.g., Ratcliff et al., 1992; Swets, 1986a). Therefore, we
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also looked at situations where targets produced a more variable distribution over the

decision variable than non-targets (s = 0.8) and vice versa (s = 1.2). For each

simulation the same general patterns of type I error rates (and power, see below) were

visible as in the equal variance case, although they were slightly less pronounced for

s = 0.8 and slightly more pronounced for s = 1.2. Interested readers can find the full

results of these simulations in the online supplementary material.

Summary of type I error simulations

The simulations reported above (and those in the supplement) confirm the

argument made on the basis of Figure 4 and show that choosing a measure of sensitivity

that mismatches the model underlying the decision process can lead to spurious

evidence for interaction effects in detection or recognition experiments. Crucially, this

happens without systematic variation in response bias when the factors in the

experimental design produce main effects. In follow up simulations, we fixed the

number of participants per group and trials per condition to 24 and orthogonality

varied the magnitude of group and condition main effects. This confirmed that as long

as one effect is large and the other is at least medium in size, inflated type I error rates

occur (see Simulation 3 in the supplement).

Introducing systematic variation in response bias complicates the interpretation of

interactions further and can lead to type I errors even when there are no true main

effects on sensitivity. The effect of collecting more data, either in terms of numbers of

subjects or numbers of trials, is to exacerbate these effects even further as the ANOVA

settles on the incorrect interpretation of the data (see also Rotello et al., 2015). This

should be of great concern to applied researchers who want to interpret interactions

arising from detection or recognition tasks. In the discussion we discuss potential

strategies to mitigate these problems, but first we move to the topic of power to detect

sensitivity interactions when they do exist.
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Power Simulations

Another implication of Figure 4 is that there are likely to be occasions where

actual interaction effects on the correct scale of measurement are missed. Specifically, it

seems that over-additive interactions with a signal detection underlying model may be

missed by choosing Pr, whereas an under-additive interaction on two-high threshold’s

detection parameter may be missed with d′. The next set of simulations addressed this.

As described above in the Structure of Simulations section, the indicator variables

xb and xw were set to −1 if the observation came from the first level of the factor or to

1 for the second level. Using positive values of our β1 and β2 coefficients is then useful

for simulating interaction effects in the current context. A negative coefficient for the

interaction (β3) produces an under-additive interaction effect, where the effect of

condition is less pronounced for the better performing group (or, equivalently, group

differences are less pronounced in the easier condition). A positive coefficient, on the

other hand, produces an over-additive interaction where there is a greater effect of

condition in the higher performing group (or a greater group difference in the easier

condition). We used this to assess the power (1− type II error) of the three measures

under different generative models. There was no variation in response bias between

groups, conditions, or individuals. We examined power under varying numbers of

participants per group (presented here) and trials per condition (presented in the

supplementary material, Simulation 9).

Two-High Threshold

This set of simulations used the same general parameter settings as the earlier

type I error simulations, but this time introduced interaction effects that were either

under- or over-additive. As mentioned above, negative values of β(Pr)
3 produce

under-additive interactions, whereas positive values produce over-additive interactions.

This parameter was varied through, −0.05, −0.025, 0.025, 0.05.

As these simulations have the additional variation in the interaction coefficient,

Figure 7 presents only the results from the simulation where the true underlying main
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effects on sensitivity were large (β(Pr)
1 = β

(Pr)
2 = 0.1). It is in this condition where the

differences between measures were most pronounced, however we summarize the other

results here. At a small main effect size (β(Pr)
1 = β

(Pr)
2 = 0.025) power for the interaction

effect was more-or-less identical for all three measures. Power began to diverge between

measures for the medium main effect size (0.05), with d′ slightly under-powered for

under-additive interactions and somewhat overpowered (relative to the correct measure,

Pr) for over-additive interactions, as we would predict from Figure 4. Figures depicting

these findings are presented in the supplement under Simulation 8.
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Figure 7 . Power for d′, A′, and Pr with an underlying two-high threshold (THT) model.
This simulation varied overall probability of detection (x axis), the magnitude and
direction of interaction (left to right) and the number of participants per group (top to
bottom). Note: this figure depicts the case where main effects on detection equal 0.1.

Figure 7 plots estimates of power for the interaction effect when there are two

large main effects on detection probability. Comparing the two left columns to the two
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right ones it is clear to see that, relative to the correct measure Pr, A′ is overpowered4

for under-additive interactions (left) and tends to miss over-additive interactions

(right). This pattern is reversed for d′, which tends to miss under-additive interactions,

as indicated by its low power. Figure 4 provides the explanation for this, in that

conversion of Pr onto d′ scale produces an exaggeration of differences at higher levels of

sensitivity; therefore, when the ‘true’ interaction is under-additive the two cancel each

other out to a large extent. Finally, Pr appears to miss over-additive interactions at

very high levels of performance due to a ceiling effect for the most sensitive group,

which limits the visibility of the over-additive interaction (see rightmost panels).

Once again, in additional simulations, presented in full in the supplement, we also

assessed the effect of manipulating bias on power. Introducing participant variability

and different overall levels of bias did not affect estimates greatly. Adding large main

effects on response bias complicated things further and was sufficient to cause

distortions in power even without group or condition effects on sensitivity.

Signal Detection

For the signal detection simulations, we used the same parameter values as the

initial type I error simulations with the additional interaction effect on sensitivity (β(d)
3 ),

which could either be under-additive (−0.25,−0.125) or over-additive (0.125, 0.25).

At a small main effect on sensitivity (β(d)
1 = β

(d)
2 = 0.125) there is not much

separating the measures in terms of power. With 24 participants in each group and a

larger interaction effect (−0.25 or 0.25), power is always well above 80%. The measures

diverge with two slightly bigger main effects (0.25), with A′ and Pr producing more

misses, relative to d′, for under-additive interactions but exhibiting artificially inflated

power for over-additive interactions. The clearest divergence is shown in Figure 8 which

depicts the results of simulations with two large main effects (0.5) on sensitivity. The

results not depicted here can be found in the supplementary material.

As can be seen in Figure 8, when the true generative model consists of a small
4It is worth noting that being ‘overpowered’ is not a good thing in this case, as it arises from an

exaggeration of the true effect. Estimates of effect size with this measure will be incorrect and biased
upwards.
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Figure 8 . Power for d′, A′, and Pr with an underlying Gaussian equal variance signal
detection theory (SDT) model. This simulation varied overall sensitivity (x axis), the
magnitude and direction of interaction (left to right) and the number of participants per
group (top to bottom). Note: this figure depicts the case where main effects on
sensitivity equal 0.5.

under-additive interaction and a small sample size per group A′ and Pr produce higher

estimates of power than the correct measure, d′, due to their tendency to distort data

conforming to a signal detection model (see Figure 4). Their theoretical ROCs do not

imply the same compression towards the top-left of ROC space that d′ does and,

consequently, they make differences at higher levels of performance appear less

pronounced. This is inverted for over-additive interactions, for the exact same reason,

and d′ has consistently greater power, except for cases where ceiling level sensitivity

quashes the interaction effect (as can be seen progressing along the x-axis). A′ performs

particularly badly for a large over-additive interaction (see right most panels of

Figure 8).
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Additional power simulations, in which overall criterion placement was varied,

showed that for over-additive interactions the power of the correct measure, d′ dropped

as criterion deviated from neutral, whereas power with Pr was inflated. Adding main

effects on criterion placement complicated things a great deal (see the supplement for in

depth discussion) and was sufficient to distort estimates of power even in the absence of

main effects on the sensitivity parameter.

Summary of power simulations

The power simulations reveal a complex set of results wherein evidence for

interactions is either suppressed or erroneously magnified, depending on the nature of

the true interaction effect (either under- or over-additive) and the generative model.

Analyses of interactions conforming to a two-high threshold discrimination process with

the measure d′ tend to miss under-additive effects, where group differences are

suppressed in higher performing conditions. Applying A′ to this data, however, one

would be liable to miss over-additive interactions where group differences are more

pronounced at higher performance levels. With data conforming to a signal detection

theory account, applying A′ or Pr will lead to an increased likelihood of missing a true

over-additive interaction effect. This happens because of the different scaling implied by

the different measures and does not rely on variation in bias, although adding this

variation complicates matters further (see Supplement).

General Discussion

Binary choice recognition or detection performance summarized in terms of hit

and false-alarm rates confounds the observer’s ability to perform the discrimination

with their inherent bias towards one of the response options. In order to separate the

contribution of these two factors, a model of the underlying decision process is needed.

Commonly used measures, d′ and Pr, come from two broad classes—those that assume

a continuous decision variable, with observers comparing sampled values to a criterion,

and those assuming a handful of discrete states—and are particularly restricted

realizations of these models. The commonly applied measure A′, on the other hand, does
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not specify the basic process underlying the discrimination but, that being said, does

imply specific evidence distributions and ROC curves (Macmillan & Creelman, 1996).

Previous work has established that, if a measure is applied that does not conform

to the underlying structure of the data, two conditions may appear to differ in

performance (i.e. sensitivity) where no true difference exists, provided that they differ in

response bias (Rotello et al., 2008; Schooler & Shiffrin, 2005). In the present case we

were interested in conclusions regarding interactions between variables assessed via

analysis of variance. The simulations presented here (and in the online supplementary

material) have shown that erroneous conclusions can arise regarding interactions

between variables in the absence of any difference in response bias. In the examples

used here, provided both group and condition resulted in moderate to large main effects

themselves, the probability of erroneously encountering a significant interaction effect is

quite large when an inappropriate measure is applied. Further, genuine interaction

effects are likely to be missed; with a specific tendency for d′ to miss under-additive

interactions and for Pr to miss over-additive interactions (see Figure 4). These

simulations show how various factors, such as the overall sensitivity of observers,

differences between groups and conditions, and variation in response bias, combine to

influence error rates and power.

The problem of understanding the theoretical importance of interactions, such as

these, were well outlined by Loftus (1978) who distinguished ‘interpretable’ and

‘uninterpretable’ interactions. The present simulations underline the problems

associated with model dependent interactions: it is possible to make interactions appear

and disappear simply by changing the measure of sensitivity chosen as the outcome

variable. Despite the possibility that this will change the way in which researchers

interpret interaction effects, a relatively recent survey of the field suggests that Loftus’

warnings have gone largely unnoticed by experimental psychologists, who still ascribe

fairly large theoretical weight to significant interactions (Wagenmakers et al., 2012).
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Recommendations

As we have described so far, assessing the evidence for interaction effects is more

difficult than it may first appear. In the field of recognition and detection, however,

there are ways that researchers may gain greater confidence in the veracity of their

interaction effects. Table 1 summarizes a number of steps researchers might take to

avoid the problems highlighted in the simulations presented here. The remainder of the

article covers these recommendations in more detail.

Choosing an appropriate measure. The importance of selecting a measure

consistent with the structure of the data has been highlighted several times before

(Macmillan & Creelman, 2005; Rotello et al., 2008; Swets, 1986a). But, as recently

noted by Rotello et al. (2015), there is a tendency for outcome measures to be chosen

on the basis of what is typically used in the field, without consideration of whether the

measure gives an accurate representation of the underlying process. As outlined in the

Introduction, the source of the discrepancy between measures is in their different

predictions as to how false-alarm and hit rates should relate over varying response bias;

that is, their predicted ROC curves (see Figure 2). The form of these ROC curves need

not remain a mystery, however. Researchers should search the existing literature for

empirical ROC curves constructed for tasks similar to their own (Swets, 1986a).

This is not without its pitfalls, and researchers should be wary of the controversy

surrounding ROC curves derived from ratings procedures, in which, instead of a yes/no

decision, participants rate their decision on a scale from sure target to sure non-target.

With such a ratings procedure, it is not necessarily the case that a threshold model

predicts linear ROCs, as a change in the mapping of detection states onto ratings can

introduce curvature (see Bröder, Kellen, Schütz, & Rohrmeier, 2013; Malmberg, 2002).

Thus, it has been argued that analysts should focus on the form of binary choice ROC

curves, derived from the manipulation of base rates (i.e. expectation of the frequency of

target trials), or payoffs (i.e. offering more or less reward for correct target responses)

(see Bröder & Schütz, 2009).

It is beyond the scope of this article to provide a review of ROC data from various
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disciplines or tasks, and several such reviews already exist (Dube & Rotello, 2012;

Macmillan & Creelman, 2005; Swets, 1986a; Wixted, 2007; Yonelinas & Parks, 2007).

However, we are able to give an example of choosing an appropriate measure from our

own field of interest (and what happens when an inappropriate measure is applied).

Isella, Molteni, Mapelli, and Ferrarese (2015) recently used a change detection paradigm

to assess younger and older adults’ short-term recognition memory for simple objects

made up of color and shape. They were interested in the extent to which healthy aging

affected the ability to detect changes to color-shape pairing beyond any age effect

observed for detecting changes to individual features. In this case, a group by condition

interaction may suggest that older adults have a specific deficit in short-term memory

binding.

To address this question, the authors applied A′, claiming that it was “the most

classical and appropriate parameter for a change detection task” (p. 38); however, it is

not clear how this conclusion was reached. Nevertheless, Isella et al. (2015) found a

significant group by condition interaction with this measure. In the online supplement

to their paper, however, they report an additional analysis of proportion correct in

which the crucial interaction is not significant. It is important to note that Isella et al.

(2015) employed an adjustment for multiple comparisons which led them to dismiss the

interaction contrast between the lowest performing individual feature condition (shape

only) and the condition requiring color-shape binding (p = .021) as non-significant. As

we argue below, this was likely a good move, however, given that this group by

condition interaction was the component of primary interest in this study, we can

equally envisage a situation where the correction was not applied and the significant

interaction interpreted in a different manner. Thus, we are using this as a case where

different conclusions could have been reached based on the choice of measure, not as a

specific critique of the conclusions of Isella et al. (2015).

It is our contention that A′ is an inappropriate measure in this situation, and a

more appropriate measure can be justified in the basis of the extant literature. Previous

research has shown that base rate manipulations with the change detection task,
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achieved by varying the proportion of target and non-target trials and informing

participants of this, yield linear ROC curves when categorically distinct stimuli are used

(e.g. Rouder et al., 2008). Thus, it can be argued that proportion correct, which can be

justified as an index of sensitivity according to a high-threshold model (see above), is a

more appropriate measure for the data of Isella et al. (2015). Indeed, other studies on

the same topic have applied the two-high threshold measure, Pr, and have provided

evidence against the group by condition interaction (see Rhodes, Parra, & Logie, 2016;

Rhodes, Parra, Cowan, & Logie, 2017).5

Nevertheless, it is often difficult to find truly diagnostic ROC curves (see, for

example, the debate in the recognition memory literature; Bröder & Schütz, 2009; Dube

& Rotello, 2012). Researchers should therefore consider additional sources of

information to help them decide between measures. For instance, recent interest has

shifted from comparing models on the basis of ROC data towards tests of critical

predictions made by models of the discrimination process. An example of this is the

prediction of conditional independence made by the two-high threshold model (see

Chen, Starns, & Rotello, 2015; Province & Rouder, 2012, for recent tests of this

prediction). This is the expectation that given a certain internal state (e.g. detection of

a previously studied stimulus) has been reached, responses (e.g. confidence ratings)

should be invariant and not depend on experimental manipulation. Assessments of the

predictions of signal detection and high-threshold accounts regarding distributions of

reaction times are also informative in arriving on an appropriate measure for a given

situation (see Donkin, Nosofsky, Gold, & Shiffrin, 2013; Dube, Starns, Rotello, &
5When considering change detection it is worth noting that there are a range of other measures that

are used with this paradigm. These attempt to measure the number of items held in working memory
(k) and different measures are appropriate for different versions of the change detection task (depending
on the type of probe used; see Cowan, Blume, & Saults, 2013, for discussion). Each of these models is
related to the two-high threshold model, in that they assume discrete states (items are either in memory
or not), but predict different precise forms of ROC curves. Thus, while we believe it is correct to say
that proportion correct is the “more appropriate measure” given the extant data, there are likely to
be even more appropriate measures for the specific change detection task used by Isella et al. (2015).
The general findings of the present simulations will apply to these change detection measures; when the
implied ROC curves of a measure disagree with the underlying process, sensitivity (in this case k) will
be confounded with bias and scaling will effect the interpretation of interaction effects. Rouder, Morey,
Morey, and Cowan (2011) and Rhodes, Cowan, Hardman, and Logie (2018) discuss issues surrounding
the change detection task and measurement of k.
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Ratcliff, 2012; Province & Rouder, 2012).

In the process of searching for a measure it is highly likely that a measure outside

of the set considered here will be appropriate for the paradigm under consideration. It

is then useful for applied researchers to be aware of other models and measures that

they may add to their toolkit. For example, even if the data conform to a Gaussian

signal detection model, it may be that the evidence distributions have different

variance, making the use of d′ inappropriate (Swets, 1986a). Previous estimates of the

ratio of non-target to target standard deviations (s) can be used to correct d′ to be

more appropriate to the underlying structure of the data. In recognition memory

paradigms, for example, ROC estimates of s tend to be smaller than 1 at approximately

0.8 (see Ratcliff et al., 1992; Wixted, 2007). It is possible, given a previous estimate of

s, to obtain an appropriate estimate of sensitivity according to a signal detection

account. One such measure is da (Simpson & Fitter, 1973), which gives the separation

of the target and non-target distributions in terms of the root mean square of the two

standard deviations. The formula for calculating this measure can be found on page 400

of Rotello et al. (2008).

Further, there is low threshold theory (Luce, 1963), which relaxes the assumption

of high thresholds and allows for observers to erroneously enter detection states (for

example, entering the ‘detect target’ state when presented with a non-target). This

model predicts ROCs made of two line segments and has recently been shown to

provide a reasonable fit to data from recognition memory tasks (Kellen, Erdfelder,

Malmberg, Dubé, & Criss, 2016; Starns & Ma, 2018). Thus, researchers should be

aware of this alternative model and may consider applying it in their work, although it

should be noted that this model does not produce a single point measure of sensitivity.

The present simulations (see in particular the unequal variance simulations in the

supplementary material) demonstrate that the fact that so often empirical ROC curves

are asymmetrical (see Swets, 1986a; Wixted, 2007, for reviews) should be of great

concern to researchers. Findings may appear replicable and robust when, in fact, they

arise due to a distorting effect of an inappropriate measure (see Rotello et al., 2015, for
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a detailed discussion of this important point). Knowledge of these alternative measures

and models, often ignored in applied research, will better place researchers to avoid

erroneous conclusions regarding interactions.

Avoid ceiling level performance. Avoiding perfect, or near perfect,

performance is usually a concern for researchers. The present simulations reinforce this

concern by clearly showing that high levels of performance can cause issues even when

an appropriate measure is chosen. The simulations with variable response bias also

reveal a problem when either h or f are at ceiling (or floor), as this results in the other

estimated rate coming to dominate inference, which in turn can drive erroneous

conclusions even when the correct measure is applied. Thus, while overall performance

(e.g. proportion correct) may not be at ceiling, individual rates of 0 and 1 can still

cause problems. The supplementary material contains further discussion of this point.

Consider the scale of measures. When there is no variation in response bias,

the primary source of disagreement between measures in an analysis of variance stems

from the way in which they are scaled. Equal increments along the negative diagonal

imply increasingly smaller differences in d′ (Figure 2A), whereas the way in which our

two-high threshold simulations were set up reflects the general assumptions implied in

analyzing estimates of Pr with ANOVA. That is, that Pr is on an interval scale so that

mean differences are equally as meaningful at moderate and high levels of sensitivity. It

seems unlikely that researchers would ascribe as great a meaning to a difference in Pr of

0.55 vs 0.6 as they would to the difference between 0.9 and 0.95. These scaling issues

are often raised when discussing the analysis of categorical data, so analyses assuming a

high threshold process may benefit from insights from this area.

As noted in the Introduction, proportion correct can be justified as a measure of

sensitivity given its linear relation to Pr. To reflect the assumption that differences at

higher levels of accuracy are more meaningful than differences at lower levels,

researchers may analyze a transformation of proportion correct. Logit models offer one

such method of analysis, which is preferable to the analysis of aggregated and

transformed proportions with ANOVA (see Dixon, 2008). Here, the researcher would
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estimate the log odds of a correct response (across both target and non-target trials)

using the raw binary (correct and incorrect) responses. This analysis would still imply

linear ROCs but would produce a similar scaling of effects to that produced with the

signal detection theory measure, d′ (the z, or probit, transformation used in calculating

d′ is very similar to the log odds, or logit, transformation). Consequently, one avoids the

problem of treating Pr as if it were interval in scale (as is implied in the use of

ANOVA), and scales effects similarly to a signal detection theory analysis.

To show this, we fit a mixed-effects logit model to each simulated data set from the

first series of simulations that used an equal variance signal detection generative model.

P -values for group by condition interactions were obtained using the lme4 package in R

(Bates, Maechler, Bolker, & Walker, 2014; R Core Team, 2015). As expected, relative

to ANOVA on Pr, the logit model fared much better with type I error rates, on average,

approximately 13% lower. Overall, there was no clear difference between the logit model

and the correct measure d′ (on average, type I error rates differed by 0.5%). Thus,

changing the way in which one thinks about the scale of effects on Pr, which seems

reasonable given that this measure is bounded by 0 and 1, reduces the disagreement

between models in the absence of variation in response bias. Disagreement still arises

when bias is varied between groups and conditions, as exemplified by the simulations in

which there were no main effects on sensitivity (see Simulations 7 and 12 in

supplementary material) (see also Rotello et al., 2008; Schooler & Shiffrin, 2005).

Present a range of measures. It is likely that researchers will be faced with a

situation where there is no good reason to pick a particular measure over others

available. For example, a researcher may design a task for which no good ROC evidence

exists and they are unable, due to lack of time or resources, to probe this themselves. In

this case what can they do? Many of the options open to researchers in this

circumstance have already been outlined by Wagenmakers et al. (2012, pp. 157).

Perhaps the simplest is that investigators may choose to report a range of different

measures, such as d′, Pr, logit(p), as well as signal detection measures that do not

assume equal variance (see Rotello et al., 2008), and examine whether the interaction
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survives (or whether additivity remains). If an interaction effect appears with multiple

measures, one can gain confidence that their conclusion is not dependent on a single

scale of measurement (although doubtlessly it will vary in magnitude, in which case a

range of effect sizes may be given).

Alternative ways of assessing of sensitivity. The frequent use of the

measure A′ suggests that—possibly due to an (implicit or explicit) understanding of the

issues above—researchers are not comfortable with the underlying assumptions made by

other measures of sensitivity, and desire an assessment of performance that is not tied

to a particular conception of the discrimination process. However, as outlined in the

Introduction, A′ does not live up to its ‘non-parametric’ name (Macmillan & Creelman,

1996) and there have been repeated calls for use of the measure to be reconsidered or

abandoned (Pastore et al., 2003; Rotello et al., 2008). Our simulations add to the long

list of reasons to avoid this measure. In type I error simulations, A′ performed

particularly badly when data conformed to the expectation of a signal detection model

and did not fare well at detecting over-additive interactions for both generative models

considered here. However, the desire to have a measure of performance which is tied to

as few assumptions as possible remains.

A truly non-parametric assessment of discrimination sensitivity can be achieved

by constructing an empirical ROC curve, either by collecting rating responses or by

varying response bias or criterion (see above). From the empirical ROC, an estimate of

area under the curve can be obtained providing a model-free estimate of an observer’s

sensitivity (Bamber, 1975; Green, 1964; Green & Moses, 1966). This can be done

non-parametrically by summing the trapezoids created by each successive (f , h) pair

(see Macmillan & Creelman, 2005, pp. 64; Pollack & Hsieh, 1969). This estimate of

area is known to be biased downwards from the ‘true’ area, but a better approximation

can be acheived by obtaining more points on the ROC or by using the method of

Donaldson and Good (1996) to try and correct this bias. One may also assess the area

under the curve parametrically assuming a signal detection model (see Stanislaw &

Todorov, 1999, for guidence).
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Alternatively, if the target/ non-target decision is not integral to the study design,

researchers may consider a two-alternative forced choice (2AFC) task in which observers

are presented with two items (one a target and one a non-target) and must select one of

them as the target. In many applications it may be safely assumed that bias plays little

role in responding and does not vary greatly between conditions or groups. Thus the

2AFC can reduce concerns regarding the separability of sensitivity and bias, but

measurement decisions still need to be made (see Macmillan & Creelman, 2005,

Chapter 7 for detailed discussion).

A summary of recommendations, along with their strengths and drawbacks, can

be found in Table 1.

Concluding Remarks

We have shown that measures of sensitivity, as typically analyzed via standard

methods like analysis of variance, can produce conflicting evidence for interactions even

in the absence of differences in response bias. In considering a wide array of underlying

parameter settings, the present simulations show some situations where we may expect

this tendency to be especially pronounced. Without access to raw hit and false-alarm

rates, it is difficult to know the true extent to which issues like these have biased the

literature. However, the potential for conclusions to vary given a change of sensitivity

measure is certainly shown by the example of Isella et al. (2015) given above (also see

Rotello et al., 2015, for other case studies). While the realization that interactions may

be created and taken away via a change of measurement scale is not new (Loftus, 1978),

we hope that the simulations presented here underline the scale of the problem and

bring it to the wider attention of psychologists (Wagenmakers et al., 2012). We also

hope that the recommendations provided will help researchers state their conclusions

regarding interactions in detection or recognition experiments more clearly, even if the

conclusions themselves are less clear.
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